forked from BT18D011/Seq2Feature
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsequence_based_features1_normalize.py
403 lines (365 loc) · 20.6 KB
/
sequence_based_features1_normalize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
#!/usr/bin/python2.7
# Import modules for CGI handling
import pandas as pd
import re
import os
import argparse
#import glob
#import string
#import urllib
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--input_file",help = "Input file")
parser.add_argument("--property", help = """Enter 'AAP' for Amino acid properties,'SUB' for Substitution matrices, 'CON' for Pairwise properties and contact potential or 'ALL' for all properties""")
# parser.add_argument("--SUB", help = "Substitution matrices")
# parser.add_argument("--CON", help = "Pairwise properties and contact potential")
# parser.add_argument("--ALL", help = "ALL properties")
args = parser.parse_args()
newDF_49 = pd.DataFrame()
newDF_AA = pd.DataFrame()
newDF_con = pd.DataFrame()
newDF_neg = pd.DataFrame()
newDF_user_prop = pd.DataFrame()
new_user = []
f1 = open(args.input_file,'r').readlines()[1:]
################ Left right pref#################
def user_prop(mutation,AA_dist):
mut = mutation[-1]
wild = mutation[0]
return(int(AA_dist[wild])-int(AA_dist[mut]))
def left_pref(seq , mutation):
pos =int(''.join(re.findall('\d+',mutation)))
if pos <=1 or pos>= len(seq):
left_pref = ''
right_pref = ''
return(left_pref,right_pref)
out_df = pd.DataFrame({'Mutation':[mutation],'N_Terminal':[left_pref],'C_Terminal':[right_pref]},columns= ['Mutation','N_Terminal','C_Terminal'])
else:
left_pref = seq[pos-2]
right_pref = seq[pos]
out_df = pd.DataFrame({'Mutation':[mutation],'N_Terminal':[left_pref],'C_Terminal':[right_pref]},columns= ['Mutation','N_Terminal','C_Terminal'])
return(out_df)
def prop_49(seq ,mutation):
df1 = pd.read_csv('./data/49_properties_normalizedValues.csv', sep =',' )
# file1 = pd.read_csv('./data/prop_49_list.csv')
mut = mutation[-1]
wild = mutation[0]
wrt = (df1[mut]-df1[wild])
# out = pd.concat([file1,wrt],axis =1)
return(wrt.transpose())
#####contact potential 47*2###############
def contact_potential(seq, mutation):
pos =int(''.join( re.findall('\d+',mutation)))
left = seq[pos-2]
right = seq[pos]
dN_wild = mutation[0] + left
dN_mutant = mutation[-1]+ left
dC_wild = mutation[0] + right
dC_mutant = mutation[-1]+ right
df1 = pd.read_csv('./data/data_contact_potential_diagonal.csv')
if dN_wild not in df1:
dN_wild = left + mutation[0]
if dN_mutant not in df1:
dN_mutant = left + mutation[-1]
if dC_wild not in df1:
dC_wild = right + mutation[0]
if dC_mutant not in df1:
dC_mutant = right + mutation[-1]
potential_dN1 = df1[dN_wild] - df1[dN_mutant]
potential_dC1 = df1[dC_wild] - df1[dC_mutant]
file2 = pd.read_csv('./data/data_contact_potential_square.csv')
potential_dN = file2[dN_wild] - file2[dN_mutant]
potential_dC = file2[dC_wild] - file2[dC_mutant]
# file3 = pd.read_csv('./data/contact_potential_prop.csv',header = None)
# index = ["ZHAC000102","ZHAC000103","ZHAC000105","ZHAC000102","ZHAC000103","ZHAC000105","BASU010101","BETM990101","BONM030101","BONM030102","BONM030103","BONM030104","BONM030105","BONM030106","BRYS930101","GODA950101","KESO980101","KESO980102","KOLA930101","LIWA970101","MICC010101","MIRL960101","MIYS850102","MIYS850103","MIYS960101","MIYS960102","MIYS960103","MIYS990106","MIYS990107","MOOG990101","PARB960101","PARB960102","ROBB790102","SIMK990101","SIMK990102","SIMK990103","SIMK990104","SIMK990105","SKOJ000101","SKOJ000102","SKOJ970101","TANS760101","TANS760102","THOP960101","TOBD000101","TOBD000102","VENM980101","ZHAC000101","ZHAC000104","ZHAC000106","BASU010101","BETM990101","BONM030101","BONM030102","BONM030103","BONM030104","BONM030105","BONM030106","BRYS930101","GODA950101","KESO980101","KESO980102","KOLA930101","LIWA970101","MICC010101","MIRL960101","MIYS850102","MIYS850103","MIYS960101","MIYS960102","MIYS960103","MIYS990106","MIYS990107","MOOG990101","PARB960101","PARB960102","ROBB790102","SIMK990101","SIMK990102","SIMK990103","SIMK990104","SIMK990105","SKOJ000101","SKOJ000102","SKOJ970101","TANS760101","TANS760102","THOP960101","TOBD000101","TOBD000102","VENM980101","ZHAC000101","ZHAC000104","ZHAC000106"]
out = pd.concat([potential_dN, potential_dC,potential_dN1, potential_dC1],ignore_index = True)
df_out = out.to_frame()
# con = pd.concat([file3,df_out],axis = 1)
return df_out.transpose()
####################### AA 94 properties######################
def AAIndex_94(mutation):
file1 = pd.read_csv('./data/94_AA_Index.csv')
mut1 = mutation[0]+mutation[-1]
out = file1[file1['mutation'].str.contains(mut1, na = False)]
# print(out.loc[:,'ALTS910101':])
# print(type(out))
return out
path = "./out_protein"
directory = os.path.dirname(path)
if not os.path.exists(directory):
os.makedirs(directory)
newDF = pd.DataFrame()
clas = []
for li in f1:
# Get data from fields
seq = li.strip().split('\t')[0]
mutation_list = []
temp = li.strip().split('\t')[1]
temp = ''.join(temp.split())
clas.append(li.strip().split('\t')[2])
#seq1= seq.translate(string.maketrans("\t\r", " "))
#var = seq1.splitlines()
#flag = False
#seq = ''
#for lin in var:
# if(flag):
# seq += lin.strip()
# if lin.startswith(">"):
# flag = True
#flag = False
##print seq
AA = ['A','C','D','E','F','G','H','I','K','L','M','N','P','Q','R','S','T','V','W','Y']
#mutation_list = form.getvalue('mutation').split(",")
# number = random.randint(0,9)
#prop_1 = 'properties'
#num_value1 = form.getvalue('num_value1')
if(True):
# seq = ''
# fileitem = ''
# #input file
# fileitem = 'filename'
# if(len(seq1)>1 or fileitem.filename):
# if(len(seq1)>1):
# var = seq1.splitlines()
# # print("%s")%var
# flag = False
# for lin in var:
# if(flag):
# seq += lin.strip()
# if lin.startswith(">"):
# flag = True
# # print("%s")%lin
# flag = False
# elif(fileitem.filename):
#
# fn = os.path.basename(fileitem.filename.replace("\\", "/" ))
# var = fileitem.file.readlines()
# flag = False
# for line in var:
# if(flag):
# seq += line.strip()
# if ">" in line:
# flag = True
# flag = False
# else:
# print("check seq")
for number in range(len(seq)):
for aa in AA:
if seq[number]+str(number)+aa not in mutation_list:
mutation_list.append(seq[number]+str(number)+aa)
se = pd.Series(mutation_list)
df_mut_list= pd.DataFrame()
df_mut_list["mutation"] = se.values
#print("%s")%(df_mut_list.to_html())
# print"%s",num_value1
#mutation input
mutation_list = temp.split(",")
#mutation file input
# fileitem1 = 'filename1'
# var1 = fileitem1.file.readlines()
# if(len(mutation_list)):
#
#
# if(fileitem1.filename):
# for i in var1:
# if i.strip() not in mutation_list:
# mutation_list.append(i.strip())
# else:
# print("Enter mutation with position")
for mut in mutation_list:
if(len(mut)<3):
continue
mutation = mut.upper()
# print(mutation)
#prop1 = "49_amino_acid_Physicochemical_properties"
# p = type(prop_1)
# Get filename here.
# fileitem = form['filename']
# print("""<!-- content -->
# <div class="wrapper row2">
# <div id="container" class="clear">
# <div id="intro">
# </br></br>
# <section class="clear">""")
# print("%s")%seq
#print"""<td bgcolor = "#eee" width = "100" height = "200">"""
if(len(seq) <= int(mutation[1:-1])-1):
print("!!! Short sequence length !!!")
print("!!! Kindly check the sequence and mutation!!!%s"%(seq))
exit()
elif(seq[int(mutation[1:-1])-1] != mutation[0]):
print("At given position mutant not found...!!!")
print("Kindly check the respective position of mutation...!!!%s"%(mutation))
exit()
else:
if(str(args.property) == "AAP"):
# print("calculating... amino acid properties")
pf = prop_49(str(seq) , str(mutation))
newDF_49 = newDF_49.append(pf, ignore_index=True)
# prop1 = prop.transpose()
# print"%s"% (prop.to_html(header = False,index = False))
# prop.to_csv("../../html/SBFE/out_protein/out_prop_49.csv",header = False ,index = False,index_label = False)
# print("""<input type="button" value="Download Now!" onclick="window.location = '../../SBFE/out_protein/out_prop_49.csv';">""")
elif(str(args.property) == "SUB"):
# print("calculating...Sunstitution matrix properties")
AA_Index = AAIndex_94(str(mutation))
newDF_AA = newDF_AA.append(AA_Index, ignore_index=True)
# print("<strong>amino acid index properties:</strong>")
# print("%s")%(newDF.to_html(header = True,index = False))
# AA_Index.to_csv("../../html/SBFE/out_protein/out_AA_Index.csv",index = False)
# print("""<input type="button" value="Download Now!" onclick="window.location = '../../SBFE/out_protein/out_AA_Index.csv';">""")
elif(str(args.property) =="CON"):
# print("calculating...contact potential")
contact_p = contact_potential(str(seq), str(mutation))
newDF_con = newDF_con.append(contact_p, ignore_index=True)
# print"%s"%(newDF.to_html(header = False, index = False))
# contact_p.to_csv("../../html/SBFE/out_protein/out_contact_potential.csv",header = False ,index = False,index_label = False)
# print ("""<input type="button" value="Download Now!" onclick="window.location = '../../SBFE/out_protein/out_contact_potential.csv';">""")
elif(str(args.property) == "neighboring residues of mutation position"):
# print("finding...neighboring residues")
left_pre = left_pref(str(seq) , str(mutation))
newDF_neg = newDF_neg.append(left_pre, ignore_index=True)
# print("%s"%(newDF.to_html(header = True, index = False)))
# print( """<button type="submit" onclick="window.open('file.doc')">Download!</button>""")
# left_pre.to_csv("../../html/SBFE/out_protein/neighbour.csv",index_label = False,index = False)
# print( """<input type="button" value="Download Now!" onclick="window.location = '../../SBFE/out_protein/neighbour.csv';">""")
elif(str(args.property) =="ALL"):
# print("calculating...all properties")
contact_p = contact_potential(str(seq), str(mutation))
newDF_con = newDF_con.append(contact_p, ignore_index=True)
AA_Index = AAIndex_94(str(mutation))
newDF_AA = newDF_AA.append(AA_Index.loc[:,:], ignore_index=True)
prop = prop_49(str(seq) , str(mutation))
newDF_49 = newDF_49.append(prop, ignore_index=True)
left_pre = left_pref(str(seq) , str(mutation))
newDF_neg = newDF_neg.append(left_pre, ignore_index=True)
# print("<strong>49_properties:</strong>")
# print("%s")% (prop.to_html(header = False, index = False))
# print("<strong>contact potential:</strong>")
# print("%s")% (contact_p.to_html(header = False, index = False))
# print("<strong>AA_Index_94 properties:</strong>")
# print("%s")% (AA_Index.to_html(header = True, index = False))
# print("<strong>neighboring residues of mutation position:</strong>")
# print("%s")% (left_pre.to_html(header = True , index = False))
# contact_p.to_csv("../../html/SBFE/out_protein/out_contact_potential.csv",header = False ,index = False,index_label = False)
# prop.to_csv("../../html/SBFE/out_protein/out_prop_49.csv",header = False ,index = False,index_label = False)
# AA_Index.to_csv("../../html/SBFE/out_protein/out_AA_Index.csv",index = False)
# left_pre.to_csv("../../html/SBFE/out_protein/neighbour.csv",index_label = False,index = False)
# cmd = "paste -d, "+"../../html/SBFE/out_protein/*.csv"+ " > ../../html/out.csv"
# os.system(cmd)
# print ("""<input type="button" value="Download Now!" onclick="window.location = '../../out.csv';">""")
else:
print("!!!Wrong choice!!!")
print("Please select at least one property ...!!!")
#print"%s"%(newDF)
class1 = pd.Series(clas)
if(str(args.property) == "AAP"):
cols = ['Properties']
for ij in mutation_list:
cols.append(ij)
# print('%s')%type(cols)
# print("""<p style = "color:#660214;"><strong>Your input seq is:</strong>""")
# print("""<div style = "word-wrap: break-word;" > %s</div>""")%(seq)
# print("""<p style = "color:#660214;"><strong>Amino acid properties:</strong>""")
# print("""<p align = "justify"><br>We have considered physical, chemical, energetic and conformational <a href = "../../SBFE/49_prop.html">properties</a> and <a href = "../../SBFE/81_AA_property.html">list of properties</a> from AAindex database <br> The change in property value upon mutation is calculated using following formula:<br><div class="boxed"><p style="text-align:center"><b> Δ P<sub>(mutation)</sub> = P<sub>(Snp)</sub> - P<sub>(wild-type)</sub></b><br>Where P<sub>(wild-type)</sub> and P<sub>(Snp)</sub> are the property values of wild-type and mutant residues, respectively and ΔP<sub>(mutation)</sub> is the change in property due to mutation</div>
#""")
file1 = pd.read_csv('./data/prop_49_list.csv').transpose()
col = open('./data/prop_49_list.csv','r').readlines()
col1 = []
for ii in col:
col1.append(ii.strip())
newDF1 = pd.concat([file1,newDF_49],axis =0)
new = newDF1.transpose()
# print(newDF1)
# col1 = file1.values
# col1.append('class')
# print(col1)
newDF1.columns = col1
newDF1['Class'] = class1
# new.columns = cols
# print"%s"% (new.to_html(columns= cols,index = False))
newDF1[1:].round(3).to_csv("./out_protein/AAP_out.csv",header = True , index = False,index_label = False)
# print("""<input type="button" value="Download Now!" onclick="window.location = '../../SBFE/out_protein/"""+ str(number)+"""out_prop_49.csv';">""")
elif(str(args.property) == "SUB"):
# print("""<p style = "color:#660214;"><strong>Your input seq is:</strong>""")
# print("""<div style = "word-wrap: break-word;" > %s</div>""")%(seq)
# print("""<p style = "color:#660214;"><strong>Substitution matrix properties:</strong>""")
# print("""<p align = "justify"><br>Amino acid mutation <a href = "../../SBFE/substitution.html">matrices</a> are collected from AAIndex2 database and the mutation value is directly obtained from matrices.
#""")
cols = []
for ij in mutation_list:
cols.append(ij)
new = newDF_AA.transpose()[1:]
newDF_AA['Class'] = class1
# new.columns = cols
# print("%s")%(new.to_html())
newDF_AA.round(3).to_csv("./out_protein/SUB_out.csv",index = False)
# print("""<input type="button" value="Download Now!" onclick="window.location = '../../SBFE/out_protein/"""+ str(number)+"""out_AA_Index.csv';">""")
elif(str(args.property) =="CON"):
# print("""<p style = "color:#660214;"><strong>Your input seq is:</strong>""")
# print("""<div style = "word-wrap: break-word;" > %s</div>""")%(seq)
file3 = pd.read_csv('./data/contact_potential_prop.csv',header = None).transpose()
# col = open('./data/contact_potential_prop.csv','r').reaadlines()
# newDF_con['Class'] = class1
con = pd.concat([file3,newDF_con],axis = 0)
# print("""<p style = "color:#660214;"><strong>Contact potential properties:</strong>""")
# print("""<p align = "justify">Pair-wise contact potential <a href = "../../SBFE/contact_p.html">matrices</a> are collected from AAIndex3 database and difference of amino acid contact potential for a mutation is obtained by subtracting contact potential value of N-/C-neighbour of mutation position to wild type residue from N-/C-neighbour to mutant residue.
#""")
cols = ['Properties']
for ij in mutation_list:
cols.append(ij)
new = con.transpose()
con['Class'] = class1
# new.columns = cols
# print"%s"%(new.to_html( index = False))
# print("Here '_N' and '_C' represents N-terminal and C-terminal Amino acid respectively")
con.round(3).to_csv("./out_protein/out_contact_potential.csv",header = False ,index = False,index_label = False)
# print ("""<input type="button" value="Download Now!" onclick="window.location = '../../SBFE/out_protein/"""+ str(number)+"""out_contact_potential.csv';">""")
elif(str(args.property) == "neighboring residues of mutation position"):
# print("finding...neighboring residues")
# print("%s"%(newDF_neg.transpose().to_html(header = False , index = True)))
newDF_neg.to_csv("./out_protein/neighbour.csv",index_label = False,index = False)
# print( """<input type="button" value="Download Now!" onclick="window.location = '../../SBFE/out_protein/"""+ str(number)+"""neighbour.csv';">""")
elif(str(args.property) =="ALL"):
# print("calculating...all properties")
# print("49_properties:")
file1 = pd.read_csv('./data/prop_49_list.csv').transpose()
newDF1 = pd.concat([file1,newDF_49],axis =0)
col = open('./data/prop_49_list.csv','r').readlines()
# print"%s"% (newDF1.to_html(header = False,index = False))
# newDF1.round(3).to_csv("./out_protein/AAP_out.csv",header = False ,index = False,index_label = False)
# print("amino acid index properties:")
# print("%s")%(newDF_AA.to_html(header = True,index = False))
col1 = []
for ii in col:
col1.append(ii.strip())
newDF1 = pd.concat([file1,newDF_49],axis =0)
new = newDF1.transpose()
# print(newDF1)
# col1 = file1.values
# col1.append('class')
# print(col1)
newDF1.columns = col1
newDF1['Class'] = class1
# new.columns = cols
# print"%s"% (new.to_html(columns= cols,index = False))
newDF1[1:].round(3).to_csv("./out_protein/AAP_out.csv",header = True , index = False,index_label = False)
newDF_AA.drop(columns = 'mutation',inplace = True)
newDF_AA.round(3).to_csv("./out_protein/SUB_out.csv",index = False)
# print("Contact potential:")
file3 = pd.read_csv('./data/contact_potential_prop.csv',header = None).transpose()
con = pd.concat([file3,newDF_con],axis = 0)
# print"%s"%(con.to_html(header = False, index = False))
# print("Here '_N' and '_C' represents N-terminal and C-terminal Amino acid respectively")
con.round(3).to_csv("./out_protein/out_contact_potential.csv",header = False ,index = False,index_label = False)
# df111 = pd.DataFrame()
# df111 = pd.concat([newDF1[1:].round(3),newDF_AA.round(3),con.round(3)],axis = 1,ignore_index = True)
# df = df111.fillna(0)
# df.to_csv("./output.csv",index = False)
# print("<strong>neighboring residues of mutation position:</strong>")
# print("%s"%(newDF_neg.to_html(header = True, index = False)))
# con['Class'] = class1
# newDF_neg['Class'] = class1
# newDF_neg.to_csv("./out_protein/neighbour.csv",index_label = False,index = False)
cmd = "paste -d, "+"./out_protein/*.csv"+ " > ./output.csv"
os.system(cmd)