-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
196 lines (170 loc) · 9.62 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import torch
import torch.nn as nn
import torch.optim as optim
import random
import os
from torch.utils.tensorboard import SummaryWriter
import resNet34
import moblieNetV2
import utils
import data_load as data_load
import math
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
import argparse
parser = argparse.ArgumentParser()
#logging option
parser.add_argument('--name', type=str)
parser.add_argument('--datasetPath', type=str, default="/local_data/gihoon")
parser.add_argument('--saveDir', type=str, default='/personal/GiHoonKim/face_ldmk_detection')
parser.add_argument('--print_interval', type=int, default=100, help='print interval')
#computing option
parser.add_argument('--gpu', type=str, default='0', help='gpu')
parser.add_argument('--num_worker', type=int, default=16, help='num_worker')
parser.add_argument('--numEpoch', type=int, default=120, help='# of epoch')
parser.add_argument('--batchSize', type=int, default=64, help='input batch size for training')
parser.add_argument('--lr_landmark', type=float, default=0.001, help='learning rate')
#training option
parser.add_argument('--modelType', type=str, default='ResNet34')
parser.add_argument('--IsGNLL', type=str2bool, default=False, help='using GNLL or MSE loss for training')
parser.add_argument('--IsAug', type=str2bool, default=True, help='conduct augmentation of not')
#augmentation option
parser.add_argument('--IsSuffle', type=str2bool, default=True, help='Using Suffle')
parser.add_argument('--train_val_ratio', type=float, default=0.80, help='train/validation split rate')
parser.add_argument('--GaussianBlur_kernel_w', type=int, default=3, help='GaussianBlur_kernel_w')
parser.add_argument('--GaussianBlur_kernel_h', type=int, default=3, help='GaussianBlur_kernel_h')
parser.add_argument('--GaussianBlur_sigma_min', type=float, default=0.1, help='GaussianBlur_sigma_min')
parser.add_argument('--GaussianBlur_sigma_max', type=float, default=5.0, help='GaussianBlur_sigma_max')
parser.add_argument('--perspective_distortion_scale', type=float, default=0.6, help='perspective_distortion_scale')
parser.add_argument('--perspective_distortion_prob', type=float, default=0.5, help='perspective_distortion_probability')
parser.add_argument('--grayscale_prob', type=int, default=4, help='grayscale_probability: 1/grayscale_prob %')
parser.add_argument('--rotation_max_angle', type=int, default=45, help='rotation_max_angle')
parser.add_argument('--noise_std_scale', type=float, default=0.1, help='noise_std_scale')
parser.add_argument('--brightness_factor_min', type=float, default=0.5, help='noise_std_scale')
parser.add_argument('--brightness_factor_max', type=float, default=1.5, help='noise_std_scale')
parser.add_argument('--contrast_factor_min', type=float, default=0.5, help='noise_std_scale')
parser.add_argument('--contrast_factor_max', type=float, default=1.5, help='noise_std_scale')
args = parser.parse_args()
def main(args):
#gpu
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]=args.gpu
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
torch.multiprocessing.set_start_method('spawn') # for using mutli num_workers
#util
saveUtils = utils.saveData(args)
print(str(args))
saveUtils.save_log(str(args))
writer = SummaryWriter(saveUtils.save_dir_tensorBoard)
#model
if args.modelType == "ResNet34":
if args.IsGNLL == True:
model4Landmark = resNet34.ResNet34(output_param = 3).to(device) # x, y, sigma
# https://pytorch.org/docs/stable/generated/torch.nn.GaussianNLLLoss.html # output = loss(input, target, var)
lossFunction = nn.GaussianNLLLoss()
else:
model4Landmark = resNet34.ResNet34(output_param = 2).to(device) # x, y
lossFunction = nn.MSELoss()
elif args.modelType == "MoblieNetv2":
if args.IsGNLL == True:
model4Landmark = moblieNetV2.moblieNetV2(output_param = 3).to(device) # x, y, sigma
# https://pytorch.org/docs/stable/generated/torch.nn.GaussianNLLLoss.html # output = loss(input, target, var)
lossFunction = nn.GaussianNLLLoss()
else:
model4Landmark = moblieNetV2.moblieNetV2(output_param = 2).to(device) # x, y
lossFunction = nn.MSELoss()
else:
print("There is no proper model type.")
raise ValueError
# optimizer
optimizer4landmark = torch.optim.Adam(model4Landmark.parameters(), lr=args.lr_landmark)
#optimizer4adaptation = torch.optim.Adam(model4adaptation.parameters(), lr=args.lr_adaptation)
# data loader
train_dataloader, valid_dataloader = data_load.get_dataloader(args , IsSuffle = args.IsSuffle,num_workers = args.num_worker, IsAug = args.IsAug, train_val_ratio =args.train_val_ratio) #(args, IsSuffle = True, num_workers = 16, IsAug =True, train_val_ratio = 0.80)
print_train_loss = 0
print_train_var = 0
print_val_loss = 0
print_val_var = 0
print_interval = 10
total_iter = 0
for num_epoch in range(args.numEpoch):
for iter_num, item in enumerate(train_dataloader):
total_iter += 1
#print(iter_num)
img_GT, landmark_GT, crop_img, crop_ladmks, bbox_leftcorner = item
crop_img = crop_img.to(device, dtype=torch.float)
crop_ladmks = crop_ladmks.to(device, dtype=torch.float)
pred_ladmks = model4Landmark(crop_img)
#print("pred_ladmks[args.batchSize, :2].shape: ", pred_ladmks[:, :, :2].reshape(args.batchSize, -1 ,2).shape)
#print("crop_ladmks.shape: ", crop_ladmks.shape)
if args.IsGNLL == True:
pred_ladmks = pred_ladmks.reshape(args.batchSize, -1 ,3)# x, y, sigma
#Paper: Rather than directly outputting σ, we predict log σ, and take its exponential to ensure σ is positive
#torch.pow(torch.log(torch.nn.functional.relu(pred_ladmks[:,:,2]) + 1e-10)) # add 1e-10 for non-zero log input
#train_loss = lossFunction(crop_ladmks, pred_ladmks[:, :, :2], torch.nn.functional.relu(pred_ladmks[:,:,2]).add_(1e-10))
train_loss = lossFunction(crop_ladmks, pred_ladmks[:, :, :2], torch.exp(pred_ladmks[:,:,2]))
print_train_var += torch.mean(torch.exp(pred_ladmks[:,:,2])).item()
else:
pred_ladmks = pred_ladmks.reshape(args.batchSize, -1 ,2)# x, y
train_loss = lossFunction(crop_ladmks, pred_ladmks)
print_train_loss += train_loss.item()
optimizer4landmark.zero_grad()
train_loss.backward()
optimizer4landmark.step()
#print and logging
if iter_num % print_interval == 0:
print_train_loss = print_train_loss/print_interval
if args.IsGNLL == True:
print_train_var = print_train_var/print_interval
log = "Train: [Epoch %d][Iter %d] [Train Loss: %.4f] [Mean var: %.4f]" % (num_epoch, iter_num, print_train_loss, print_train_var)
writer.add_scalar("Train Mean var/ iter", print_train_var, total_iter)
else:
log = "Train: [Epoch %d][Iter %d] [Train Loss: %.4f]" % (num_epoch, iter_num, print_train_loss)
print(log)
saveUtils.save_log(log)
writer.add_scalar("Train Loss/ iter", print_train_loss, total_iter)
print_train_loss = 0
print_train_var = 0
#validation
model4Landmark.eval()
for iter, item in enumerate(valid_dataloader):
img_GT, landmark_GT, crop_img, crop_ladmks, bbox_leftcorner = item
crop_img = crop_img.to(device, dtype=torch.float)
crop_ladmks = crop_ladmks.to(device, dtype=torch.float)
with torch.no_grad():
pred_ladmks = model4Landmark(crop_img)
if args.IsGNLL == True:
pred_ladmks = pred_ladmks.reshape(args.batchSize, -1 ,3)# x, y, sigma
print_val_loss += lossFunction(crop_ladmks, pred_ladmks[:, :, :2], torch.exp(pred_ladmks[:,:,2])).item()
print_val_var += torch.mean(torch.exp(pred_ladmks[:,:,2])).item()
else:
pred_ladmks = pred_ladmks.reshape(args.batchSize, -1 ,2)# x, y
print_val_loss += lossFunction(crop_ladmks, pred_ladmks).item()
model4Landmark.train()
#print, logging, save model per epoch
print_val_loss = print_val_loss/len(valid_dataloader)
if args.IsGNLL == True:
print_val_var = print_val_var/len(valid_dataloader)
log = "Valid: [Epoch %d] [Valid Loss: %.4f] [Mean var: %.4f]" % (num_epoch, print_val_loss, print_val_var)
writer.add_scalar("Valid Mean var/ Epoch", print_val_var, num_epoch)
else:
log = "Valid: [Epoch %d] [Valid Loss: %.4f]" % (num_epoch, print_val_loss)
print(log)
saveUtils.save_log(log)
writer.add_scalar("Valid Loss/ Epoch", print_val_loss, num_epoch)
saveUtils.save_model(model4Landmark, num_epoch)
if args.IsGNLL == True:
saveUtils.save_visualization(crop_img, crop_ladmks, pred_ladmks[:, :, :2], num_epoch)
else:
saveUtils.save_visualization(crop_img, crop_ladmks, pred_ladmks, num_epoch)
print_val_loss = 0
print_val_var = 0
if __name__ == "__main__":
main(args)