-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
380 lines (329 loc) · 19.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
"""
Authors: Hui Ren
Licensed under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/)
"""
import argparse
import os
# import torch
from termcolor import colored
from utils.config import create_config, get_random_state, set_random_state
from utils.common_config import get_train_transformations, get_val_transformations,\
get_train_dataset, get_train_dataloader,\
get_val_dataset, get_val_dataloader,\
get_optimizer, get_model,\
adjust_learning_rate
from utils.evaluate_utils import get_predictions, hungarian_evaluate
from utils.train_utils import sk_train
# from data.wrapper import two_view_wrapper
from losses.losses import SK_loss, Feat_regulation
from models import model_statistics
from models.dino import get_parameter_with_grad
import time
from utils.memory import LogitsMemory, FeatureMemory
import torch
# import torch.nn.functional as F
import numpy as np
from utils.structure import get_dataset_feature_similarity
import datetime
parser = argparse.ArgumentParser(description='SPPOT train')
parser.add_argument('--setup', default="cluster")
parser.add_argument('-c','--continue_train', default=False, action='store_true', help='Continue training from checkpoint')
parser.add_argument("--pretext_dir", default=None, type=str, help="pretext_dir")
parser.add_argument("--output_dir", default="experiments/", type=str, help="output_dir")
parser.add_argument("--gamma_upper", default=1.0, type=float)
parser.add_argument("--gamma_base", default=None, type=float, help="lower bound for gamma")
parser.add_argument("--head_type", default="cos", type=str, help="head_type: linear/cos")
#dataset
parser.add_argument("--num_workers", default=8, type=int)
parser.add_argument("--train_db_name", default="cifar_im", type=str, help="cifar_im, iNature_im , imagenet-r_im")
parser.add_argument("--val_db_name", default="cifar_im", type=str, help="cifar_im, iNature_im , imagenet-r_im")
parser.add_argument('--imbalance_ratio', default=0.01, type=float, help='imbalance_ratio for dataset(cifar)')
parser.add_argument("--num_heads",default=1,type=int)
parser.add_argument("--num_classes",default=[100],type=int,nargs="+")
parser.add_argument("--epochs",default=50,type=int)
parser.add_argument("--train_eval_interval", default=1, type=int, help = "eval interval for trainset")
parser.add_argument("--backbone", default="dino_vitb16", type=str, help="backbone: dino_vitb16")
parser.add_argument("--supervised", default=False, action="store_true", help="supervised training")
'''SK'''
parser.add_argument("--sk_type", default="sppot_stable", type=str, help="uot, ppot, pot, sppot, sppot_stable")
parser.add_argument("--sk_factor", default=0.1, type=float)
parser.add_argument("--sk_iter", default=3, type=int)
parser.add_argument("--sk_iter_limit", default=1000, type=int)
parser.add_argument("--batch_size", default=512,type=int)
parser.add_argument("--eval_batch_size", default=1024,type=int)
parser.add_argument("--mm_iter_limit", default=100, type=int)
parser.add_argument("--mm_factor", default=1000, type=float)
parser.add_argument("--mm_factor_fix", default=False, action='store_true', help='fix mm_factor')
parser.add_argument("--ema_mm",default=1,type=float, help="ema param for mm")
parser.add_argument("--ot_frame", default="mm", help="mm")
parser.add_argument("--similarity_type", default=['rmDiag', 'knn'], type=str, nargs='+', help="clip, upclip, affine, identity, oracle, topk, knn")
parser.add_argument("--kernel_type", default="gauss", type=str, help="cos, gauss, laplace, abel")
parser.add_argument("--kernel_param", default=2, type=float)
parser.add_argument("--threshold_similarity", default=-1., type=float)
parser.add_argument("--offset_similarity", default=1, type=float)
parser.add_argument("--scale_similarity", default=0.5, type=float)
parser.add_argument("--topk_similarity", default=20, type=int)
parser.add_argument("--sk_confusion",default=False,action="store_true",help="save sk confusion matrix")
parser.add_argument("--sk_w",default=1.0,type=float)
parser.add_argument("--rho_base",default=0.1,type=float)
parser.add_argument("--rho_upper",default=1.0,type=float)
parser.add_argument("--rho_fix", default=False, action='store_true', help='fix rho')
parser.add_argument("--rho_strategy", default="sigmoid", type=str, help="sigmoid/linear")
parser.add_argument("--prior_type", default=None, type=str, help="kmeans")
parser.add_argument("--feat_regulation", default=None, type=float, help="regulation for feature")
parser.add_argument("--feat_regulation_fix", default=False, action='store_true', help='fix feat_regulation')
parser.add_argument("--bank_start_epoch", default=0, type=int, help="start epoch for logits bank")
parser.add_argument("--bank_use",default=False ,action="store_true",help="use logits bank")
parser.add_argument("--bank_factor", default=10, type=int,help="factor for logits bank, factor*batch_size")
parser.add_argument("--model_select",default="loss",type=str,help="loss/last")
parser.add_argument("--select_set",default="train",type=str)
parser.add_argument("--detail", default=False, action='store_true', help='detail')
parser.add_argument("--label_quality_show", default=True, action='store_true', help='show pseudo label quality')
# optimizer
parser.add_argument("--optimizer", default="adam")
parser.add_argument("--lr", default=0.0005, type=float)
parser.add_argument("--weight_decay",default=0.0,type=float)
# scheduler
parser.add_argument("--scheduler", default="cosine", type=str)
parser.add_argument("--lr_decay_rate", default=0.1, type=float)
parser.add_argument("--seed", default=0, type=int, help='seed for initializing training. ')
parser.add_argument("--to_log", default=False, action='store_true', help='change output stream to log file')
@torch.no_grad()
def eval(config,dataloader, model, head_select, confusion=False,class_names = None, confusion_file = None):
model.eval()
predictions = get_predictions(config, dataloader, model)
clustering_stats = hungarian_evaluate(head_select, predictions,class_names=class_names,num_classes=config["num_classes"][0],
compute_confusion_matrix=confusion, confusion_matrix_file=confusion_file)
return clustering_stats
from utils.structure import feature_cluster
@torch.no_grad()
def backbone_eval(model, dataloader, cluster_num=100, save_path=None, new=False):
if (save_path is not None and os.path.exists(save_path)) and (not new):
data = torch.load(save_path)
features = data["features"]
targets = data["targets"]
else:
model.eval()
features=[]
targets = []
for batch in dataloader:
images = batch['image'].cuda(non_blocking=True)
target = batch['target']
if not isinstance(target,torch.Tensor):
target = torch.tensor(target)
targets.append(target)
output = model(images, forward_pass = "backbone")
features.append(output.detach().cpu())
features = torch.cat(features, dim=0)
targets = torch.cat(targets, dim=0)
if save_path is not None:
torch.save({"features":features, "targets":targets}, save_path)
preds = feature_cluster(features, cluster_num=cluster_num)
clustering_stats = hungarian_evaluate(0, [{"predictions":preds, "targets":targets}], compute_confusion_matrix=False)
return clustering_stats, preds
def main():
args = parser.parse_args()
p = create_config(args=args)
print(colored(p, 'red'))
multi_head = args.num_heads>1 and len(args.num_classes)==1
# CUDNN
torch.backends.cudnn.benchmark = True
# Model
print(colored('Get model', 'blue'))
model = get_model(p)
# print(model)
model = torch.nn.DataParallel(model)
model = model.cuda()
# Data
print(colored('Get dataset and dataloaders', 'blue'))
train_transformations = get_train_transformations(p)
val_transformations = get_val_transformations(p)
train_dataset = get_train_dataset(p, train_transformations, split='train')
val_dataset = get_val_dataset(p, val_transformations)
train_dataloader = get_train_dataloader(p, train_dataset)
train_dataset_for_eval = get_train_dataset(p, val_transformations, split='train')
train_dataloader_for_eval = get_val_dataloader(p, train_dataset_for_eval)
val_dataloader = get_val_dataloader(p, val_dataset)
print('Train transforms:', train_transformations)
print('Validation transforms:', val_transformations)
print('Train samples %d - Val samples %d' %(len(train_dataset), len(val_dataset)))
try:
trainset_class= train_dataset.classes
valset_class= val_dataset.classes
except:
trainset_class=None
valset_class=None
###
backbone_result_path = f"data/backbone/init_feature_result_{p['train_db_name']}_{p['num_classes'][0]}_{p['imbalance_ratio']}.pth"
backbone_quality, kmeans_pred=backbone_eval(model,train_dataloader_for_eval, cluster_num=p["num_classes"][0], save_path=backbone_result_path)
print(f"backbone quality:{backbone_quality}")
###
# Optimizer
print(colored('Get optimizer', 'blue'))
optimizer = get_optimizer(p, model)
print(optimizer)
criterion_sk = SK_loss(p, total_iter=len(train_dataloader) * p['epochs'], start_iter=0, prior_pred=kmeans_pred)
print(criterion_sk)
# Checkpoint
if args.continue_train and os.path.exists(p['cluster_checkpoint']):
print(colored('Restart from checkpoint {}'.format(p['cluster_checkpoint']), 'blue'))
checkpoint = torch.load(p['cluster_checkpoint'])
model.load_state_dict(checkpoint['model'], strict=False)
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch']
criterion_sk.i = start_epoch*len(train_dataloader)
best_loss = checkpoint['best_loss']
best_loss_head = checkpoint['best_loss_head']
criterion_sk.logits_bank = checkpoint['logits_bank']
set_random_state(checkpoint["random_state"],p)
else:
print(colored('New train or No checkpoint file at {}'.format(p['cluster_checkpoint']), 'blue'))
start_epoch = 0
best_loss = 1e4
best_loss_head = None
# Loss function
print(colored('Get loss', 'blue'))
p["num_examples"] = len(train_dataset)
p["log_upper_bounds"] = torch.log(torch.ones(p['num_classes'][0])/p['num_classes'][0])
p["device"] = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Similarity matrix
similarity_matrix=None
similarity_dir = "data/backbone"
os.makedirs(similarity_dir, exist_ok=True)
if args.sk_type in ["sppot","suot", "sppot_stable"]:
print("Getting similarity matrix...")
similarity_matrix = get_dataset_feature_similarity(p, train_dataloader_for_eval, model, save_dir=similarity_dir)
criterion_feat=None
if args.feat_regulation is not None:
criterion_feat = Feat_regulation(p, train_dataloader_for_eval, model, feature_dir=similarity_dir)
print(criterion_feat)
# Main loop
time_start = time.time()
print(f"Time now: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
print(colored('Starting main loop', 'blue'))
if args.sk_confusion:
os.makedirs(os.path.join(p['cluster_dir'],"sk_confusion"),exist_ok=True)
if args.detail:
os.makedirs(os.path.join(p['cluster_dir'],"labels"),exist_ok=True)
model_statistics(model)
for epoch in range(start_epoch, p['epochs']):
print(colored('Epoch %d/%d' %(epoch+1, p['epochs']), 'yellow'))
print(colored('-'*15, 'yellow'))
# gamma = 1 - linear_rampup(epoch, p['epochs'])
# criterion_sk.set_gamma(gamma)
# print(f"Adjusted gamma to:{gamma}")
# Adjust lr
lr = adjust_learning_rate(p, optimizer, epoch)
print('Adjusted learning rate to {:.5f}'.format(lr))
if epoch == args.bank_start_epoch:
heads = [args.num_classes[0]]*args.num_heads if multi_head else args.num_classes
criterion_sk.logits_bank = [LogitsMemory(class_num, args.bank_factor*args.batch_size).cuda().init(train_dataloader,model,head) for head,class_num in enumerate(heads)] if (args.bank_use and not args.supervised) else None
# if args.bank_use and args.sk_type in ["sppot", "suot"]:
# criterion_sk.feature_bank = FeatureMemory(model.module.backbone_dim ,args.bank_factor*args.batch_size).cuda().init(train_dataloader,model)
# Train
print('Train ...')
current_time=time.time()
train_stats= sk_train(p, train_dataloader, model, criterion_sk, optimizer, epoch,
similarity_matrix=similarity_matrix,
criterion_feat=criterion_feat,)
print(f"train time:{time.time()-current_time}")
# ----------------------------
if args.select_set == "train":
print(f"train_loss: {train_stats['total_loss']}")
train_loss_factor = 1
if "pot" in args.sk_type and not args.supervised:
train_loss_factor = 1/criterion_sk.sk[0].get_rho()
for head_id in range(len(train_stats['total_loss'])):
train_stats['total_loss'][head_id] = train_stats['total_loss'][head_id]*train_loss_factor #+ head_label_kl[head_id]
print(f"total_loss: {train_stats['total_loss']}")
train_stats['lowest_loss_head'] = train_stats['total_loss'].argmin()
train_stats['lowest_loss'] = train_stats['total_loss'][train_stats['lowest_loss_head']]
if multi_head:
lowest_loss_head = train_stats['lowest_loss_head']
lowest_loss = train_stats['lowest_loss']
print(f"lowest_loss_head:{lowest_loss_head}, lowest_loss:{lowest_loss}")
else:
lowest_loss_head=0
lowest_loss=train_stats['total_loss'][0]
else:
raise NotImplementedError
# --------------------------------
## check sk quality
if not args.supervised:
if args.label_quality_show:
labels=torch.cat(criterion_sk.labels[lowest_loss_head],dim=0)
label_distribute=torch.sum(labels,dim=0).cpu()
print(f"SK label distribute for head {lowest_loss_head}:{np.sort(label_distribute.numpy())[::-1]}, normalized:{np.sort((label_distribute/label_distribute.sum()).numpy())[::-1] if p['num_classes'][0] <=10 else 'omit'}")
sk_prediction, sk_prediction_top_rho = criterion_sk.prediction_log(top_rho=True)
if len(args.num_classes)>1:
sk_prediction=[sk_prediction[0]]
sk_prediction_top_rho=[sk_prediction_top_rho[0]]
quality = [hungarian_evaluate(head_id, sk_prediction,num_classes=p["num_classes"][0], compute_confusion_matrix=args.sk_confusion
,class_names=trainset_class,
confusion_matrix_file=os.path.join(p['cluster_dir'],"sk_confusion", f'sk_confusion_matrix{epoch}_{head_id}.png')) for head_id in range(len(sk_prediction))]
quality_top_rho=[hungarian_evaluate(head_id, sk_prediction_top_rho, num_classes=p["num_classes"][0], compute_confusion_matrix=args.sk_confusion
, class_names=trainset_class,
confusion_matrix_file=os.path.join(p['cluster_dir'],"sk_confusion", f'sk_confusion_matrix_top10_{epoch}_{head_id}.png')) for head_id in range(len(sk_prediction_top_rho))]
for head_id in range(len(quality)):
print(colored(f"Top_rho confidence for head {head_id}:{quality_top_rho[head_id]}", "blue"))
print(colored(f"Sinhorn label quality for head {head_id}:{quality[head_id]}","blue"))
###
print(colored(f"rho:{criterion_sk.sk[0].get_rho()}","blue"))
if args.detail:
torch.save({"rho": criterion_sk.sk[0].get_rho(), "sk_prediction": sk_prediction, "lowest_loss_head":lowest_loss_head,
}, os.path.join(p['cluster_dir'], "labels", f"sk_detail_{epoch}_{round(criterion_sk.sk[0].get_rho(),4)}.pth"))
criterion_sk.reset()
##
# update selected model
if args.model_select == "loss":
if lowest_loss < best_loss:
print('New lowest loss: %.4f -> %.4f' %(best_loss, lowest_loss))
print('Lowest loss head is %d' %(lowest_loss_head))
best_loss = lowest_loss
best_loss_head = lowest_loss_head
torch.save({'model': get_parameter_with_grad(model.module), 'head': best_loss_head}, p['cluster_model'])
else:
print('No new lowest loss: %.4f -> %.4f' %(best_loss, lowest_loss))
print('Lowest loss head is %d' %(best_loss_head))
elif args.model_select == "last":
best_loss_head=lowest_loss_head
else:
raise NotImplementedError
# Evaluate
print('Make prediction ...')
if (epoch+1) % args.train_eval_interval == 0:
clustering_stats = eval(p,train_dataloader_for_eval, model, lowest_loss_head, confusion=False)
print(f"trainset result: {clustering_stats}", flush=True)
clustering_stats = eval(p,val_dataloader, model, lowest_loss_head, confusion=False)
print(f"testset result: {clustering_stats}", flush=True)
# Checkpoint
print('Checkpoint ...')
torch.save({'optimizer': optimizer.state_dict(), 'model': get_parameter_with_grad(model),
'epoch': epoch + 1, 'best_loss': best_loss, 'best_loss_head': best_loss_head,
'random_state': get_random_state(p),
'logits_bank': criterion_sk.logits_bank},
p['cluster_checkpoint'])
print(f"Time now: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
print(f"Total time used:{(time.time()-time_start)/60/60} hours.")
# Evaluate and save the final model
if args.model_select == "loss":
print(colored('Evaluate selected model at the end', 'blue'))
model_checkpoint = torch.load(p['cluster_model'], map_location='cpu')
model.module.load_state_dict(model_checkpoint['model'], strict=False)
model_checkpoint_head = model_checkpoint['head']
else:
checkpoint = torch.load(p['cluster_checkpoint'], map_location='cpu')
model.load_state_dict(checkpoint['model'], strict=False)
model_checkpoint_head = checkpoint['best_loss_head']
clustering_stats = eval(p, train_dataloader_for_eval, model, model_checkpoint_head, confusion=True,class_names=trainset_class,confusion_file=os.path.join(p['cluster_dir'], 'train_confusion_matrix.png'))
print(f"trainset result: {clustering_stats}")
if args.model_select == "loss":
clustering_stats = eval(p, val_dataloader, model, model_checkpoint_head, confusion=True,class_names=valset_class,confusion_file=os.path.join(p['cluster_dir'], 'test_confusion_matrix.png'))
print(f"testset result: {clustering_stats}")
else:
# save the last model
torch.save({'model': get_parameter_with_grad(model.module), 'head': best_loss_head}, p['cluster_model'])
backbone_quality, kmeans_pred = backbone_eval(model, train_dataloader_for_eval, cluster_num=p["num_classes"][0], new=True)
print(f"backbone quality:{backbone_quality}")
if __name__ == "__main__":
main()