-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path1458-max-dot-product-of-two-subsequences.rb
64 lines (55 loc) · 2.01 KB
/
1458-max-dot-product-of-two-subsequences.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# frozen_string_literal: true
# 1458. Max Dot Product of Two Subsequences
# Hard
# https://leetcode.com/problems/max-dot-product-of-two-subsequences
=begin
Given two arrays nums1 and nums2.
Return the maximum dot product between non-empty subsequences of nums1 and nums2 with the same length.
A subsequence of a array is a new array which is formed from the original array by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, [2,3,5] is a subsequence of [1,2,3,4,5] while [1,5,3] is not).
Example 1:
Input: nums1 = [2,1,-2,5], nums2 = [3,0,-6]
Output: 18
Explanation: Take subsequence [2,-2] from nums1 and subsequence [3,-6] from nums2.
Their dot product is (2*3 + (-2)*(-6)) = 18.
Example 2:
Input: nums1 = [3,-2], nums2 = [2,-6,7]
Output: 21
Explanation: Take subsequence [3] from nums1 and subsequence [7] from nums2.
Their dot product is (3*7) = 21.
Example 3:
Input: nums1 = [-1,-1], nums2 = [1,1]
Output: -1
Explanation: Take subsequence [-1] from nums1 and subsequence [1] from nums2.
Their dot product is -1.
Constraints:
1 <= nums1.length, nums2.length <= 500
-1000 <= nums1[i], nums2[i] <= 1000
=end
# @param {Integer[]} nums1
# @param {Integer[]} nums2
# @return {Integer}
def max_dot_product(nums1, nums2)
min1, max1 = nums1.minmax
min2, max2 = nums2.minmax
return max1 * min2 if max1 < 0 && min2 > 0
return min1 * max2 if min1 > 0 && max2 < 0
dp = Array.new(nums1.size + 1) { Array.new(nums2.size + 1, 0) }
(0...nums1.size).reverse_each do |i|
(0...nums2.size).reverse_each do |j|
tmp = nums1[i] * nums2[j] + dp[i + 1][j + 1]
dp[i][j] = [tmp, dp[i + 1][j], dp[i][j + 1]].max
end
end
dp[0][0]
end
# **************** #
# TEST #
# **************** #
require "test/unit"
class Test_max_dot_product < Test::Unit::TestCase
def test_
assert_equal 18, max_dot_product([2, 1, -2, 5], [3, 0, -6])
assert_equal 21, max_dot_product([3, -2], [2, -6, 7])
assert_equal(-1, max_dot_product([-1, -1], [1, 1]))
end
end