-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path9_valid_perfect_square.py
55 lines (47 loc) · 1.69 KB
/
9_valid_perfect_square.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
##########################################################
# Author: Raghav Sikaria
# LinkedIn: https://www.linkedin.com/in/raghavsikaria/
# Github: https://github.com/raghavsikaria
# Last Update: 9-5-2020
# Project: LeetCode May 31 Day 2020 Challenge - Day 9
##########################################################
# QUESTION
# This question is from the abovementioned challenge and can be found here on LeetCode: https://leetcode.com/explore/featured/card/may-leetcoding-challenge/535/week-2-may-8th-may-14th/3324/
############################################################################
# Given a positive integer num, write a function which returns True if num is a perfect square else False.
# Note: Do not use any built-in library function such as sqrt.
# Example 1:
# Input: 16
# Output: true
# Example 2:
# Input: 14
# Output: false
############################################################################
# ACCEPTED SOLUTION #1
# This solution ensures O(sqrt(n)) Time and O(1) Space Complexity
class Solution:
def isPerfectSquare(self, num: int) -> bool:
answer = False
i = 0
while i*i < num + 1:
if i*i == num:
answer = True
break
i += 1
return answer
# ACCEPTED SOLUTION #2
# This solution ensures O(logn) Time and O(1) Space Complexity
class Solution_:
def isPerfectSquare(self, num: int) -> bool:
answer = False
l = 1
r = num
while(l<=r):
mid = int((l + r)/2)
if mid * mid == num:
answer = mid
break
elif mid * mid > num:
r = mid - 1
else: l = mid + 1
return answer