forked from hitersyw/baxter_mpnet_experiments
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpath_playback_smooth.py
191 lines (148 loc) · 5.71 KB
/
path_playback_smooth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import argparse
import torch
import torch.nn as nn
import numpy as np
import os
import pickle
from tools.path_data_loader import load_test_dataset_end2end
from torch.autograd import Variable
import math
from tools.import_tool import fileImport
import time
import rospy
import sys
from neuralplanner_functions import *
from architectures import *
from tools.planning_scene_editor import *
from tools.get_state_validity import StateValidity
joint_ranges = np.array([3.4033, 3.194, 6.117, 3.6647, 6.117, 6.1083, 2.67])
### collision check
def check_full_path(overall_path):
invalid = []
valid = True
overall_valid = True
for i, state in enumerate(overall_path):
filler_robot_state[10:17] = moveit_scrambler(state)
rs_man.joint_state.position = tuple(filler_robot_state)
collision_free = sv.getStateValidity(rs_man, group_name="right_arm")
valid = valid and collision_free
overall_valid = overall_valid and collision_free
if not valid:
# print("invalid: " + str(i))
invalid.append(i)
valid = True
if (len(invalid)==0 and overall_valid):
print("Full path valid!")
else:
print("Not valid")
return overall_valid
def path_to_np(path):
path_np = []
for i, state in enumerate(path):
path_np.append(np.multiply(state.numpy(), joint_ranges)) #unnormalize
return path_np
def make_overall_path(path_np):
dists = []
for i in range(1,len(path_np)):
dists.append(np.mean(abs(path_np[i] - path_np[i-1]), axis=0))
overall_dist = sum(dists)
fractions = [x for x in dists/overall_dist]
total_pts = 300
pts = [int(total_pts * x) for x in fractions]
path_full = []
for i, n_pts in enumerate(pts):
vec = np.transpose(np.linspace(path_np[i][0], path_np[i+1][0], n_pts)[np.newaxis])
for j in range(1,7):
vec = np.hstack([vec, np.transpose(np.linspace(path_np[i][j], path_np[i+1][j], n_pts)[np.newaxis])])
path_full.append(vec)
overall_path = []
for mini_path in path_full:
for state in mini_path:
overall_path.append(state)
return overall_path
def move_to_start(overall_path):
joint_state = limb.joint_angles()
for i, name in enumerate(joint_state.keys()):
joint_state[name] = overall_path[0][i]
limb.move_to_joint_positions(joint_state)
def play_smooth(overall_path, sleep=False):
joint_state = limb.joint_angles()
for i, name in enumerate(joint_state.keys()):
joint_state[name] = overall_path[0][i]
limb.move_to_joint_positions(joint_state)
k = 1
joint_state = limb.joint_angles()
if sleep:
print("sleeping for 5 seconds to setup")
time.sleep(5)
done = False
while not done:
for i, name in enumerate(joint_state.keys()):
joint_state[name] = overall_path[k][i]
# limb.move_to_joint_positions(joint_state)
limb.set_joint_positions(joint_state)
time.sleep(0.025)
k += 1
if k > len(overall_path)-1:
done = True
def main(args):
global sv
global filler_robot_state
global rs_man
global limb
# # Build data loader
importer = fileImport()
env_data_path = args.env_data_path
envs = importer.environments_import(env_data_path + args.envs_file)
with open(env_data_path+args.envs_file, 'rb') as env_f:
envDict = pickle.load(env_f)
rospy.init_node("playback")
# sometimes takes a few tries to connect to robot arm
limb_init = False
while not limb_init:
try:
limb = baxter_interface.Limb('right')
limb_init = True
except OSError:
limb_init = False
scene = PlanningSceneInterface()
robot = RobotCommander()
group = MoveGroupCommander("right_arm")
scene._scene_pub = rospy.Publisher('planning_scene',
PlanningScene,
queue_size=0)
sv = StateValidity()
set_environment(robot, scene)
masterModifier = ShelfSceneModifier()
sceneModifier = PlanningSceneModifier(envDict['obsData'])
sceneModifier.setup_scene(scene, robot, group)
rs_man = RobotState()
robot_state = robot.get_current_state()
rs_man.joint_state.name = robot_state.joint_state.name
filler_robot_state = list(robot_state.joint_state.position)
env_name = 'trainEnv_' + str(args.env_to_load)
print(env_name)
sceneModifier.delete_obstacles()
new_pose = envDict['poses'][env_name]
sceneModifier.permute_obstacles(new_pose)
with open(args.good_path_sample_path + '/' + args.experiment_name + '/' + env_name + '/fp_' + str(args.path_file_to_play) + '.pkl', 'rb') as good_f:
path = pickle.load(good_f)
path_np = path_to_np(path)
overall_path = make_overall_path(path_np)
valid = check_full_path(overall_path)
if valid:
move_to_start(overall_path)
play_smooth(overall_path)
else:
print("Path not valid! Not executing")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--good_path_sample_path', type=str,default='./path_samples/good_path_samples/sample/')
parser.add_argument('--bad_path_sample_path', type=str, default='./path_samples/bad_path_samples/sample/')
parser.add_argument('--experiment_name', type=str, default='test_experiment')
parser.add_argument('--env_to_load', type=int, default=4)
parser.add_argument('--path_file_to_play', type=int, default = 1)
parser.add_argument('--env_data_path', type=str, default='./env/environment_data/')
parser.add_argument('--envs_file', type=str, default='trainEnvironments.pkl')
args = parser.parse_args()
main(args)