-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path1975-maximum-matrix-sum.rb
49 lines (41 loc) · 1.46 KB
/
1975-maximum-matrix-sum.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# frozen_string_literal: true
# 1975. Maximum Matrix Sum
# https://leetcode.com/problems/maximum-matrix-sum
# Medium
=begin
You are given an n x n integer matrix. You can do the following operation any number of times:
* Choose any two adjacent elements of matrix and multiply each of them by -1.
Two elements are considered adjacent if and only if they share a border.
Your goal is to maximize the summation of the matrix's elements. Return the maximum sum of the matrix's elements using the operation mentioned above.
Example 1:
Input: matrix = [[1,-1],[-1,1]]
Output: 4
Explanation: We can follow the following steps to reach sum equals 4:
- Multiply the 2 elements in the first row by -1.
- Multiply the 2 elements in the first column by -1.
Example 2:
Input: matrix = [[1,2,3],[-1,-2,-3],[1,2,3]]
Output: 16
Explanation: We can follow the following step to reach sum equals 16:
- Multiply the 2 last elements in the second row by -1.
Constraints:
* n == matrix.length == matrix[i].length
* 2 <= n <= 250
* -10^5 <= matrix[i][j] <= 10^5
=end
# @param {Integer[][]} matrix
# @return {Integer}
def max_matrix_sum(matrix)
m = matrix.flatten!
m.count { 0 > _1 } % 2 * 2 * -m.map!(&:abs).min + m.sum
end
# **************** #
# TEST #
# **************** #
require "test/unit"
class Test_max_matrix_sum < Test::Unit::TestCase
def test_
assert_equal(4, max_matrix_sum([[1, -1], [-1, 1]]))
assert_equal(16, max_matrix_sum([[1, 2, 3], [-1, -2, -3], [1, 2, 3]]))
end
end