-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path063_UniquePathsII63.java
63 lines (52 loc) · 1.7 KB
/
063_UniquePathsII63.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
/**
* Follow up for "Unique Paths":
*
* Now consider if some obstacles are added to the grids. How many unique paths
* would there be?
*
* An obstacle and empty space is marked as 1 and 0 respectively in the grid.
*
* For example,
* There is one obstacle in the middle of a 3x3 grid as illustrated below.
*
* [
* [0,0,0],
* [0,1,0],
* [0,0,0]
* ]
* The total number of unique paths is 2.
*
* Note: m and n will be at most 100.
*/
public class UniquePathsII63 {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
if (m == 0) return 0;
int[][] dp = new int[m][n];
dp[0][0] = (obstacleGrid[0][0] == 1) ? 0 : 1;
for (int i=1; i<m; i++) dp[i][0] = (obstacleGrid[i][0] == 1) ? 0 : dp[i-1][0];
for (int j=1; j<n; j++) dp[0][j] = (obstacleGrid[0][j] == 1) ? 0 : dp[0][j-1];
for (int i=1; i<m; i++) {
for (int j=1; j<n; j++) {
dp[i][j] = (obstacleGrid[i][j] == 1) ? 0 : dp[i][j-1] + dp[i-1][j];
}
}
return dp[m-1][n-1];
}
public int uniquePathsWithObstacles2(int[][] obstacleGrid) {
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
if (m == 0) return 0;
int[] dp = new int[n];
dp[0] = (obstacleGrid[0][0] == 1) ? 0 : 1;
for (int j=1; j<n; j++) dp[j] = (obstacleGrid[0][j] == 1) ? 0 : dp[j-1];
for (int i=1; i<m; i++) {
dp[0] = (obstacleGrid[i][0] == 1) ? 0 : dp[0];
for (int j=1; j<n; j++) {
dp[j] = (obstacleGrid[i][j] == 1) ? 0 : (dp[j-1] + dp[j]);
}
}
return dp[n-1];
}
}