forked from djole/IR2L
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualise_results.py
149 lines (124 loc) · 6.58 KB
/
visualise_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from double_rl_loop_main import EvalActorCritic
from a2c_ppo_acktr.model import init_default_ppo, Policy, custom_weight_init
from math import log
import torch
import numpy as np
import gym
import safety_gym_mod
from gym.envs.registration import register
from a2c_ppo_acktr import algo, utils
from a2c_ppo_acktr.envs import make_vec_envs
from a2c_ppo_acktr.evaluation import evaluate
# from a2c_ppo_acktr.model import init_default_ppo, Policy, custom_weight_init
from arguments import get_args
from double_rl_loop_main import reward_cost_combinator, config_box # , config1, config2, config3, config4
from copy import deepcopy
import pickle
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib.colors as colors
env_name = 'SafexpCustomEnvironmentGoal1Test-v0'
register(id=env_name,
entry_point='safety_gym_mod.envs.mujoco:Engine',
kwargs={'config': config_box})
def visualise_values_over_path(data_list):
path = [(dt['pos_x'], dt['pos_y']) for dt in data_list]
# instinct_rewards = [dt['instinct reward'] for dt in data_list]
# policy_rewards = [dt['policy reward'] for dt in data_list]
hazards_pos = [dt['hazards_pos'] for dt in data_list][0]
buttons_pos = [dt['button_pos'] for dt in data_list][0]
box_pos = [dt['box_pos'] for dt in data_list]
goal_pos = [dt['goal_pos'] for dt in data_list]
instinct_reg = [dt['instinct regulation'] for dt in data_list]
# safety = [dt['safety'] for dt in data_list]
# discount = [dt['discount_term'] for dt in data_list]
# rew_c = [dt['reward_calc'] for dt in data_list]
# visualize_coordinates_with_value(path, "instinct reward", instinct_rewards, hazards_pos, goal_pos)
# visualize_coordinates_with_value(path, "policy reward", policy_rewards, hazards_pos, goal_pos)
visualize_coordinates_with_value(path, "instinct regulation", instinct_reg, hazards_pos, goal_pos, None, box_pos, 0, 1)
# visualize_coordinates_with_value(path, "safety", safety, hazards_pos, goal_pos, -10, 1)
# visualize_coordinates_with_value(path, "discount", discount, hazards_pos, goal_pos, 0, 1)
# visualize_coordinates_with_value(path, "rew_calc", rew_c, hazards_pos, goal_pos, 0, 1)
plt.show()
def visualize_coordinates_with_value(path, title, values, hazards_pos, goal_pos, buttons_pos, box_pos, cmin=-0.01, cmax=0.01):
# plt.figure()
fig, ax1 = plt.subplots(1, 1)
ax1.set_title(title)
ax1.set_xlim(-4.0, 4.0)
ax1.set_ylim(-4.0, 4.0)
path = np.array(path)
norm = colors.Normalize(vmin=cmin, vmax=cmax)
cmap = cm.get_cmap('jet')
plt.colorbar(cm.ScalarMappable(norm=norm, cmap=cmap))
for i in range(1, len(path)):
px1 = path[i - 1, 0]
py1 = path[i - 1, 1]
px2 = path[i, 0]
py2 = path[i, 1]
val = values[i]
ax1.plot([px1, px2], [py1, py2], linewidth=3, color=cmap(norm(val)))
for h in hazards_pos:
ax1.add_patch(plt.Circle([h[0], h[1]], 0.25, color='b', alpha=0.2))
if goal_pos is not None:
for g in goal_pos:
ax1.add_patch(plt.Circle([g[0], g[1]], 0.3, color='g', alpha=1.0))
if buttons_pos is not None:
for b in buttons_pos:
ax1.add_patch(plt.Circle([b[0], b[1]], 0.1, color='orange', alpha=1.0))
if box_pos is not None:
for bx in box_pos:
ax1.add_patch(plt.Rectangle([bx[0], bx[1]], 0.25, 0.25, color='orange', alpha=1.0))
print(f"max value = {max(values)}, min_value = {min(values)}")
print("stop here")
def main(repeat_num):
args = get_args()
print("start the train function")
args.init_sigma = 0.6
args.lr = 0.001
device = torch.device("cpu")
# Init the environment
# env_name = "Safexp-PointGoal1-v0"
eval_envs = make_vec_envs(env_name, np.random.randint(2 ** 32), 1,
args.gamma, None, device, allow_early_resets=True, normalize=args.norm_vectors)
obs_shape = eval_envs.observation_space.shape
actor_critic_policy = init_default_ppo(eval_envs, log(args.init_sigma))
# Prepare modified action space for instinct
inst_action_space = deepcopy(eval_envs.action_space)
inst_obs_shape = list(obs_shape)
inst_obs_shape[0] = inst_obs_shape[0] + eval_envs.action_space.shape[0]
inst_action_space.shape = list(inst_action_space.shape)
inst_action_space.shape[0] = inst_action_space.shape[0] + 1
inst_action_space.shape = tuple(inst_action_space.shape)
actor_critic_instinct = Policy(tuple(inst_obs_shape),
inst_action_space,
init_log_std=log(args.init_sigma),
base_kwargs={'recurrent': False})
title = "baseline_pretrained_hh_10"
# f = open(f"/Users/djgr/pulled_from_server/evaluate_instinct_all_inputs_task_switch_button/real_safety_tasks_easier/sweep_eval_hazard_param_BUTTON_more_space/{title}.csv", "w")
actor_critic_policy = torch.load(
# f"/Users/djgr/pulled_from_server/evaluate_instinct_all_inputs_task_switch_button/real_safety_tasks_easier/sweep_eval_hazard_param_BOX_more_space_more_time/hh_10_baseline_centered_noHaz/model_rl_policy_latest.pt"
"/home/calavera/pulled_from_server/evaluate_instinct_all_inputs_task_switch_button/real_safety_tasks_easier/sweep_eval_hazard_param_BOX_more_space/hh_10/model_rl_policy_latest.pt"
# "/home/calavera/code/ITU_work/IR2L_master/pretrained_policy.pt"
)
actor_critic_instinct = torch.load(
f"/home/calavera/pulled_from_server/evaluate_instinct_all_inputs_task_switch_button/real_safety_tasks_easier/sweep_eval_hazard_param_BOX_more_space/hh_10/model_rl_instinct_latest.pt"
)
ob_rms = utils.get_vec_normalize(eval_envs)
if ob_rms is not None:
ob_rms = ob_rms.ob_rms
ob_rms = pickle.load(open(
f"/home/calavera/pulled_from_server/evaluate_instinct_all_inputs_task_switch_button/real_safety_tasks_easier/sweep_eval_hazard_param_BOX_more_space/hh_10/ob_rms.p",
"rb"))
for _ in range(repeat_num):
fits, info = evaluate(
# EvalActorCritic(actor_critic_policy, actor_critic_instinct, det_policy=True, det_instinct=True),
EvalActorCritic(actor_critic_policy, actor_critic_instinct),
ob_rms, eval_envs, 1, reward_cost_combinator, device, instinct_on=True, visualise=True
)
visualise_values_over_path(info['plot_info'])
# f.write(f"fitness; {fits.item()}; hazard_collisions; {info['hazard_collisions']}\n")
# f.flush()
print(f"{info['hazard_collisions']}")
print(f"fitness; {fits.item()}; hazard_collisions; {info['hazard_collisions']}\n")
if __name__ == "__main__":
main(50)