-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathplanetary-computer-reading-stac.html
3949 lines (3448 loc) · 417 KB
/
planetary-computer-reading-stac.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Reading-Data-from-the-STAC-API">Reading Data from the STAC API<a class="anchor-link" href="#Reading-Data-from-the-STAC-API">¶</a></h2><p>The Planetary Computer catalogs the datasets we host using the <a href="http://stacspec.org/">STAC</a> (SpatioTemporal Asset Catalog) specification. We provide a <a href="https://github.com/radiantearth/stac-api-spec">STAC API</a> endpoint that can be used to search our datasets by space, time, and more. This quickstart will show you how to search for data using our STAC API and open-source Python libraries. For more on how to use our STAC API from R, see <a href="https://planetarycomputer.microsoft.com/docs/quickstarts/reading-stac-r/">Reading data from the STAC API with R</a>.</p>
<p>To get started you'll need the <a href="https://github.com/stac-utils/pystac-client">pystac-client</a> library installed. You can install it via pip:</p>
<pre><code>> pip install pystac-client</code></pre>
<p>First we'll use pystac-client to open up our STAC API:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [1]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">from</span> <span class="nn">pystac_client</span> <span class="kn">import</span> <span class="n">Client</span>
<span class="n">catalog</span> <span class="o">=</span> <span class="n">Client</span><span class="o">.</span><span class="n">open</span><span class="p">(</span><span class="s2">"https://planetarycomputer.microsoft.com/api/stac/v1"</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h3 id="Searching">Searching<a class="anchor-link" href="#Searching">¶</a></h3><p>We can use the STAC API to search for assets meeting some criteria. This might include the date and time the asset covers, is spatial extent, or any other property captured in the STAC item's metadata.</p>
<p>In this example we'll search for imagery from <a href="https://planetarycomputer.microsoft.com/dataset/landsat-c2-l2">Landsat Collection 2 Level-2</a> area around Microsoft's main campus in December of 2020.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [2]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">time_range</span> <span class="o">=</span> <span class="s2">"2020-12-01/2020-12-31"</span>
<span class="n">bbox</span> <span class="o">=</span> <span class="p">[</span><span class="o">-</span><span class="mf">122.2751</span><span class="p">,</span> <span class="mf">47.5469</span><span class="p">,</span> <span class="o">-</span><span class="mf">121.9613</span><span class="p">,</span> <span class="mf">47.7458</span><span class="p">]</span>
<span class="n">search</span> <span class="o">=</span> <span class="n">catalog</span><span class="o">.</span><span class="n">search</span><span class="p">(</span><span class="n">collections</span><span class="o">=</span><span class="p">[</span><span class="s2">"landsat-8-c2-l2"</span><span class="p">],</span> <span class="n">bbox</span><span class="o">=</span><span class="n">bbox</span><span class="p">,</span> <span class="n">datetime</span><span class="o">=</span><span class="n">time_range</span><span class="p">)</span>
<span class="n">items</span> <span class="o">=</span> <span class="n">search</span><span class="o">.</span><span class="n">get_all_items</span><span class="p">()</span>
<span class="nb">len</span><span class="p">(</span><span class="n">items</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[2]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>4</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>In that example our spatial query used a bounding box with a <code>bbox</code>. Alternatively, you can pass a GeoJSON object as <code>intersects</code></p>
<div class="highlight"><pre><span></span><span class="n">area_of_interest</span> <span class="o">=</span> <span class="p">{</span>
<span class="s2">"type"</span><span class="p">:</span> <span class="s2">"Polygon"</span><span class="p">,</span>
<span class="s2">"coordinates"</span><span class="p">:</span> <span class="p">[</span>
<span class="p">[</span>
<span class="p">[</span><span class="o">-</span><span class="mf">122.2751</span><span class="p">,</span> <span class="mf">47.5469</span><span class="p">],</span>
<span class="p">[</span><span class="o">-</span><span class="mf">121.9613</span><span class="p">,</span> <span class="mf">47.9613</span><span class="p">],</span>
<span class="p">[</span><span class="o">-</span><span class="mf">121.9613</span><span class="p">,</span> <span class="mf">47.9613</span><span class="p">],</span>
<span class="p">[</span><span class="o">-</span><span class="mf">122.2751</span><span class="p">,</span> <span class="mf">47.9613</span><span class="p">],</span>
<span class="p">[</span><span class="o">-</span><span class="mf">122.2751</span><span class="p">,</span> <span class="mf">47.5469</span><span class="p">],</span>
<span class="p">]</span>
<span class="p">],</span>
<span class="p">}</span>
<span class="n">time_range</span> <span class="o">=</span> <span class="s2">"2020-12-01/2020-12-31"</span>
<span class="n">search</span> <span class="o">=</span> <span class="n">catalog</span><span class="o">.</span><span class="n">search</span><span class="p">(</span>
<span class="n">collections</span><span class="o">=</span><span class="p">[</span><span class="s2">"landsat-8-c2-l2"</span><span class="p">],</span> <span class="n">intersects</span><span class="o">=</span><span class="n">area_of_interest</span><span class="p">,</span> <span class="n">datetime</span><span class="o">=</span><span class="n">time_range</span>
<span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p><code>items</code> is a <a href="https://pystac.readthedocs.io/en/stable/api/item_collection.html#pystac-item-collection"><code>pystac.ItemCollection</code></a>. We can see that 4 items matched our search criteria.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [3]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="nb">len</span><span class="p">(</span><span class="n">items</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[3]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>4</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Each <a href="https://pystac.readthedocs.io/en/stable/api/pystac.html#pystac.Item"><code>pystac.Item</code></a> in this <code>ItemCollection</code> includes all the metadata for that scene. <a href="https://github.com/radiantearth/stac-spec/blob/master/item-spec/item-spec.md">STAC Items</a> are GeoJSON features, and so can be loaded by libraries like <a href="http://geopandas.readthedocs.io/">geopandas</a>.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [4]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">geopandas</span>
<span class="n">df</span> <span class="o">=</span> <span class="n">geopandas</span><span class="o">.</span><span class="n">GeoDataFrame</span><span class="o">.</span><span class="n">from_features</span><span class="p">(</span><span class="n">items</span><span class="o">.</span><span class="n">to_dict</span><span class="p">(),</span> <span class="n">crs</span><span class="o">=</span><span class="s2">"epsg:4326"</span><span class="p">)</span>
<span class="n">df</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[4]:</div>
<div class="output_html rendered_html output_subarea output_execute_result"><div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>geometry</th>
<th>datetime</th>
<th>platform</th>
<th>proj:bbox</th>
<th>proj:epsg</th>
<th>description</th>
<th>instruments</th>
<th>eo:cloud_cover</th>
<th>view:off_nadir</th>
<th>landsat:wrs_row</th>
<th>landsat:scene_id</th>
<th>landsat:wrs_path</th>
<th>landsat:wrs_type</th>
<th>view:sun_azimuth</th>
<th>view:sun_elevation</th>
<th>landsat:cloud_cover_land</th>
<th>landsat:processing_level</th>
<th>landsat:collection_number</th>
<th>landsat:collection_category</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>POLYGON ((-122.74802 48.51223, -120.22983 48.0...</td>
<td>2020-12-29T18:55:56.738265Z</td>
<td>landsat-8</td>
<td>[471585.0, 5136885.0, 705015.0, 5373315.0]</td>
<td>32610</td>
<td>Landsat Collection 2 Level-2 Surface Reflectan...</td>
<td>[oli, tirs]</td>
<td>100.00</td>
<td>0</td>
<td>027</td>
<td>LC80460272020364LGN00</td>
<td>046</td>
<td>2</td>
<td>162.253231</td>
<td>17.458298</td>
<td>100.00</td>
<td>L2SP</td>
<td>02</td>
<td>T2</td>
</tr>
<tr>
<th>1</th>
<td>POLYGON ((-124.29833 48.51325, -121.79248 48.0...</td>
<td>2020-12-20T19:02:09.878796Z</td>
<td>landsat-8</td>
<td>[353385.0, 5135085.0, 589215.0, 5374215.0]</td>
<td>32610</td>
<td>Landsat Collection 2 Level-2 Surface Reflectan...</td>
<td>[oli, tirs]</td>
<td>100.00</td>
<td>0</td>
<td>027</td>
<td>LC80470272020355LGN00</td>
<td>047</td>
<td>2</td>
<td>163.360118</td>
<td>17.414441</td>
<td>100.00</td>
<td>L2SP</td>
<td>02</td>
<td>T2</td>
</tr>
<tr>
<th>2</th>
<td>POLYGON ((-122.75189 48.51190, -120.23406 48.0...</td>
<td>2020-12-13T18:56:00.096447Z</td>
<td>landsat-8</td>
<td>[471285.0, 5136885.0, 704715.0, 5373315.0]</td>
<td>32610</td>
<td>Landsat Collection 2 Level-2 Surface Reflectan...</td>
<td>[oli, tirs]</td>
<td>98.73</td>
<td>0</td>
<td>027</td>
<td>LC80460272020348LGN00</td>
<td>046</td>
<td>2</td>
<td>164.126188</td>
<td>17.799744</td>
<td>98.64</td>
<td>L2SP</td>
<td>02</td>
<td>T2</td>
</tr>
<tr>
<th>3</th>
<td>POLYGON ((-124.29534 48.51347, -121.78981 48.0...</td>
<td>2020-12-04T19:02:11.194486Z</td>
<td>landsat-8</td>
<td>[353685.0, 5135085.0, 589515.0, 5374215.0]</td>
<td>32610</td>
<td>Landsat Collection 2 Level-2 Surface Reflectan...</td>
<td>[oli, tirs]</td>
<td>1.55</td>
<td>0</td>
<td>027</td>
<td>LC80470272020339LGN00</td>
<td>047</td>
<td>2</td>
<td>164.914060</td>
<td>18.807230</td>
<td>1.90</td>
<td>L2SP</td>
<td>02</td>
<td>T1</td>
</tr>
</tbody>
</table>
</div></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>We can use the <code>eo</code> extension to sort the items by cloudiness. We'll grab an item with low cloudiness:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [5]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">selected_item</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">items</span><span class="p">,</span> <span class="n">key</span><span class="o">=</span><span class="k">lambda</span> <span class="n">item</span><span class="p">:</span> <span class="n">item</span><span class="o">.</span><span class="n">properties</span><span class="p">[</span><span class="s2">"eo:cloud_cover"</span><span class="p">])</span>
<span class="n">selected_item</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[5]:</div>
<div class="output_text output_subarea output_execute_result">
<pre><Item id=LC08_L2SP_047027_20201204_02_T1></pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Each STAC item has one or more <a href="https://github.com/radiantearth/stac-spec/blob/master/item-spec/item-spec.md#asset-object">Assets</a>, which include links to the actual files.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [6]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">rich.table</span>
<span class="n">table</span> <span class="o">=</span> <span class="n">rich</span><span class="o">.</span><span class="n">table</span><span class="o">.</span><span class="n">Table</span><span class="p">(</span><span class="s2">"Asset Key"</span><span class="p">,</span> <span class="s2">"Descripiption"</span><span class="p">)</span>
<span class="k">for</span> <span class="n">asset_key</span><span class="p">,</span> <span class="n">asset</span> <span class="ow">in</span> <span class="n">selected_item</span><span class="o">.</span><span class="n">assets</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="c1"># print(f"{asset_key:<25} - {asset.title}")</span>
<span class="n">table</span><span class="o">.</span><span class="n">add_row</span><span class="p">(</span><span class="n">asset_key</span><span class="p">,</span> <span class="n">asset</span><span class="o">.</span><span class="n">title</span><span class="p">)</span>
<span class="n">table</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[6]:</div>
<div class="output_html rendered_html output_subarea output_execute_result"><pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace">┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃<span style="font-weight: bold"> Asset Key </span>┃<span style="font-weight: bold"> Descripiption </span>┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│ ANG │ Angle Coefficients File │
│ SR_B1 │ Coastal/Aerosol Band (B1) │
│ SR_B2 │ Blue Band (B2) │
│ SR_B3 │ Green Band (B3) │
│ SR_B4 │ Red Band (B4) │
│ SR_B5 │ Near Infrared Band 0.8 (B5) │
│ SR_B6 │ Short-wave Infrared Band 1.6 (B6) │
│ SR_B7 │ Short-wave Infrared Band 2.2 (B7) │
│ ST_QA │ Surface Temperature Quality Assessment Band │
│ ST_B10 │ Surface Temperature Band (B10) │
│ MTL.txt │ Product Metadata File │
│ MTL.xml │ Product Metadata File (xml) │
│ ST_DRAD │ Downwelled Radiance Band │
│ ST_EMIS │ Emissivity Band │
│ ST_EMSD │ Emissivity Standard Deviation Band │
│ ST_TRAD │ Thermal Radiance Band │
│ ST_URAD │ Upwelled Radiance Band │
│ MTL.json │ Product Metadata File (json) │
│ QA_PIXEL │ Pixel Quality Assessment Band │
│ ST_ATRAN │ Atmospheric Transmittance Band │
│ ST_CDIST │ Cloud Distance Band │
│ QA_RADSAT │ Radiometric Saturation Quality Assessment Band │
│ thumbnail │ Thumbnail image │
│ SR_QA_AEROSOL │ Aerosol Quality Analysis Band │
│ reduced_resolution_browse │ Reduced resolution browse image │
│ tilejson │ TileJSON with default rendering │
│ rendered_preview │ Rendered preview │
└───────────────────────────┴────────────────────────────────────────────────┘
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Here, we'll inspect the <code>rendered_preview</code> asset.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [7]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">selected_item</span><span class="o">.</span><span class="n">assets</span><span class="p">[</span><span class="s2">"rendered_preview"</span><span class="p">]</span><span class="o">.</span><span class="n">to_dict</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[7]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>{'href': 'https://planetarycomputer.microsoft.com/api/data/v1/item/preview.png?collection=landsat-8-c2-l2&item=LC08_L2SP_047027_20201204_02_T1&assets=SR_B4&assets=SR_B3&assets=SR_B2&color_formula=gamma+RGB+2.7%2C+saturation+1.5%2C+sigmoidal+RGB+15+0.55',
'type': 'image/png',
'title': 'Rendered preview',
'rel': 'preview',
'roles': ['overview']}</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [8]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">from</span> <span class="nn">IPython.display</span> <span class="kn">import</span> <span class="n">Image</span>
<span class="n">Image</span><span class="p">(</span><span class="n">url</span><span class="o">=</span><span class="n">selected_item</span><span class="o">.</span><span class="n">assets</span><span class="p">[</span><span class="s2">"rendered_preview"</span><span class="p">]</span><span class="o">.</span><span class="n">href</span><span class="p">,</span> <span class="n">width</span><span class="o">=</span><span class="mi">500</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[8]:</div>
<div class="output_html rendered_html output_subarea output_execute_result"><img src="https://planetarycomputer.microsoft.com/api/data/v1/item/preview.png?collection=landsat-8-c2-l2&item=LC08_L2SP_047027_20201204_02_T1&assets=SR_B4&assets=SR_B3&assets=SR_B2&color_formula=gamma+RGB+2.7%2C+saturation+1.5%2C+sigmoidal+RGB+15+0.55" width="500"/></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>That <code>rendered_preview</code> asset is generated dynamically from the raw data using the Planetary Computer's <a href="http://planetarycomputer.microsoft.com/api/data/v1/">data API</a>. We can access the raw data, stored as Cloud Optimzied GeoTIFFs in Azure Blob Storage, using one of the other assets. That said, we do need to do one more thing before accessing the data. If we simply made a request to the file in blob storage we'd get a 404:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [9]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">requests</span>
<span class="n">url</span> <span class="o">=</span> <span class="n">selected_item</span><span class="o">.</span><span class="n">assets</span><span class="p">[</span><span class="s2">"SR_B2"</span><span class="p">]</span><span class="o">.</span><span class="n">href</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"Accessing"</span><span class="p">,</span> <span class="n">url</span><span class="p">)</span>
<span class="n">response</span> <span class="o">=</span> <span class="n">requests</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">url</span><span class="p">)</span>
<span class="n">response</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre>Accessing https://landsateuwest.blob.core.windows.net/landsat-c2/level-2/standard/oli-tirs/2020/047/027/LC08_L2SP_047027_20201204_20210313_02_T1/LC08_L2SP_047027_20201204_20210313_02_T1_SR_B2.TIF
</pre>
</div>
</div>
<div class="output_area">
<div class="prompt output_prompt">Out[9]:</div>
<div class="output_text output_subarea output_execute_result">
<pre><Response [404]></pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>That's because the Plantary Computer uses Azure Blob Storage <a href="https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview#how-a-shared-access-signature-works">SAS Tokens</a> to enable access to our data, which allows us to provide the data for free to anyone, anywhere while maintaining some control over the amount of egress for datasets.</p>
<p>To get a token for access, you can use the Planetary Computer's <a href="../reference/sas.md">Data Authentication API</a>. You can access that anonymously, or you can provide an API Key for higher rate limits and longer-lived tokens.</p>
<p>You can also use the <a href="https://github.com/microsoft/planetary-computer-sdk-for-python">planetary-computer</a> package to generate tokens and sign asset HREFs for access. You can install via pip with</p>
<pre><code>> pip install planetary-computer</code></pre>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [10]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">planetary_computer</span>
<span class="c1"># PC_SDK_SUBSCRIPTION_KEY</span>
<span class="n">signed_href</span> <span class="o">=</span> <span class="n">planetary_computer</span><span class="o">.</span><span class="n">sign</span><span class="p">(</span><span class="n">selected_item</span><span class="p">)</span><span class="o">.</span><span class="n">assets</span><span class="p">[</span><span class="s2">"SR_B2"</span><span class="p">]</span><span class="o">.</span><span class="n">href</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>We can load up that single COG using libraries like <a href="https://corteva.github.io/rioxarray/html/rioxarray.html">rioxarray</a> or <a href="https://rasterio.readthedocs.io/en/latest/">rasterio</a></p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [11]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># import xarray as xr</span>
<span class="kn">import</span> <span class="nn">rioxarray</span>
<span class="n">ds</span> <span class="o">=</span> <span class="n">rioxarray</span><span class="o">.</span><span class="n">open_rasterio</span><span class="p">(</span><span class="n">signed_href</span><span class="p">,</span> <span class="n">overview_level</span><span class="o">=</span><span class="mi">4</span><span class="p">)</span><span class="o">.</span><span class="n">squeeze</span><span class="p">()</span>
<span class="n">img</span> <span class="o">=</span> <span class="n">ds</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">cmap</span><span class="o">=</span><span class="s2">"Blues"</span><span class="p">,</span> <span class="n">add_colorbar</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">img</span><span class="o">.</span><span class="n">axes</span><span class="o">.</span><span class="n">set_axis_off</span><span class="p">();</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>If you wish to work with multiple STAC items as a datacube, you can use libraries like <a href="https://stackstac.readthedocs.io/">stackstac</a> or <a href="https://odc-stac.readthedocs.io/en/latest/index.html">odc-stac</a>.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [12]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">stackstac</span>
<span class="n">ds</span> <span class="o">=</span> <span class="n">stackstac</span><span class="o">.</span><span class="n">stack</span><span class="p">(</span><span class="n">planetary_computer</span><span class="o">.</span><span class="n">sign</span><span class="p">(</span><span class="n">items</span><span class="p">))</span>
<span class="n">ds</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[12]:</div>
<div class="output_html rendered_html output_subarea output_execute_result"><div><svg style="position: absolute; width: 0; height: 0; overflow: hidden">
<defs>
<symbol id="icon-database" viewBox="0 0 32 32">
<path d="M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z"></path>
<path d="M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z"></path>
<path d="M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z"></path>
</symbol>
<symbol id="icon-file-text2" viewBox="0 0 32 32">
<path d="M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z"></path>
<path d="M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z"></path>
<path d="M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z"></path>
<path d="M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z"></path>
</symbol>
</defs>
</svg>
<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.
*
*/
:root {
--xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));
--xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));
--xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));
--xr-border-color: var(--jp-border-color2, #e0e0e0);
--xr-disabled-color: var(--jp-layout-color3, #bdbdbd);
--xr-background-color: var(--jp-layout-color0, white);
--xr-background-color-row-even: var(--jp-layout-color1, white);
--xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);
}
html[theme=dark],
body.vscode-dark {
--xr-font-color0: rgba(255, 255, 255, 1);
--xr-font-color2: rgba(255, 255, 255, 0.54);
--xr-font-color3: rgba(255, 255, 255, 0.38);
--xr-border-color: #1F1F1F;
--xr-disabled-color: #515151;
--xr-background-color: #111111;
--xr-background-color-row-even: #111111;
--xr-background-color-row-odd: #313131;
}
.xr-wrap {
display: block !important;
min-width: 300px;
max-width: 700px;
}
.xr-text-repr-fallback {
/* fallback to plain text repr when CSS is not injected (untrusted notebook) */
display: none;
}
.xr-header {
padding-top: 6px;
padding-bottom: 6px;
margin-bottom: 4px;
border-bottom: solid 1px var(--xr-border-color);
}
.xr-header > div,
.xr-header > ul {
display: inline;
margin-top: 0;
margin-bottom: 0;
}
.xr-obj-type,
.xr-array-name {
margin-left: 2px;
margin-right: 10px;
}
.xr-obj-type {
color: var(--xr-font-color2);
}
.xr-sections {
padding-left: 0 !important;
display: grid;
grid-template-columns: 150px auto auto 1fr 20px 20px;
}
.xr-section-item {
display: contents;
}
.xr-section-item input {
display: none;
}
.xr-section-item input + label {
color: var(--xr-disabled-color);
}
.xr-section-item input:enabled + label {
cursor: pointer;
color: var(--xr-font-color2);
}
.xr-section-item input:enabled + label:hover {
color: var(--xr-font-color0);
}
.xr-section-summary {
grid-column: 1;
color: var(--xr-font-color2);
font-weight: 500;
}
.xr-section-summary > span {
display: inline-block;
padding-left: 0.5em;
}
.xr-section-summary-in:disabled + label {
color: var(--xr-font-color2);
}
.xr-section-summary-in + label:before {
display: inline-block;
content: '►';
font-size: 11px;
width: 15px;
text-align: center;
}
.xr-section-summary-in:disabled + label:before {
color: var(--xr-disabled-color);
}
.xr-section-summary-in:checked + label:before {
content: '▼';
}
.xr-section-summary-in:checked + label > span {
display: none;
}
.xr-section-summary,
.xr-section-inline-details {
padding-top: 4px;
padding-bottom: 4px;
}
.xr-section-inline-details {
grid-column: 2 / -1;
}
.xr-section-details {
display: none;
grid-column: 1 / -1;
margin-bottom: 5px;
}
.xr-section-summary-in:checked ~ .xr-section-details {
display: contents;
}
.xr-array-wrap {
grid-column: 1 / -1;
display: grid;
grid-template-columns: 20px auto;
}
.xr-array-wrap > label {
grid-column: 1;
vertical-align: top;
}
.xr-preview {
color: var(--xr-font-color3);
}
.xr-array-preview,
.xr-array-data {
padding: 0 5px !important;
grid-column: 2;
}
.xr-array-data,
.xr-array-in:checked ~ .xr-array-preview {
display: none;
}
.xr-array-in:checked ~ .xr-array-data,
.xr-array-preview {
display: inline-block;
}
.xr-dim-list {
display: inline-block !important;
list-style: none;
padding: 0 !important;
margin: 0;
}
.xr-dim-list li {
display: inline-block;
padding: 0;
margin: 0;
}
.xr-dim-list:before {
content: '(';
}
.xr-dim-list:after {
content: ')';
}
.xr-dim-list li:not(:last-child):after {
content: ',';
padding-right: 5px;
}
.xr-has-index {
font-weight: bold;
}
.xr-var-list,
.xr-var-item {
display: contents;
}
.xr-var-item > div,
.xr-var-item label,
.xr-var-item > .xr-var-name span {
background-color: var(--xr-background-color-row-even);
margin-bottom: 0;
}
.xr-var-item > .xr-var-name:hover span {
padding-right: 5px;
}
.xr-var-list > li:nth-child(odd) > div,
.xr-var-list > li:nth-child(odd) > label,
.xr-var-list > li:nth-child(odd) > .xr-var-name span {
background-color: var(--xr-background-color-row-odd);
}
.xr-var-name {
grid-column: 1;
}
.xr-var-dims {
grid-column: 2;
}
.xr-var-dtype {
grid-column: 3;
text-align: right;
color: var(--xr-font-color2);
}
.xr-var-preview {
grid-column: 4;
}
.xr-var-name,
.xr-var-dims,
.xr-var-dtype,
.xr-preview,
.xr-attrs dt {
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
padding-right: 10px;
}
.xr-var-name:hover,
.xr-var-dims:hover,
.xr-var-dtype:hover,
.xr-attrs dt:hover {
overflow: visible;
width: auto;
z-index: 1;
}
.xr-var-attrs,
.xr-var-data {
display: none;
background-color: var(--xr-background-color) !important;
padding-bottom: 5px !important;
}
.xr-var-attrs-in:checked ~ .xr-var-attrs,
.xr-var-data-in:checked ~ .xr-var-data {
display: block;
}
.xr-var-data > table {
float: right;
}
.xr-var-name span,
.xr-var-data,
.xr-attrs {
padding-left: 25px !important;
}
.xr-attrs,
.xr-var-attrs,
.xr-var-data {
grid-column: 1 / -1;
}
dl.xr-attrs {
padding: 0;
margin: 0;
display: grid;
grid-template-columns: 125px auto;
}
.xr-attrs dt,
.xr-attrs dd {
padding: 0;
margin: 0;
float: left;
padding-right: 10px;
width: auto;
}
.xr-attrs dt {