-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathTF-IDF.py
49 lines (37 loc) · 1.92 KB
/
TF-IDF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from pyspark import SparkConf, SparkContext
from pyspark.mllib.feature import HashingTF
from pyspark.mllib.feature import IDF
# Boilerplate Spark stuff:
conf = SparkConf().setMaster("local").setAppName("SparkTFIDF")
sc = SparkContext(conf = conf)
# Load documents (one per line).
rawData = sc.textFile("e:/sundog-consult/Udemy/DataScience/subset-small.tsv")
fields = rawData.map(lambda x: x.split("\t"))
documents = fields.map(lambda x: x[3].split(" "))
# Store the document names for later:
documentNames = fields.map(lambda x: x[1])
# Now hash the words in each document to their term frequencies:
hashingTF = HashingTF(100000) #100K hash buckets just to save some memory
tf = hashingTF.transform(documents)
# At this point we have an RDD of sparse vectors representing each document,
# where each value maps to the term frequency of each unique hash value.
# Let's compute the TF*IDF of each term in each document:
tf.cache()
idf = IDF(minDocFreq=2).fit(tf)
tfidf = idf.transform(tf)
# Now we have an RDD of sparse vectors, where each value is the TFxIDF
# of each unique hash value for each document.
# I happen to know that the article for "Abraham Lincoln" is in our data
# set, so let's search for "Gettysburg" (Lincoln gave a famous speech there):
# First, let's figure out what hash value "Gettysburg" maps to by finding the
# index a sparse vector from HashingTF gives us back:
gettysburgTF = hashingTF.transform(["Gettysburg"])
gettysburgHashValue = int(gettysburgTF.indices[0])
# Now we will extract the TF*IDF score for Gettsyburg's hash value into
# a new RDD for each document:
gettysburgRelevance = tfidf.map(lambda x: x[gettysburgHashValue])
# We'll zip in the document names so we can see which is which:
zippedResults = gettysburgRelevance.zip(documentNames)
# And, print the document with the maximum TF*IDF value:
print("Best document for Gettysburg is:")
print(zippedResults.max())