diff --git a/QEfficient/base/pytorch_transforms.py b/QEfficient/base/pytorch_transforms.py index abd19ed35..6bb481dc4 100644 --- a/QEfficient/base/pytorch_transforms.py +++ b/QEfficient/base/pytorch_transforms.py @@ -107,6 +107,9 @@ def apply(cls, model: nn.Module) -> Tuple[nn.Module, bool]: ): for orig_method_name, mapped_method in repl_method_map.items(): setattr(module, orig_method_name, MethodType(mapped_method, module)) + # Handling the __init__ calls in the models + if hasattr(module, "__qeff_init__"): + module.__qeff_init__() transformed = True return model, transformed diff --git a/QEfficient/transformers/models/modeling_auto.py b/QEfficient/transformers/models/modeling_auto.py index 6b5deb8db..0e5531c31 100644 --- a/QEfficient/transformers/models/modeling_auto.py +++ b/QEfficient/transformers/models/modeling_auto.py @@ -1291,6 +1291,7 @@ class QEFFAutoModelForCausalLM(QEFFBaseModel): FP8DeQuantLinearToLinearTransform, CustomOpsTransform, KVCacheTransform, + KVCacheModuleMethodMapperTransform, ] _onnx_transforms = [FP16ClipTransform, SplitTensorsTransform] diff --git a/QEfficient/transformers/models/plamo/__init__.py b/QEfficient/transformers/models/plamo/__init__.py new file mode 100644 index 000000000..72ba36c8a --- /dev/null +++ b/QEfficient/transformers/models/plamo/__init__.py @@ -0,0 +1,6 @@ +# ----------------------------------------------------------------------------- +# +# Copyright (c) 2025 Qualcomm Innovation Center, Inc. All rights reserved. +# SPDX-License-Identifier: BSD-3-Clause +# +# ----------------------------------------------------------------------------- diff --git a/QEfficient/transformers/models/plamo/modeling_plamo.py b/QEfficient/transformers/models/plamo/modeling_plamo.py new file mode 100644 index 000000000..17b3270c6 --- /dev/null +++ b/QEfficient/transformers/models/plamo/modeling_plamo.py @@ -0,0 +1,536 @@ +# ----------------------------------------------------------------------------- +# +# Copyright (c) 2025 Qualcomm Innovation Center, Inc. All rights reserved. +# SPDX-License-Identifier: BSD-3-Clause +# +# ----------------------------------------------------------------------------- + +import math +from typing import Any, Callable, Dict, List, Optional, Tuple, Union + +import torch +from torch import nn +from transformers import PretrainedConfig, PreTrainedModel +from transformers.cache_utils import Cache +from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast + +from QEfficient.customop.rms_norm import CustomRMSNorm +from QEfficient.transformers.cache_utils import QEffDynamicCache +from QEfficient.transformers.modeling_attn_mask_utils import _create_causal_mask + + +class QEffPlamoConfig(PretrainedConfig): # type: ignore + model_type: str = "plamo" + + def __init__( + self, + vocab_size: int = 32000, + hidden_size: int = 4096, + intermediate_size: int = 13312, + num_hidden_layers: int = 32, + num_attention_heads: int = 32, + num_key_value_heads: Optional[int] = None, + max_position_embeddings: int = 2048, + initializer_range: float = 0.02, + rms_norm_eps: float = 1e-6, + use_cache: bool = True, + tokenizer_class: str = "PlamoTokenizer", + pad_token_id: Optional[int] = None, + bos_token_id: int = 1, + eos_token_id: int = 2, + n_shared_head: int = 8, + tie_word_embeddings: bool = False, + **kwargs: Any, + ) -> None: + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + + # for backward compatibility + if num_key_value_heads is None: + num_key_value_heads = num_attention_heads + + self.num_key_value_heads = num_key_value_heads + self.initializer_range = initializer_range + self.rms_norm_eps = rms_norm_eps + self.use_cache = use_cache + + self.n_shared_head = n_shared_head + + super().__init__( + tokenizer_class=tokenizer_class, + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + tie_word_embeddings=tie_word_embeddings, + **kwargs, + ) + + +class QEffPlamoRotaryEmbedding(torch.nn.Module): + def _set_cos_sin_cache(self, seq_len: int, device: Any, dtype: Any) -> None: + self.max_seq_len_cached = seq_len + t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) # type: ignore + + freqs = torch.einsum("i,j->ij", t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False) + + def forward(self, x: torch.Tensor, seq_len: int) -> Tuple[torch.Tensor, torch.Tensor]: + # x: [bs, num_attention_heads, seq_len, head_size] + if seq_len > self.max_seq_len_cached: + self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) + + return ( + self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), # type: ignore + self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), # type: ignore + ) + + +def _rotate_half(x: torch.Tensor) -> torch.Tensor: + """Rotates half the hidden dims of the input.""" + x1 = x[..., : x.shape[-1] // 2] + x2 = x[..., x.shape[-1] // 2 :] + return torch.cat((-x2, x1), dim=-1) + + +def _rotary_pos_emb(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, position_ids: torch.Tensor) -> torch.Tensor: + # The first two dimensions of cos and sin are always 1, so we can `squeeze` them. + cos = cos.squeeze(1).squeeze(0) # [seq_len, dim] + sin = sin.squeeze(1).squeeze(0) # [seq_len, dim] + cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] + sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] + x_embed = (x * cos) + (_rotate_half(x) * sin) + return x_embed + + +class QEffPlamoRMSNorm(nn.Module): + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + input_dtype = hidden_states.dtype + hidden_states = hidden_states.to(torch.float32) + variance = hidden_states.pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + return self.weight * hidden_states.to(input_dtype) + + +def eager_attention_forward( + module: nn.Module, + query: torch.Tensor, + key: torch.Tensor, + value: torch.Tensor, + attention_mask: Optional[torch.Tensor], + **kwargs, +): + attn_weights = torch.matmul(query, key.transpose(2, 3)) / math.sqrt(module.qk_dim) + + if attention_mask is not None: + attn_weights = torch.where(attention_mask, torch.tensor(-10000.0, dtype=torch.float32), attn_weights) + + # upcast attention to fp32 + attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) + attn_output = torch.matmul(attn_weights, value) + attn_output = attn_output.transpose(1, 2).contiguous() + + return attn_output, attn_weights + + +class QEffPlamoAttention(torch.nn.Module): + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + batch_index: Optional[torch.Tensor] = None, + layer_idx: Optional[int] = None, + cache_position: Optional[torch.LongTensor] = None, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]: + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states).view(bsz, q_len, self.q_num_heads, self.qk_dim).transpose(1, 2) + key_states = self.k_proj(hidden_states).view(bsz, q_len, self.k_num_heads, self.qk_dim).transpose(1, 2) + value_states = self.v_proj(hidden_states).view(bsz, q_len, self.v_num_heads, self.v_dim).transpose(1, 2) + + def _expand_kv(t: torch.Tensor, repeat: int, target: int) -> torch.Tensor: + return t.repeat(1, repeat, 1, 1)[:, :target] + + # expand shared kv + assert self.k_num_heads == self.v_num_heads + key_states = _expand_kv(key_states, self.config.n_shared_head, self.q_num_heads) + value_states = _expand_kv(value_states, self.config.n_shared_head, self.q_num_heads) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + if layer_idx is None: + raise ValueError( + f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " + "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " + "with a layer index." + ) + kv_seq_len = past_key_value.get_usable_length(kv_seq_len, layer_idx) + + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + # query_states, key_states = qeff_apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) + query_states = _rotary_pos_emb(query_states, cos, sin, position_ids) + key_states = _rotary_pos_emb(key_states, cos, sin, position_ids) + + if past_key_value is not None: + # sin and cos are specific to RoPE models; cache_position needed for the static cache + cache_kwargs = {"sin": sin, "cos": cos, "batch_index": batch_index, "position_ids": position_ids} + key_states, value_states = past_key_value.update(key_states, value_states, layer_idx, cache_kwargs) + + attention_interface: Callable = eager_attention_forward + + attn_output, attn_weights = attention_interface( + self, + query_states, + key_states, + value_states, + attention_mask, + **kwargs, + ) + + attn_output = attn_output.reshape(bsz, q_len, -1) + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + +class MLP(nn.Module): + def forward(self, x: torch.Tensor) -> torch.Tensor: + return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) # type: ignore + + +class QEffPlamoDecoderLayer(torch.nn.Module): + def __qeff_init__( + self, + ): + self.norm = CustomRMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = False, + batch_index: Optional[torch.LongTensor] = None, + cache_position: Optional[torch.LongTensor] = None, + layer_idx: Optional[int] = None, + ) -> Tuple[Any, ...]: + # from LlamaDecoder + residual = hidden_states + + hidden_states = self.norm(hidden_states) + + # Self Attention + hidden_states_sa, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + batch_index=batch_index, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + layer_idx=layer_idx, + ) + + # Fully Connected + hidden_states_mlp = self.mlp(hidden_states) + + # Residual + hidden_states = residual + hidden_states_sa + hidden_states_mlp + + outputs: Any = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights,) + + if use_cache: + outputs += (present_key_value,) + + return outputs # type: ignore + + +class QEffPlamoDecoder(torch.nn.Module): + def forward( + self, + hidden_states: torch.Tensor, + position_ids: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + output_hidden_states: Optional[bool] = False, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = False, + batch_index: Optional[torch.LongTensor] = None, + cache_position: Optional[torch.LongTensor] = None, + ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: + all_hidden_states: Optional[Tuple[torch.Tensor, ...]] = () if output_hidden_states else None + all_self_attns: Optional[Tuple[torch.Tensor, ...]] = () if output_attentions else None + next_decoder_cache: Optional[Tuple[torch.Tensor, ...]] = () if use_cache else None + hidden_states = hidden_states + + for idx, decoder_layer in enumerate(self.layers): + if output_hidden_states: + assert all_hidden_states is not None + all_hidden_states += (hidden_states,) + + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_values, + output_attentions=output_attentions, + use_cache=use_cache, + layer_idx=idx, + cache_position=cache_position, + ) + + hidden_states = layer_outputs[0] + + if use_cache: + cache = layer_outputs[2 if output_attentions else 1] + assert cache is not None + assert next_decoder_cache is not None + next_decoder_cache = cache + + if output_attentions: + assert layer_outputs[1] is not None + assert all_self_attns is not None + all_self_attns += (layer_outputs[1],) + + return (hidden_states, all_hidden_states, all_self_attns, next_decoder_cache) + + +class QEffPlamoPreTrainedModel(PreTrainedModel): # type: ignore + config_class = QEffPlamoConfig + _no_split_modules: List[str] + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["PlamoDecoderLayer"] + _skip_keys_device_placement = "past_key_values" + _keys_to_ignore_on_load_unexpected = [r"decoder\.version"] + + def _init_weights(self, module: torch.nn.Module) -> None: + std = self.config.initializer_range + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + def _set_gradient_checkpointing(self, module: torch.nn.Module, value: bool = False) -> None: + module.gradient_checkpointing = value # type: ignore + + +class QEffPlamoModel(QEffPlamoPreTrainedModel): + def __qeff_init__( + self, + ): + self.norm = CustomRMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps) + + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, + batch_index: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, + ) -> Union[Tuple, BaseModelOutputWithPast]: + assert input_ids is not None + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # retrieve input_ids and inputs_embeds + if (input_ids is None) ^ (inputs_embeds is not None): + raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + # kept for BC (non `Cache` `past_key_values` inputs) + return_legacy_cache = False + if use_cache and not isinstance(past_key_values, Cache): + return_legacy_cache = True + past_key_values = QEffDynamicCache() + + if cache_position is None: + past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 + cache_position = torch.arange( + past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device + ) + + if position_ids is None: + position_ids = cache_position.unsqueeze(0) + + past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 + attention_mask = _create_causal_mask(position_ids=position_ids, target_length=past_seen_tokens) + + hidden_states = inputs_embeds + + if self.gradient_checkpointing and self.training: + if use_cache: + use_cache = False + + # decoder layers + layer_outputs = self.layers( + hidden_states=hidden_states, + position_ids=position_ids, + attention_mask=attention_mask, + output_hidden_states=output_hidden_states, + past_key_values=past_key_values, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + batch_index=batch_index, + ) + + hidden_states = layer_outputs[0] + all_hidden_states = layer_outputs[1] + all_self_attns = layer_outputs[2] + next_decoder_cache = layer_outputs[3] + + hidden_states = self.norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + assert all_hidden_states is not None + all_hidden_states += (hidden_states,) + + next_cache = next_decoder_cache if use_cache else None + if not return_dict: + return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) + + if return_legacy_cache: + next_cache = next_cache.to_legacy_cache() + + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + ) + + +class QEffPlamoForCausalLM(QEffPlamoPreTrainedModel): + def forward( # type: ignore + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, + batch_index: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + assert input_ids is not None + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + batch_index=batch_index, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + cache_position=cache_position, + ) + + # Cast to INT32 to avoid issue while running in ONNXRT + logit_index = position_ids.to(torch.int32).argmax(1, keepdim=True) + hidden_states = outputs[0][torch.arange(position_ids.shape[0]).view(-1, 1), logit_index] + + logits = self.lm_head(hidden_states) + logits = logits.float() + + return CausalLMOutputWithPast( + loss=None, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, + input_ids: torch.Tensor, + past_key_values: Optional[Cache] = None, + attention_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + **kwargs: Any, + ) -> Dict[str, Any]: + if past_key_values: + input_ids = input_ids[:, -1:] + + position_ids = kwargs.get("position_ids", None) + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -1].unsqueeze(-1) + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs: Dict[str, Any] = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "position_ids": position_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + } + ) + return model_inputs + + @staticmethod + def _reorder_cache(past_key_values: List[torch.FloatTensor], beam_idx: int) -> Tuple[Any, ...]: + reordered_past: Tuple[Any, ...] = () + for layer_past in past_key_values: + reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) + return reordered_past diff --git a/QEfficient/transformers/models/pytorch_transforms.py b/QEfficient/transformers/models/pytorch_transforms.py index 333c734ba..3d8eac97a 100644 --- a/QEfficient/transformers/models/pytorch_transforms.py +++ b/QEfficient/transformers/models/pytorch_transforms.py @@ -245,6 +245,15 @@ QEffPhi3ForCausalLM, QEffPhi3Model, ) +from QEfficient.transformers.models.plamo.modeling_plamo import ( + QEffPlamoAttention, + QEffPlamoDecoder, + QEffPlamoDecoderLayer, + QEffPlamoForCausalLM, + QEffPlamoModel, + QEffPlamoRMSNorm, + QEffPlamoRotaryEmbedding, +) from QEfficient.transformers.models.qwen2.modeling_qwen2 import ( QEffQwen2Attention, QEffQwen2DecoderLayer, @@ -485,5 +494,12 @@ class KVCacheModuleMethodMapperTransform(ModuleMethodMapperTransform): "get_qeff_language_decoder": QEffInternVLModel.get_qeff_language_decoder, }, "InternVisionEmbeddings": {"forward": QEffInternVisionEmbeddings.forward}, + "PlamoForCausalLM": {"forward": QEffPlamoForCausalLM.forward}, + "PlamoModel": {"forward": QEffPlamoModel.forward}, + "PlamoDecoder": {"forward": QEffPlamoDecoder.forward}, + "PlamoDecoderLayer": {"forward": QEffPlamoDecoderLayer.forward}, + "Attention": {"forward": QEffPlamoAttention.forward}, + "RMSNorm": {"forward": QEffPlamoRMSNorm.forward}, + "RotaryEmbedding": {"forward": QEffPlamoRotaryEmbedding.forward}, } _match_class_replace_method = {} diff --git a/README.md b/README.md index 685db6fe7..de12aee5b 100644 --- a/README.md +++ b/README.md @@ -20,6 +20,7 @@ - [04/2025] [Granite 3.0 and 3.1 Language MOE Models] (https://huggingface.co/ibm-granite/granite-3.0-1b-a400m-base) - [09/2024] [AWQ](https://arxiv.org/abs/2306.00978)/[GPTQ](https://arxiv.org/abs/2210.17323) 4-bit quantized models are supported
- [09/2024] Now we support [PEFT](https://huggingface.co/docs/peft/index) models +- [04/2025] Added support for [PLaMo] (https://huggingface.co/pfnet/plamo-13b-instruct) - [01/2025] Added support for [Ibm-Granite] (https://huggingface.co/ibm-granite/granite-3.1-8b-instruct) - [01/2025] Added support for [Ibm-Granite-Guardian] (https://huggingface.co/ibm-granite/granite-guardian-3.1-8b) - [09/2024] Added support for [Gemma-2-Family](https://huggingface.co/collections/google/gemma-2-release-667d6600fd5220e7b967f315)
diff --git a/tests/transformers/models/test_causal_lm_models.py b/tests/transformers/models/test_causal_lm_models.py index efa2187b7..6d401d4c6 100644 --- a/tests/transformers/models/test_causal_lm_models.py +++ b/tests/transformers/models/test_causal_lm_models.py @@ -44,6 +44,7 @@ "neuralmagic/Qwen2-0.5B-Instruct-FP8", # fp8 quant method, static, with lm head ignored "ibm-granite/granite-3.1-2b-instruct", "ibm-granite/granite-guardian-3.1-2b", + "pfnet/plamo-13b-instruct", ] test_models_qnn = [