Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[FEA] CudaSupportError: Error at driver init: Call to cuInit results in CUDA_ERROR_NO_DEVICE (100): #17590

Open
maheshmrs opened this issue Dec 13, 2024 · 6 comments
Labels
cudf.pandas Issues specific to cudf.pandas feature request New feature or request Needs Triage Need team to review and classify

Comments

@maheshmrs
Copy link

maheshmrs commented Dec 13, 2024

This issue template is intended to be used primarily for requests related to pandas accelerator mode. If you'd like to file a general cuDF feature request, please click here.

Missing Pandas Feature Request
A clear and concise summary of the pandas function(s) you'd like to be able run with cuDF.

I was try to execute below code.

%%cudf.pandas.profile
data=pd.read_csv("training.1600000.processed.noemoticon.csv", 
                 header=None,
                encoding = "latin-1")

data = data.drop(columns=["1","2","3"])
data.columns = ["lable","user","tweet"]
data.head(3)

Profiler Output
If you used the profiler in pandas accelerator mode, please provide the full output of your profiling report.

Full Traceback
---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/core/frame.py:775](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/core/frame.py#line=774), in Frame._drop_column(self, name, errors)
    774 try:
--> 775     del self._data[name]
    776 except KeyError as err:

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/core/column_accessor.py:155](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/core/column_accessor.py#line=154), in ColumnAccessor.__delitem__(self, key)
    154 old_ncols = len(self)
--> 155 del self._data[key]
    156 new_ncols = len(self)

KeyError: '3'

The above exception was the direct cause of the following exception:

KeyError                                  Traceback (most recent call last)
File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/pandas/fast_slow_proxy.py:928](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/pandas/fast_slow_proxy.py#line=927), in _fast_slow_function_call(func, *args, **kwargs)
    927 fast_args, fast_kwargs = _fast_arg(args), _fast_arg(kwargs)
--> 928 result = func(*fast_args, **fast_kwargs)
    929 if result is NotImplemented:
    930     # try slow path

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/pandas/fast_slow_proxy.py:26](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/pandas/fast_slow_proxy.py#line=25), in call_operator(fn, args, kwargs)
     25 def call_operator(fn, args, kwargs):
---> 26     return fn(*args, **kwargs)

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/utils/performance_tracking.py:51](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/utils/performance_tracking.py#line=50), in _performance_tracking.<locals>.wrapper(*args, **kwargs)
     44     stack.enter_context(
     45         nvtx.annotate(
     46             message=func.__qualname__,
   (...)
     49         )
     50     )
---> 51 return func(*args, **kwargs)

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/core/indexed_frame.py:5255](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/core/indexed_frame.py#line=5254), in IndexedFrame.drop(self, labels, axis, index, columns, level, inplace, errors)
   5254     for label in _get_unique_drop_labels(target):
-> 5255         out._drop_column(label, errors=errors)
   5256 elif axis in (0, "index"):

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/utils/performance_tracking.py:51](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/utils/performance_tracking.py#line=50), in _performance_tracking.<locals>.wrapper(*args, **kwargs)
     44     stack.enter_context(
     45         nvtx.annotate(
     46             message=func.__qualname__,
   (...)
     49         )
     50     )
---> 51 return func(*args, **kwargs)

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/core/frame.py:778](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/core/frame.py#line=777), in Frame._drop_column(self, name, errors)
    777 if errors != "ignore":
--> 778     raise KeyError(f"column '{name}' does not exist") from err

KeyError: "column '3' does not exist"

During handling of the above exception, another exception occurred:

CudaSupportError                          Traceback (most recent call last)
Cell In[24], line 5
      1 data=pd.read_csv("training.1600000.processed.noemoticon.csv", 
      2                  header=None,
      3                 encoding = "latin-1")
----> 5 data = data.drop(columns=["1","2","3"])
      6 data.columns = ["lable","user","tweet"]
      7 data.head(3)

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/pandas/fast_slow_proxy.py:697](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/pandas/fast_slow_proxy.py#line=696), in _CallableProxyMixin.__call__(self, *args, **kwargs)
    696 def __call__(self, *args, **kwargs) -> Any:
--> 697     result, _ = _fast_slow_function_call(
    698         # We cannot directly call self here because we need it to be
    699         # converted into either the fast or slow object (by
    700         # _fast_slow_function_call) to avoid infinite recursion.
    701         # TODO: When Python 3.11 is the minimum supported Python version
    702         # this can use operator.call
    703         call_operator,
    704         self,
    705         args,
    706         kwargs,
    707     )
    708     return result

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/pandas/fast_slow_proxy.py:975](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/pandas/fast_slow_proxy.py#line=974), in _fast_slow_function_call(func, *args, **kwargs)
    967     raise ProxyFallbackError(
    968         f"The operation failed with cuDF, the reason was {type(err)}: {err}."
    969     ) from err
    970 with nvtx.annotate(
    971     "EXECUTE_SLOW",
    972     color=_CUDF_PANDAS_NVTX_COLORS["EXECUTE_SLOW"],
    973     domain="cudf_pandas",
    974 ):
--> 975     slow_args, slow_kwargs = _slow_arg(args), _slow_arg(kwargs)
    976     if _env_get_bool("LOG_FAST_FALLBACK", False):
    977         from ._logger import log_fallback

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/pandas/fast_slow_proxy.py:1095](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/pandas/fast_slow_proxy.py#line=1094), in _slow_arg(arg)
   1091 """
   1092 Transform "arg" into its corresponding slow type.
   1093 """
   1094 seen: set[int] = set()
-> 1095 return _transform_arg(arg, "_fsproxy_slow", seen)

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/pandas/fast_slow_proxy.py:1014](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/pandas/fast_slow_proxy.py#line=1013), in _transform_arg(arg, attribute_name, seen)
   1005 elif isinstance(arg, tuple):
   1006     # This attempts to handle arbitrary subclasses of tuple by
   1007     # assuming that if you've subclassed tuple with some special
   (...)
   1010     # __getnewargs_ex__ or __getnewargs__). Perhaps this should
   1011     # use __reduce_ex__ instead...
   1012     if type(arg) is tuple:
   1013         # Must come first to avoid infinite recursion
-> 1014         return tuple(_transform_arg(a, attribute_name, seen) for a in arg)
   1015     elif hasattr(arg, "__getnewargs_ex__"):
   1016         # Partial implementation of to reconstruct with
   1017         # transformed pieces
   1018         # This handles scipy._lib._bunch._make_tuple_bunch
   1019         args, kwargs = (
   1020             _transform_arg(a, attribute_name, seen)
   1021             for a in arg.__getnewargs_ex__()
   1022         )

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/pandas/fast_slow_proxy.py:1014](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/pandas/fast_slow_proxy.py#line=1013), in <genexpr>(.0)
   1005 elif isinstance(arg, tuple):
   1006     # This attempts to handle arbitrary subclasses of tuple by
   1007     # assuming that if you've subclassed tuple with some special
   (...)
   1010     # __getnewargs_ex__ or __getnewargs__). Perhaps this should
   1011     # use __reduce_ex__ instead...
   1012     if type(arg) is tuple:
   1013         # Must come first to avoid infinite recursion
-> 1014         return tuple(_transform_arg(a, attribute_name, seen) for a in arg)
   1015     elif hasattr(arg, "__getnewargs_ex__"):
   1016         # Partial implementation of to reconstruct with
   1017         # transformed pieces
   1018         # This handles scipy._lib._bunch._make_tuple_bunch
   1019         args, kwargs = (
   1020             _transform_arg(a, attribute_name, seen)
   1021             for a in arg.__getnewargs_ex__()
   1022         )

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/pandas/fast_slow_proxy.py:1014](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/pandas/fast_slow_proxy.py#line=1013), in _transform_arg(arg, attribute_name, seen)
   1005 elif isinstance(arg, tuple):
   1006     # This attempts to handle arbitrary subclasses of tuple by
   1007     # assuming that if you've subclassed tuple with some special
   (...)
   1010     # __getnewargs_ex__ or __getnewargs__). Perhaps this should
   1011     # use __reduce_ex__ instead...
   1012     if type(arg) is tuple:
   1013         # Must come first to avoid infinite recursion
-> 1014         return tuple(_transform_arg(a, attribute_name, seen) for a in arg)
   1015     elif hasattr(arg, "__getnewargs_ex__"):
   1016         # Partial implementation of to reconstruct with
   1017         # transformed pieces
   1018         # This handles scipy._lib._bunch._make_tuple_bunch
   1019         args, kwargs = (
   1020             _transform_arg(a, attribute_name, seen)
   1021             for a in arg.__getnewargs_ex__()
   1022         )

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/pandas/fast_slow_proxy.py:1014](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/pandas/fast_slow_proxy.py#line=1013), in <genexpr>(.0)
   1005 elif isinstance(arg, tuple):
   1006     # This attempts to handle arbitrary subclasses of tuple by
   1007     # assuming that if you've subclassed tuple with some special
   (...)
   1010     # __getnewargs_ex__ or __getnewargs__). Perhaps this should
   1011     # use __reduce_ex__ instead...
   1012     if type(arg) is tuple:
   1013         # Must come first to avoid infinite recursion
-> 1014         return tuple(_transform_arg(a, attribute_name, seen) for a in arg)
   1015     elif hasattr(arg, "__getnewargs_ex__"):
   1016         # Partial implementation of to reconstruct with
   1017         # transformed pieces
   1018         # This handles scipy._lib._bunch._make_tuple_bunch
   1019         args, kwargs = (
   1020             _transform_arg(a, attribute_name, seen)
   1021             for a in arg.__getnewargs_ex__()
   1022         )

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/pandas/fast_slow_proxy.py:997](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/pandas/fast_slow_proxy.py#line=996), in _transform_arg(arg, attribute_name, seen)
    994 import numpy as np
    996 if isinstance(arg, (_FastSlowProxy, _FastSlowProxyMeta, _FunctionProxy)):
--> 997     typ = getattr(arg, attribute_name)
    998     if typ is _Unusable:
    999         raise Exception("Cannot transform _Unusable")

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/pandas/fast_slow_proxy.py:515](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/pandas/fast_slow_proxy.py#line=514), in _FastSlowProxy._fsproxy_slow(self)
    508 @property
    509 def _fsproxy_slow(self) -> Any:
    510     """
    511     Returns the wrapped object. If the wrapped object is of "fast"
    512     type, replaces it with the corresponding "slow" object before
    513     returning it.
    514     """
--> 515     self._fsproxy_wrapped = self._fsproxy_fast_to_slow()
    516     return self._fsproxy_wrapped

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/nvtx/nvtx.py:116](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/nvtx/nvtx.py#line=115), in annotate.__call__.<locals>.inner(*args, **kwargs)
    113 @wraps(func)
    114 def inner(*args, **kwargs):
    115     libnvtx_push_range(self.attributes, self.domain.handle)
--> 116     result = func(*args, **kwargs)
    117     libnvtx_pop_range(self.domain.handle)
    118     return result

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/pandas/fast_slow_proxy.py:188](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/pandas/fast_slow_proxy.py#line=187), in make_final_proxy_type.<locals>._fsproxy_fast_to_slow(self)
    179 @nvtx.annotate(
    180     "COPY_FAST_TO_SLOW",
    181     color=_CUDF_PANDAS_NVTX_COLORS["COPY_FAST_TO_SLOW"],
   (...)
    185     # if we are wrapping a fast object,
    186     # convert it to a slow one
    187     if self._fsproxy_state is _State.FAST:
--> 188         return fast_to_slow(self._fsproxy_wrapped)
    189     return self._fsproxy_wrapped

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/pandas/_wrappers/pandas.py:227](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/pandas/_wrappers/pandas.py#line=226), in <lambda>(fast)
    217 def ignore_ipython_canary_check(self, **kwargs):
    218     raise AttributeError(
    219         "_ipython_canary_method_should_not_exist_ doesn't exist"
    220     )
    223 DataFrame = make_final_proxy_type(
    224     "DataFrame",
    225     cudf.DataFrame,
    226     pd.DataFrame,
--> 227     fast_to_slow=lambda fast: fast.to_pandas(),
    228     slow_to_fast=cudf.from_pandas,
    229     additional_attributes={
    230         "__array__": array_method,
    231         "__dir__": _DataFrame__dir__,
    232         "_constructor": _FastSlowAttribute("_constructor"),
    233         "_constructor_sliced": _FastSlowAttribute("_constructor_sliced"),
    234         "_accessors": set(),
    235         "_ipython_canary_method_should_not_exist_": ignore_ipython_canary_check,
    236     },
    237 )
    240 def custom_repr_html(obj):
    241     # This custom method is need to register a html format
    242     # for ipython
    243     return _fast_slow_function_call(
    244         lambda obj: obj._repr_html_(),
    245         obj,
    246     )[0]

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/utils/performance_tracking.py:51](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/utils/performance_tracking.py#line=50), in _performance_tracking.<locals>.wrapper(*args, **kwargs)
     43 if nvtx.enabled():
     44     stack.enter_context(
     45         nvtx.annotate(
     46             message=func.__qualname__,
   (...)
     49         )
     50     )
---> 51 return func(*args, **kwargs)

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/core/dataframe.py:5443](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/core/dataframe.py#line=5442), in DataFrame.to_pandas(self, nullable, arrow_type)
   5368 """
   5369 Convert to a Pandas DataFrame.
   5370 
   (...)
   5440 dtype: object
   5441 """
   5442 out_index = self.index.to_pandas()
-> 5443 out_data = {
   5444     i: col.to_pandas(nullable=nullable, arrow_type=arrow_type)
   5445     for i, col in enumerate(self._columns)
   5446 }
   5448 out_df = pd.DataFrame(out_data, index=out_index)
   5449 out_df.columns = self._data.to_pandas_index()

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/core/dataframe.py:5444](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/core/dataframe.py#line=5443), in <dictcomp>(.0)
   5368 """
   5369 Convert to a Pandas DataFrame.
   5370 
   (...)
   5440 dtype: object
   5441 """
   5442 out_index = self.index.to_pandas()
   5443 out_data = {
-> 5444     i: col.to_pandas(nullable=nullable, arrow_type=arrow_type)
   5445     for i, col in enumerate(self._columns)
   5446 }
   5448 out_df = pd.DataFrame(out_data, index=out_index)
   5449 out_df.columns = self._data.to_pandas_index()

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/core/column/numerical.py:693](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/core/column/numerical.py#line=692), in NumericalColumn.to_pandas(self, nullable, arrow_type)
    691     return pd.Index(pandas_array, copy=False)
    692 elif self.dtype.kind in set("iuf") and not self.has_nulls():
--> 693     return pd.Index(self.values_host, copy=False)
    694 else:
    695     return super().to_pandas(nullable=nullable, arrow_type=arrow_type)

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/core/column/column.py:218](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/core/column/column.py#line=217), in ColumnBase.values_host(self)
    215     raise ValueError("Column must have no nulls.")
    217 with acquire_spill_lock():
--> 218     return self.data_array_view(mode="read").copy_to_host()

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/core/column/column.py:133](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/cudf/core/column/column.py#line=132), in ColumnBase.data_array_view(self, mode)
    131 else:
    132     obj = None
--> 133 return cuda.as_cuda_array(obj).view(self.dtype)

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/numba/cuda/api.py:76](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/numba/cuda/api.py#line=75), in as_cuda_array(obj, sync)
     74     raise TypeError("*obj* doesn't implement the cuda array interface.")
     75 else:
---> 76     return from_cuda_array_interface(obj.__cuda_array_interface__,
     77                                      owner=obj, sync=sync)

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/numba/cuda/cudadrv/devices.py:231](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/numba/cuda/cudadrv/devices.py#line=230), in require_context.<locals>._require_cuda_context(*args, **kws)
    229 @functools.wraps(fn)
    230 def _require_cuda_context(*args, **kws):
--> 231     with _runtime.ensure_context():
    232         return fn(*args, **kws)

File [~/miniconda3/envs/faster_pandas/lib/python3.11/contextlib.py:137](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/contextlib.py#line=136), in _GeneratorContextManager.__enter__(self)
    135 del self.args, self.kwds, self.func
    136 try:
--> 137     return next(self.gen)
    138 except StopIteration:
    139     raise RuntimeError("generator didn't yield") from None

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/numba/cuda/cudadrv/devices.py:121](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/numba/cuda/cudadrv/devices.py#line=120), in _Runtime.ensure_context(self)
    110 @contextmanager
    111 def ensure_context(self):
    112     """Ensure a CUDA context is available inside the context.
    113 
    114     On entrance, queries the CUDA driver for an active CUDA context and
   (...)
    119     any top-level Numba CUDA API.
    120     """
--> 121     with driver.get_active_context():
    122         oldctx = self._get_attached_context()
    123         newctx = self.get_or_create_context(None)

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/numba/cuda/cudadrv/driver.py:495](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/numba/cuda/cudadrv/driver.py#line=494), in _ActiveContext.__enter__(self)
    493 else:
    494     hctx = drvapi.cu_context(0)
--> 495     driver.cuCtxGetCurrent(byref(hctx))
    496     hctx = hctx if hctx.value else None
    498 if hctx is None:

File [~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/numba/cuda/cudadrv/driver.py:295](http://127.0.0.1:8888/lab/tree/~/miniconda3/envs/faster_pandas/lib/python3.11/site-packages/numba/cuda/cudadrv/driver.py#line=294), in Driver.__getattr__(self, fname)
    292 self.ensure_initialized()
    294 if self.initialization_error is not None:
--> 295     raise CudaSupportError("Error at driver init: \n%s:" %
    296                            self.initialization_error)
    298 if USE_NV_BINDING:
    299     return self._cuda_python_wrap_fn(fname)

CudaSupportError: Error at driver init: 
Call to cuInit results in CUDA_ERROR_NO_DEVICE (100):

Additional context
Add any other context, code examples, or references to existing implementations about the feature request here.

@maheshmrs maheshmrs added cudf.pandas Issues specific to cudf.pandas feature request New feature or request Needs Triage Need team to review and classify labels Dec 13, 2024
@bdice
Copy link
Contributor

bdice commented Dec 13, 2024

I see your traceback includes Call to cuInit results in CUDA_ERROR_NO_DEVICE (100):. What GPU do you have in your system? Can you provide the output of nvidia-smi? Are you using a container? If so, do you have the nvidia-container-toolkit installed?

@maheshmrs
Copy link
Author

GPU 0: NVIDIA GeForce RTX 2050 (UUID: GPU-2b9a833b-6fb9-b25e-1833-7ff832a835eb)
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 561.17 Driver Version: 561.17 CUDA Version: 12.6 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Driver-Model | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA GeForce RTX 2050 WDDM | 00000000:01:00.0 Off | N/A |
| N/A 52C P8 4W / 30W | 2715MiB / 4096MiB | 0% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
+-----------------------------------------------------------------------------------------+

@maheshmrs
Copy link
Author

maheshmrs commented Dec 13, 2024

do you have the nvidia-container-toolkit installed? - No
I don't use container. However, I'm using WSL2 i.e. Linux on top of Windows OS.

@gforsyth
Copy link

Hey @maheshmrs -- it looks like you are relying on auto-labeled column names, but those start from 0, not from 1 -- does this work for you?

%%cudf.pandas.profile
data=pd.read_csv("training.1600000.processed.noemoticon.csv", 
                 header=None,
                encoding = "latin-1")

data = data.drop(columns=["0", "1","2"])
data.columns = ["lable","user","tweet"]
data.head(3)

@bdice
Copy link
Contributor

bdice commented Dec 13, 2024

Can you also share the output of conda list? It seems like your GPU is new enough. RAPIDS does support WSL2.

@maheshmrs
Copy link
Author

Name Version Build Channel

_libgcc_mutex 0.1 main
_openmp_mutex 5.1 1_gnu
anaconda-anon-usage 0.4.4 py312hfc0e8ea_100
archspec 0.2.3 pyhd3eb1b0_0
boltons 23.0.0 py312h06a4308_0
brotli-python 1.0.9 py312h6a678d5_8
bzip2 1.0.8 h5eee18b_6
c-ares 1.19.1 h5eee18b_0
ca-certificates 2024.9.24 h06a4308_0
certifi 2024.8.30 py312h06a4308_0
cffi 1.17.1 py312h1fdaa30_0
charset-normalizer 3.3.2 pyhd3eb1b0_0
conda 24.9.2 py312h06a4308_0
conda-content-trust 0.2.0 py312h06a4308_1
conda-libmamba-solver 24.9.0 pyhd3eb1b0_0
conda-package-handling 2.3.0 py312h06a4308_0
conda-package-streaming 0.10.0 py312h06a4308_0
cryptography 43.0.0 py312hdda0065_0
distro 1.9.0 py312h06a4308_0
expat 2.6.3 h6a678d5_0
fmt 9.1.0 hdb19cb5_1
frozendict 2.4.2 py312h06a4308_0
icu 73.1 h6a678d5_0
idna 3.7 py312h06a4308_0
jsonpatch 1.33 py312h06a4308_1
jsonpointer 2.1 pyhd3eb1b0_0
krb5 1.20.1 h143b758_1
ld_impl_linux-64 2.40 h12ee557_0
libarchive 3.7.4 hfab0078_0
libcurl 8.9.1 h251f7ec_0
libedit 3.1.20230828 h5eee18b_0
libev 4.33 h7f8727e_1
libffi 3.4.4 h6a678d5_1
libgcc-ng 11.2.0 h1234567_1
libgomp 11.2.0 h1234567_1
libmamba 1.5.8 hfe524e5_3
libmambapy 1.5.8 py312h2dafd23_3
libnghttp2 1.57.0 h2d74bed_0
libsolv 0.7.24 he621ea3_1
libssh2 1.11.0 h251f7ec_0
libstdcxx-ng 11.2.0 h1234567_1
libuuid 1.41.5 h5eee18b_0
libxml2 2.13.1 hfdd30dd_2
lz4-c 1.9.4 h6a678d5_1
menuinst 2.1.2 py312h06a4308_0
ncurses 6.4 h6a678d5_0
openssl 3.0.15 h5eee18b_0
packaging 24.1 py312h06a4308_0
pcre2 10.42 hebb0a14_1
pip 24.2 py312h06a4308_0
platformdirs 3.10.0 py312h06a4308_0
pluggy 1.0.0 py312h06a4308_1
pybind11-abi 5 hd3eb1b0_0
pycosat 0.6.6 py312h5eee18b_1
pycparser 2.21 pyhd3eb1b0_0
pysocks 1.7.1 py312h06a4308_0
python 3.12.7 h5148396_0
readline 8.2 h5eee18b_0
reproc 14.2.4 h6a678d5_2
reproc-cpp 14.2.4 h6a678d5_2
requests 2.32.3 py312h06a4308_0
ruamel.yaml 0.18.6 py312h5eee18b_0
ruamel.yaml.clib 0.2.8 py312h5eee18b_0
setuptools 75.1.0 py312h06a4308_0
sqlite 3.45.3 h5eee18b_0
tk 8.6.14 h39e8969_0
tqdm 4.66.5 py312he106c6f_0
truststore 0.8.0 py312h06a4308_0
tzdata 2024b h04d1e81_0
urllib3 2.2.3 py312h06a4308_0
wheel 0.44.0 py312h06a4308_0
xz 5.4.6 h5eee18b_1
yaml-cpp 0.8.0 h6a678d5_1
zlib 1.2.13 h5eee18b_1
zstandard 0.23.0 py312h2c38b39_0
zstd 1.5.6 hc292b87_0

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
cudf.pandas Issues specific to cudf.pandas feature request New feature or request Needs Triage Need team to review and classify
Projects
Status: Todo
Development

No branches or pull requests

3 participants