-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathnode.py
247 lines (212 loc) · 9.03 KB
/
node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import os
import json
from PIL import Image
from io import BytesIO
import io
from torchvision import transforms
import torch
import base64
import time
import torchaudio
import soundfile as sf
from replicate.client import Client
from .schema_to_node import (
schema_to_comfyui_input_types,
get_return_type,
name_and_version,
inputs_that_need_arrays,
)
replicate = Client(headers={"User-Agent": "comfyui-replicate/1.0.1"})
def create_comfyui_node(schema):
replicate_model, node_name = name_and_version(schema)
return_type = get_return_type(schema)
class ReplicateToComfyUI:
@classmethod
def IS_CHANGED(cls, **kwargs):
return time.time() if kwargs["force_rerun"] else ""
@classmethod
def INPUT_TYPES(cls):
return schema_to_comfyui_input_types(schema)
RETURN_TYPES = (
tuple(return_type.values())
if isinstance(return_type, dict)
else (return_type,)
)
FUNCTION = "run_replicate_model"
CATEGORY = "Replicate"
def convert_input_images_to_base64(self, kwargs):
for key, value in kwargs.items():
if value is not None:
input_type = (
self.INPUT_TYPES()["required"].get(key, (None,))[0]
or self.INPUT_TYPES().get("optional", {}).get(key, (None,))[0]
)
if input_type == "IMAGE":
kwargs[key] = self.image_to_base64(value)
elif input_type == "AUDIO":
kwargs[key] = self.audio_to_base64(value)
def image_to_base64(self, image):
if isinstance(image, torch.Tensor):
image = image.permute(0, 3, 1, 2).squeeze(0)
to_pil = transforms.ToPILImage()
pil_image = to_pil(image)
else:
pil_image = image
buffer = io.BytesIO()
pil_image.save(buffer, format="PNG")
buffer.seek(0)
img_str = base64.b64encode(buffer.getvalue()).decode()
return f"data:image/png;base64,{img_str}"
def audio_to_base64(self, audio):
if (
isinstance(audio, dict)
and "waveform" in audio
and "sample_rate" in audio
):
waveform = audio["waveform"]
sample_rate = audio["sample_rate"]
else:
waveform, sample_rate = audio
# Ensure waveform is 2D
if waveform.dim() == 1:
waveform = waveform.unsqueeze(0)
elif waveform.dim() > 2:
waveform = waveform.squeeze()
if waveform.dim() > 2:
raise ValueError("Waveform must be 1D or 2D")
buffer = io.BytesIO()
sf.write(buffer, waveform.numpy().T, sample_rate, format="wav")
buffer.seek(0)
audio_str = base64.b64encode(buffer.getvalue()).decode()
return f"data:audio/wav;base64,{audio_str}"
def handle_array_inputs(self, kwargs):
array_inputs = inputs_that_need_arrays(schema)
for input_name in array_inputs:
if input_name in kwargs:
if isinstance(kwargs[input_name], str):
if kwargs[input_name] == "":
kwargs[input_name] = []
else:
kwargs[input_name] = kwargs[input_name].split("\n")
else:
kwargs[input_name] = [kwargs[input_name]]
def log_input(self, kwargs):
truncated_kwargs = {
k: v[:20] + "..."
if isinstance(v, str)
and (v.startswith("data:image") or v.startswith("data:audio"))
else v
for k, v in kwargs.items()
}
print(f"Running {replicate_model} with {truncated_kwargs}")
def handle_image_output(self, output):
if output is None:
print("No image output received")
return None
output_list = [output] if not isinstance(output, list) else output
if output_list:
output_tensors = []
transform = transforms.ToTensor()
for file_obj in output_list:
image_data = file_obj.read()
image = Image.open(BytesIO(image_data))
if image.mode != "RGB":
image = image.convert("RGB")
tensor_image = transform(image)
tensor_image = tensor_image.unsqueeze(0)
tensor_image = tensor_image.permute(0, 2, 3, 1).cpu().float()
output_tensors.append(tensor_image)
# Combine all tensors into a single batch if multiple images
return (
torch.cat(output_tensors, dim=0)
if len(output_tensors) > 1
else output_tensors[0]
)
else:
print("No output received from the model")
return None
def handle_audio_output(self, output):
if output is None:
print("No audio output received from the model")
return None
output_list = [output] if not isinstance(output, list) else output
audio_data = []
for audio_file in output_list:
if audio_file:
audio_content = BytesIO(audio_file.read())
waveform, sample_rate = torchaudio.load(audio_content)
audio_data.append({
"waveform": waveform.unsqueeze(0),
"sample_rate": sample_rate
})
else:
print("Empty audio file received")
if len(audio_data) == 1:
return audio_data[0]
elif len(audio_data) > 0:
return audio_data
else:
print("No valid audio files processed")
return None
def remove_falsey_optional_inputs(self, kwargs):
optional_inputs = self.INPUT_TYPES().get("optional", {})
for key in list(kwargs.keys()):
if key in optional_inputs:
if isinstance(kwargs[key], torch.Tensor):
continue
elif not kwargs[key]:
del kwargs[key]
def run_replicate_model(self, **kwargs):
self.handle_array_inputs(kwargs)
self.remove_falsey_optional_inputs(kwargs)
self.convert_input_images_to_base64(kwargs)
self.log_input(kwargs)
kwargs_without_force_rerun = {
k: v for k, v in kwargs.items() if k != "force_rerun"
}
output = replicate.run(replicate_model, input=kwargs_without_force_rerun)
print(f"Output: {output}")
processed_outputs = []
if isinstance(return_type, dict):
for prop_name, prop_type in return_type.items():
if prop_type == "IMAGE":
processed_outputs.append(
self.handle_image_output(output.get(prop_name))
)
elif prop_type == "AUDIO":
processed_outputs.append(
self.handle_audio_output(output.get(prop_name))
)
elif prop_type == "STRING":
processed_outputs.append(
"".join(list(output.get(prop_name, ""))).strip()
)
else:
if return_type == "IMAGE":
processed_outputs.append(self.handle_image_output(output))
elif return_type == "AUDIO":
processed_outputs.append(self.handle_audio_output(output))
else:
processed_outputs.append("".join(list(output)).strip())
return tuple(processed_outputs)
return node_name, ReplicateToComfyUI
def create_comfyui_nodes_from_schemas(schemas_dir):
nodes = {}
current_path = os.path.dirname(os.path.abspath(__file__))
schemas_dir_path = os.path.join(current_path, schemas_dir)
for schema_file in os.listdir(schemas_dir_path):
if schema_file.endswith(".json"):
with open(
os.path.join(schemas_dir_path, schema_file), "r", encoding="utf-8"
) as f:
schema = json.load(f)
node_name, node_class = create_comfyui_node(schema)
nodes[node_name] = node_class
return nodes
_cached_node_class_mappings = None
def get_node_class_mappings():
global _cached_node_class_mappings
if _cached_node_class_mappings is None:
_cached_node_class_mappings = create_comfyui_nodes_from_schemas("schemas")
return _cached_node_class_mappings
NODE_CLASS_MAPPINGS = get_node_class_mappings()