forked from balancer/bal-mining-scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbal-mining.py
485 lines (381 loc) · 15.8 KB
/
bal-mining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
#!/usr/bin/env python
# coding: utf-8
# In[ ]:
REALTIME_ESTIMATOR = True
WEEK = 59
# In[ ]:
from google.cloud import bigquery
from google.cloud import bigquery_storage
import warnings
import requests
import time
from web3 import Web3
import pandas as pd
from urllib.request import urlopen
import json
import os
# In[ ]:
# constants
week_1_start_ts = 1590969600
week_end_timestamp = week_1_start_ts + WEEK * 7 * 24 * 60 * 60
week_start_timestamp = week_end_timestamp - 7 * 24 * 60 * 60
BAL_addresses = {
1: '0xba100000625a3754423978a60c9317c58a424e3d',
137: '0x9a71012b13ca4d3d0cdc72a177df3ef03b0e76a3'
}
networks = {
1: 'ethereum',
137: 'polygon'
}
CLAIM_PRECISION = 12 # leave out of results addresses that mined less than CLAIM_THRESHOLD
CLAIM_THRESHOLD = 10**(-CLAIM_PRECISION)
reports_dir = f'reports/{WEEK}'
if not os.path.exists(reports_dir):
os.mkdir(reports_dir)
def get_export_filename(network, token):
return f'{reports_dir}/__{network}_{token}.json'
# In[ ]:
if REALTIME_ESTIMATOR:
warnings.warn('Running realtime estimator')
from urllib.request import urlopen
import json
project_id = os.environ['GCP_PROJECT']
try:
url = 'https://raw.githubusercontent.com/balancer-labs/bal-mining-scripts/master/reports/_current.json'
jsonurl = urlopen(url)
claims = json.loads(jsonurl.read())
claimable_weeks = [20+int(w) for w in claims.keys()]
most_recent_week = max(claimable_weeks)
# delete the estimates for the most recent published week, since now there's an official value available on IPFS
sql = f'''
DELETE FROM {project_id}.bal_mining_estimates.lp_estimates_multitoken
WHERE week = {most_recent_week}
'''
client = bigquery.Client()
query = client.query(sql)
query.result()
except:
pass
from datetime import datetime
week_1_start = '01/06/2020 00:00:00 UTC'
week_1_start = datetime.strptime(week_1_start, '%d/%m/%Y %H:%M:%S %Z')
WEEK = int(1 + (datetime.utcnow() - week_1_start).days/7) # this is what week we're actually in
week_end_timestamp = week_1_start_ts + WEEK * 7 * 24 * 60 * 60
week_start_timestamp = week_end_timestamp - 7 * 24 * 60 * 60
week_end_timestamp = int(datetime.utcnow().timestamp())
week_passed = (week_end_timestamp - week_start_timestamp)/(7*24*3600)
# In[ ]:
# get addresses that redirect
if REALTIME_ESTIMATOR:
url = 'https://raw.githubusercontent.com/balancer-labs/bal-mining-scripts/master/config/redirect.json'
jsonurl = urlopen(url)
redirects = json.loads(jsonurl.read())
else:
redirects = json.load(open('config/redirect.json'))
# In[ ]:
def get_bpt_supply_gbq(pools_addresses,
network):
network_blocks_table = {
1: 'bigquery-public-data.crypto_ethereum.blocks',
137: 'public-data-finance.crypto_polygon.blocks',
}
bpt_balances_table = {
1: 'blockchain-etl.ethereum_balancer.view_token_balances_subset',
137: 'blockchain-etl.polygon_balancer.view_bpt_balances',
}
sql = '''
DECLARE pool_addresses ARRAY<STRING>;
SET pool_addresses = [
'{0}'
];
SELECT block_number, token_address, SUM(balance)/1e18 AS supply
FROM `{1}`
WHERE token_address IN UNNEST(pool_addresses)
AND address <> '0x0000000000000000000000000000000000000000'
AND balance > 0
AND block_number = (SELECT MAX(number) FROM `{2}`)
GROUP BY block_number, token_address
'''.format(
'\',\''.join(pools_addresses),
bpt_balances_table[network],
network_blocks_table[network]
)
# print(sql)
client = bigquery.Client()
bqstorageclient = bigquery_storage.BigQueryReadClient()
BPT_supply_df = (
client.query(sql)
.result()
.to_dataframe(bqstorage_client=bqstorageclient)
)
return BPT_supply_df
# In[ ]:
def get_bpt_supply_subgraph(pools_addresses,
time_travel_block,
network):
endpoint = {
1: 'https://api.thegraph.com/subgraphs/name/balancer-labs/balancer-v2',
137: 'https://api.thegraph.com/subgraphs/name/balancer-labs/balancer-polygon-v2',
}
query = '''
{
pools(
block: {number: {}},
where:{address_in:
["{}"]
}
) {
address
totalShares
}
}
'''.replace('{','{{').replace('}','}}').replace('{{}}','{}').format(
time_travel_block,
'","'.join(pools_addresses)
)
r = requests.post(endpoint[network], json = {'query':query})
p = json.loads(r.content)['data']['pools']
BPT_supply_df = pd.DataFrame(p)
BPT_supply_df['totalShares'] = BPT_supply_df['totalShares'].astype(float)
return BPT_supply_df
# In[ ]:
def v2_liquidity_mining(week,
pools_addresses_and_tokens_earned,
network):
network_name = networks[network]
network_blocks_table = {
1: 'bigquery-public-data.crypto_ethereum.blocks',
137: 'public-data-finance.crypto_polygon.blocks',
}
bpt_balances_table = {
1: 'blockchain-etl.ethereum_balancer.view_token_balances_subset',
137: 'blockchain-etl.polygon_balancer.view_bpt_balances',
}
with open('src/liquidity_mining_V2.sql','r') as file:
sql = (
file
.read()
.format(
week,
'\',\''.join(pools_addresses_and_tokens_earned.index),
network_blocks_table[network],
bpt_balances_table[network]
)
)
print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' - Querying Bigquery for the V2 LPs...')
client = bigquery.Client()
bqstorageclient = bigquery_storage.BigQueryReadClient()
BPT_share_df = (
client.query(sql)
.result()
.to_dataframe(bqstorage_client=bqstorageclient)
)
print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' - Done!')
BPT_share_df['miner'] = BPT_share_df['miner'].apply(Web3.toChecksumAddress)
BPT_share_df.set_index(['pool_address','miner'], inplace=True)
bal_mined_v2 = pools_addresses_and_tokens_earned.mul(BPT_share_df['tw_share'], axis=0)
if REALTIME_ESTIMATOR:
bal_mined_v2 *= week_passed
miner_export = bal_mined_v2.groupby('miner').sum()
for token in miner_export.columns:
miner_export_v2 = miner_export[token].dropna()
print(f'\n{miner_export_v2.sum()} {token} mined on {network_name}')
v2_miners = pd.DataFrame(miner_export_v2).reset_index()
n = len(v2_miners['miner'][v2_miners['miner'].isin(redirects.keys())])
print(f'Redirect: {n} redirectors found')
v2_miners['miner'] = v2_miners['miner'].apply(lambda x: redirects.get(x,x))
miner_export_v2 = v2_miners.groupby('miner').sum()[token]
if not REALTIME_ESTIMATOR:
filename = get_export_filename(network_name, token)
(
miner_export_v2[miner_export_v2>=CLAIM_THRESHOLD]
.apply(
lambda x: format(
x,
f'.{CLAIM_PRECISION}f'
)
)
.to_json(filename, indent=4)
)
return miner_export
# In[ ]:
# V2 allocation
V2_LM_ALLOCATION_URL = 'https://raw.githubusercontent.com/balancer-labs/frontend-v2/master/src/lib/utils/liquidityMining/MultiTokenLiquidityMining.json'
jsonurl = urlopen(V2_LM_ALLOCATION_URL)
try:
V2_ALLOCATION_THIS_WEEK = json.loads(jsonurl.read())[f'week_{WEEK}']
except KeyError:
V2_ALLOCATION_THIS_WEEK = {}
full_export = pd.DataFrame()
for chain in V2_ALLOCATION_THIS_WEEK:
print('------------------------------------------------------------------------------')
print('\nChain: {}'.format(chain['chainId']))
df = pd.DataFrame()
for pool,rewards in chain['pools'].items():
for r in rewards:
pool_address = pool[:42].lower()
df.loc[pool_address,r['tokenAddress']] = r['amount']
df.fillna(0, inplace=True)
df.index.name = 'pool_address'
print('BAL to be mined on this chain: {}'.format(df[BAL_addresses[chain['chainId']]].sum()))
if not REALTIME_ESTIMATOR:
print('Google BigQuery sanity check - BPT supply:')
supply_gbq = get_bpt_supply_gbq(df.index, chain['chainId'])
supply_gbq.set_index('token_address', inplace=True)
supply_gbq.index.name = 'pool_address'
gbq_block_number = int(supply_gbq.iloc[0]['block_number'])
supply_subgraph = get_bpt_supply_subgraph(df.index, gbq_block_number, chain['chainId'])
supply_subgraph.set_index('address', inplace=True)
supply_subgraph.index.name = 'pool_address'
all_good = True
for i,r in supply_subgraph.join(supply_gbq).iterrows():
error = (r.supply / r.totalShares)
if abs(error-1) > 1e-3:
all_good = False
print(f'{i} : {error:.3f}')
if all_good:
print(' All good\n')
else:
print('other than that, all good\n')
chain_export = v2_liquidity_mining(WEEK, df, chain['chainId'])
chain_export['chain_id'] = chain['chainId']
full_export = full_export.append(chain_export)
# In[ ]:
if not REALTIME_ESTIMATOR:
mainnet_BAL = pd.read_json(
get_export_filename(networks[1], BAL_addresses[1]),
typ='series',
convert_dates=False)
polygon_BAL = pd.read_json(
get_export_filename(networks[137], BAL_addresses[137]),
typ='series',
convert_dates=False)
mined_BAL = mainnet_BAL.add(polygon_BAL, fill_value=0)
filename = '/_totalsLiquidityMining.json'
(
mined_BAL[mined_BAL>=CLAIM_THRESHOLD]
.apply(
lambda x: format(
x,
f'.{CLAIM_PRECISION}f'
)
)
.to_json(reports_dir+filename, indent=4)
)
print('Total BAL mined: {}'.format(mined_BAL.sum()))
# In[ ]:
full_export_bkp = full_export.copy()
# In[ ]:
full_export = (
full_export_bkp
.set_index('chain_id', append=True)
.melt(
var_name = 'token_address',
value_name = 'earned',
ignore_index=False)
.reset_index()
)
full_export.rename(columns={'miner':'address'}, inplace=True)
full_export.set_index(['address','chain_id','token_address'], inplace=True)
full_export.dropna(inplace=True)
full_export['earned'] = full_export['earned'].apply(lambda x: format(x, f'.{18}f'))
# # Update real time estimates in GBQ
# In[ ]:
if REALTIME_ESTIMATOR:
# zero previous week's velocity
sql = f'''
UPDATE {project_id}.bal_mining_estimates.lp_estimates_multitoken
SET velocity = '0'
WHERE week = {WEEK-1}
'''
client = bigquery.Client()
query = client.query(sql)
query.result();
try:
sql = f'select * from bal_mining_estimates.lp_estimates_multitoken WHERE week = {WEEK}'
prev_estimate = pd.read_gbq(sql,
project_id=os.environ['GCP_PROJECT'])
prev_estimate.set_index(['address','chain_id','token_address'], inplace=True)
prev_estimate_timestamp = prev_estimate.iloc[0]['timestamp']
except:
prev_estimate_timestamp = 0
if prev_estimate_timestamp < week_start_timestamp:
#previous estimate is last week's; compute velocity between from week_start_timestamp and week_end_timestamp
delta_t = (week_end_timestamp - week_start_timestamp)
earned = full_export['earned'].astype(float)
full_export['velocity'] = (earned/delta_t).apply(lambda x: format(x, f'.{18}f'))
else:
#compute velocity based on increase and time passed
delta_t = (week_end_timestamp - prev_estimate_timestamp)
diff_estimate = full_export.join(prev_estimate, rsuffix='_prev').fillna(0)
cur_earned = diff_estimate['earned'].astype(float)
prev_earned = diff_estimate['earned_prev'].astype(float)
full_export['velocity'] = ((cur_earned-prev_earned)/delta_t).apply(lambda x: format(x, f'.{18}f'))
full_export['timestamp'] = week_end_timestamp
full_export['week'] = WEEK
full_export.reset_index(inplace=True)
full_export.to_gbq('bal_mining_estimates.lp_estimates_multitoken_staging',
project_id=os.environ['GCP_PROJECT'],
if_exists='replace')
# merge staging into prod
sql = '''
MERGE bal_mining_estimates.lp_estimates_multitoken prod
USING bal_mining_estimates.lp_estimates_multitoken_staging stage
ON prod.address = stage.address
AND prod.week = stage.week
AND prod.chain_id = stage.chain_id
AND prod.token_address = stage.token_address
WHEN MATCHED THEN
UPDATE SET
earned = stage.earned,
velocity = stage.velocity,
timestamp = stage.timestamp
WHEN NOT MATCHED BY TARGET THEN
INSERT (address, week, chain_id, token_address, earned, velocity, timestamp)
VALUES (address, week, chain_id, token_address, earned, velocity, timestamp)
'''
client = bigquery.Client()
query = client.query(sql)
query.result()
# # Gas Reimbursement Program
# In[ ]:
from src.bal4gas_V1 import compute_bal_for_gas as compute_bal_for_gas_V1
from src.bal4gas_V2 import compute_bal_for_gas as compute_bal_for_gas_V2
if not REALTIME_ESTIMATOR:
allowlist_part1 = pd.read_json(f'https://raw.githubusercontent.com/balancer-labs/assets/master/lists/eligible.json').index.values
allowlist_part2 = pd.read_json(
f'https://raw.githubusercontent.com/balancer-labs/assets/master/lists/ui-not-eligible.json',
orient='index').loc['homestead'].values
allowlist = allowlist_part1.tolist() + allowlist_part2.tolist()
gas_allowlist = pd.Series(allowlist).str.lower().tolist()
gas_allowlist.append('0xeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee')
v1 = compute_bal_for_gas_V1(week_start_timestamp, week_end_timestamp, gas_allowlist, plot=True, verbose=True)
gas_allowlist.remove('0xeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee')
gas_allowlist.append('0x0000000000000000000000000000000000000000')
v2 = compute_bal_for_gas_V2(week_start_timestamp, week_end_timestamp, gas_allowlist, plot=True, verbose=True)
merge = v1.append(v2)
totals_bal4gas = merge[['address','bal_reimbursement']].groupby('address').sum()['bal_reimbursement']
totals_bal4gas[totals_bal4gas>=CLAIM_THRESHOLD].apply( lambda x: format(x, f'.{CLAIM_PRECISION}f')).to_json(reports_dir+'/_gasReimbursement.json',
indent=4)
# combine BAL from liquidity mining and gas reimbursements
totals = mainnet_BAL.add(totals_bal4gas, fill_value=0)
totals[totals>=CLAIM_THRESHOLD].apply( lambda x: format(x, f'.{CLAIM_PRECISION}f')).to_json(reports_dir+'/_totals.json',
indent=4)
# In[ ]:
if not REALTIME_ESTIMATOR:
print('Final Check Totals BAL')
_ethereum = pd.read_json(
get_export_filename(networks[1], BAL_addresses[1]),
typ='series',
convert_dates=False).sum()
_polygon = pd.read_json(
get_export_filename(networks[137], BAL_addresses[137]),
typ='series',
convert_dates=False).sum()
_lm_both = pd.read_json(reports_dir+'/_totalsLiquidityMining.json', orient='index').sum().values[0]
_claim = pd.read_json(reports_dir+'/_totals.json', orient='index').sum().values[0]
print(f'Liquidity Mining Ethereum: {format(_ethereum, f".{CLAIM_PRECISION}f")}')
print(f'Liquidity Mining Polygon: {format(_polygon, f".{CLAIM_PRECISION}f")}')
print(f'Liquidity Mining Both: {format(_lm_both, f".{CLAIM_PRECISION}f")}')
print(f'Gas Reimbursement week {WEEK}: {format(_claim-_ethereum, f".{CLAIM_PRECISION}f")}')
print(f'Claims: {format(_claim, f".{CLAIM_PRECISION}f")}')