-
Notifications
You must be signed in to change notification settings - Fork 125
/
Copy path_cirq_to_stim_test.py
424 lines (365 loc) · 14.1 KB
/
_cirq_to_stim_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import itertools
from typing import Dict, List, Sequence, Tuple, Union
import cirq
import numpy as np
import pytest
import stim
import stimcirq
from stimcirq._cirq_to_stim import cirq_circuit_to_stim_data, gate_to_stim_append_func
def solve_tableau(gate: cirq.Gate) -> Dict[cirq.PauliString, cirq.PauliString]:
"""Computes a stabilizer tableau for the given gate."""
result = {}
n = gate.num_qubits()
qs = cirq.LineQubit.range(n)
for inp in [g(q) for g in [cirq.X, cirq.Z] for q in qs]:
# Use superdense coding to extract X and Z flips from the generator conjugated by the gate.
c = cirq.Circuit(
cirq.H.on_each(qs),
[cirq.CNOT(q, q + n) for q in qs],
gate(*qs) ** -1,
inp,
gate(*qs),
[cirq.CNOT(q, q + n) for q in qs],
cirq.H.on_each(qs),
[cirq.measure(q, q + n, key=str(q)) for q in qs],
)
# Extract X/Y/Z data from sample result (which should be deterministic).
s = cirq.Simulator().sample(c)
out: cirq.PauliString = cirq.PauliString({q: "IXZY"[s[str(q)][0]] for q in qs})
# Use phase kickback to determine the sign of the output stabilizer.
sign = cirq.NamedQubit('a')
c = cirq.Circuit(
cirq.H(sign),
inp.controlled_by(sign),
gate(*qs),
out.controlled_by(sign),
cirq.H(sign),
cirq.measure(sign, key='sign'),
)
if cirq.Simulator().sample(c)['sign'][0]:
out *= -1
result[inp] = out
return result
def test_solve_tableau():
a, b = cirq.LineQubit.range(2)
assert solve_tableau(cirq.I) == {cirq.X(a): cirq.X(a), cirq.Z(a): cirq.Z(a)}
assert solve_tableau(cirq.S) == {cirq.X(a): cirq.Y(a), cirq.Z(a): cirq.Z(a)}
assert solve_tableau(cirq.S ** -1) == {cirq.X(a): -cirq.Y(a), cirq.Z(a): cirq.Z(a)}
assert solve_tableau(cirq.H) == {cirq.X(a): cirq.Z(a), cirq.Z(a): cirq.X(a)}
assert solve_tableau(
cirq.SingleQubitCliffordGate.from_xz_map((cirq.Y, False), (cirq.X, False))
) == {cirq.X(a): cirq.Y(a), cirq.Z(a): cirq.X(a)}
assert solve_tableau(cirq.CZ) == {
cirq.X(a): cirq.X(a) * cirq.Z(b),
cirq.Z(a): cirq.Z(a),
cirq.X(b): cirq.Z(a) * cirq.X(b),
cirq.Z(b): cirq.Z(b),
}
def assert_unitary_gate_converts_correctly(gate: cirq.Gate):
n = gate.num_qubits()
for pre, post in solve_tableau(gate).items():
# Create a circuit that measures pre before the gate times post after the gate.
# If the gate is translated correctly, the measurement will always be zero.
c = stim.Circuit()
c.append("H", range(n))
for i in range(n):
c.append("CNOT", [i, i + n])
c.append("H", [2 * n])
for q, p in pre.items():
c.append(f"C{p}", [2 * n, q.x])
qs = cirq.LineQubit.range(n)
conv_gate, _ = cirq_circuit_to_stim_data(cirq.Circuit(gate(*qs)), q2i={q: q.x for q in qs})
c += conv_gate
for q, p in post.items():
c.append(f"C{p}", [2 * n, q.x])
if post.coefficient == -1:
c.append("Z", [2 * n])
c.append("H", [2 * n])
c.append("M", [2 * n])
correct = np.count_nonzero(c.compile_sampler().sample_bit_packed(10)) == 0
assert correct, f"{gate!r} failed to turn {pre} into {post}.\nConverted to:\n{conv_gate}\n"
@pytest.mark.parametrize("gate", gate_to_stim_append_func().keys())
def test_unitary_gate_conversions(gate: cirq.Gate):
# Note: filtering in the parametrize annotation causes a false 'gate undefined' lint error.
if cirq.has_unitary(gate):
assert_unitary_gate_converts_correctly(gate)
def test_more_unitary_gate_conversions():
for p in [1, 1j, -1, -1j]:
assert_unitary_gate_converts_correctly(p * cirq.DensePauliString("IXYZ"))
assert_unitary_gate_converts_correctly((p * cirq.DensePauliString("IXYZ")).controlled(1))
a, b = cirq.LineQubit.range(2)
c, _ = cirq_circuit_to_stim_data(
cirq.Circuit(cirq.H(a), cirq.CNOT(a, b), cirq.measure(a, b), cirq.reset(a))
)
assert (
str(c).strip()
== """
H 0
TICK
CX 0 1
TICK
M 0 1
TICK
R 0
TICK
""".strip()
)
ROUND_TRIP_NOISY_GATES = [
cirq.BitFlipChannel(0.1),
cirq.BitFlipChannel(0.2),
cirq.PhaseFlipChannel(0.1),
cirq.PhaseFlipChannel(0.2),
cirq.PhaseDampingChannel(0.1),
cirq.PhaseDampingChannel(0.2),
cirq.X.with_probability(0.1),
cirq.X.with_probability(0.2),
cirq.Y.with_probability(0.1),
cirq.Y.with_probability(0.2),
cirq.Z.with_probability(0.1),
cirq.Z.with_probability(0.2),
cirq.DepolarizingChannel(0.1),
cirq.DepolarizingChannel(0.2),
cirq.DepolarizingChannel(0.1, n_qubits=2),
cirq.DepolarizingChannel(0.2, n_qubits=2),
cirq.AsymmetricDepolarizingChannel(p_x=0, p_y=0, p_z=0),
cirq.AsymmetricDepolarizingChannel(p_x=0.2, p_y=0.1, p_z=0.3),
cirq.AsymmetricDepolarizingChannel(p_x=0.1, p_y=0, p_z=0),
cirq.AsymmetricDepolarizingChannel(p_x=0, p_y=0.1, p_z=0),
cirq.AsymmetricDepolarizingChannel(p_x=0, p_y=0, p_z=0.1),
*[
cirq.asymmetric_depolarize(error_probabilities={a + b: 0.1})
for a, b in list(itertools.product('IXYZ', repeat=2))[1:]
],
cirq.asymmetric_depolarize(error_probabilities={'IX': 0.125, 'ZY': 0.375}),
]
@pytest.mark.parametrize("gate", ROUND_TRIP_NOISY_GATES)
def test_frame_simulator_sampling_noisy_gates_agrees_with_cirq_data(gate: cirq.Gate):
# Create test circuit that uses superdense coding to quantify arbitrary Pauli error mixtures.
n = cirq.num_qubits(gate)
qs = cirq.LineQubit.range(n)
circuit = cirq.Circuit(
cirq.H.on_each(qs),
[cirq.CNOT(q, q + n) for q in qs],
gate(*qs),
[cirq.CNOT(q, q + n) for q in qs],
cirq.H.on_each(qs),
)
expected_rates = cirq.final_density_matrix(circuit).diagonal().real
# Convert test circuit to Stim and sample from it.
stim_circuit, _ = cirq_circuit_to_stim_data(
circuit + cirq.measure(*sorted(circuit.all_qubits())[::-1])
)
sample_count = 10000
samples = stim_circuit.compile_sampler().sample_bit_packed(sample_count).flat
unique, counts = np.unique(samples, return_counts=True)
# Compare sample rates to expected rates.
for value, count in zip(unique, counts):
expected_rate = expected_rates[value]
actual_rate = count / sample_count
allowed_variation = 5 * (expected_rate * (1 - expected_rate) / sample_count) ** 0.5
if not 0 <= expected_rate - allowed_variation <= 1:
raise ValueError("Not enough samples to bound results away from extremes.")
assert abs(expected_rate - actual_rate) < allowed_variation, (
f"Sample rate {actual_rate} is over 5 standard deviations away from {expected_rate}.\n"
f"Gate: {gate}\n"
f"Test circuit:\n{circuit}\n"
f"Converted circuit:\n{stim_circuit}\n"
)
@pytest.mark.parametrize("gate", ROUND_TRIP_NOISY_GATES)
def test_tableau_simulator_sampling_noisy_gates_agrees_with_cirq_data(gate: cirq.Gate):
# Technically this be a test of the `stim` package itself, but it's so convenient to compare to cirq.
# Create test circuit that uses superdense coding to quantify arbitrary Pauli error mixtures.
n = cirq.num_qubits(gate)
qs = cirq.LineQubit.range(n)
circuit = cirq.Circuit(
cirq.H.on_each(qs),
[cirq.CNOT(q, q + n) for q in qs],
gate(*qs),
[cirq.CNOT(q, q + n) for q in qs],
cirq.H.on_each(qs),
)
expected_rates = cirq.final_density_matrix(circuit).diagonal().real
# Convert test circuit to Stim and sample from it.
stim_circuit, _ = cirq_circuit_to_stim_data(
circuit + cirq.measure(*sorted(circuit.all_qubits())[::-1])
)
sample_count = 10000
samples = []
for _ in range(sample_count):
sim = stim.TableauSimulator()
sim.do(stim_circuit)
s = 0
for k, v in enumerate(sim.current_measurement_record()):
s |= v << k
samples.append(s)
unique, counts = np.unique(samples, return_counts=True)
# Compare sample rates to expected rates.
for value, count in zip(unique, counts):
expected_rate = expected_rates[value]
actual_rate = count / sample_count
allowed_variation = 5 * (expected_rate * (1 - expected_rate) / sample_count) ** 0.5
if not 0 <= expected_rate - allowed_variation <= 1:
raise ValueError("Not enough samples to bound results away from extremes.")
assert abs(expected_rate - actual_rate) < allowed_variation, (
f"Sample rate {actual_rate} is over 5 standard deviations away from {expected_rate}.\n"
f"Gate: {gate}\n"
f"Test circuit:\n{circuit}\n"
f"Converted circuit:\n{stim_circuit}\n"
)
def test_cirq_circuit_to_stim_circuit_custom_stim_method():
class DetectorGate(cirq.Gate):
def _num_qubits_(self):
return 1
def _measure_keys_(self):
return ("custom",)
def _stim_conversion_(
self,
edit_circuit: stim.Circuit,
edit_measurement_key_lengths: List[Tuple[str, int]],
targets: Sequence[int],
**kwargs,
):
edit_measurement_key_lengths.append(("custom", 2))
edit_circuit.append("M", [stim.target_inv(targets[0])])
edit_circuit.append("M", [targets[0]])
edit_circuit.append("DETECTOR", [stim.target_rec(-1)])
class SecondLastMeasurementWasDeterministicOperation(cirq.Operation):
def _stim_conversion_(self, edit_circuit: stim.Circuit, tag: str, **kwargs):
edit_circuit.append("DETECTOR", [stim.target_rec(-2)], tag=tag)
def with_qubits(self, *new_qubits):
raise NotImplementedError()
@property
def qubits(self) -> Tuple['cirq.Qid', ...]:
return ()
a, b, c = cirq.LineQubit.range(3)
cirq_circuit = cirq.Circuit(
cirq.measure(a, key="a"),
cirq.measure(b, key="b"),
cirq.measure(c, key="c"),
cirq.Moment(SecondLastMeasurementWasDeterministicOperation()),
cirq.Moment(DetectorGate().on(b)),
)
stim_circuit = stimcirq.cirq_circuit_to_stim_circuit(cirq_circuit)
assert (
str(stim_circuit).strip()
== """
M 0 1 2
TICK
DETECTOR rec[-2]
TICK
M !1 1
DETECTOR rec[-1]
TICK
""".strip()
)
class BadGate(cirq.Gate):
def num_qubits(self) -> int:
return 1
def _stim_conversion_(self):
pass
with pytest.raises(TypeError, match="dont_forget_your_star_star_kwargs"):
stimcirq.cirq_circuit_to_stim_circuit(cirq.Circuit(BadGate().on(a)))
sample = stimcirq.StimSampler().sample(cirq_circuit)
assert len(sample.columns) == 4
np.testing.assert_array_equal(sample["a"], [0])
np.testing.assert_array_equal(sample["b"], [0])
np.testing.assert_array_equal(sample["c"], [0])
np.testing.assert_array_equal(sample["custom"], [2])
def test_custom_qubit_indexing():
a = cirq.NamedQubit("a")
b = cirq.NamedQubit("b")
actual = stimcirq.cirq_circuit_to_stim_circuit(
cirq.Circuit(cirq.CNOT(a, b)), qubit_to_index_dict={a: 10, b: 15}
)
assert actual == stim.Circuit('CX 10 15\nTICK')
actual = stimcirq.cirq_circuit_to_stim_circuit(
cirq.FrozenCircuit(cirq.CNOT(a, b)), qubit_to_index_dict={a: 10, b: 15}
)
assert actual == stim.Circuit('CX 10 15\nTICK')
def test_on_loop():
a, b = cirq.LineQubit.range(2)
c = cirq.Circuit(
cirq.CircuitOperation(
cirq.FrozenCircuit(
cirq.X(a),
cirq.X(b),
cirq.measure(a, key="a"),
cirq.measure(b, key="b"),
),
repetitions=3,
)
)
result = stimcirq.StimSampler().run(c)
assert result.measurements.keys() == {'0:a', '0:b', '1:a', '1:b', '2:a', '2:b'}
def test_multi_moment_circuit_operation():
q0 = cirq.LineQubit(0)
cc = cirq.Circuit(
cirq.CircuitOperation(
cirq.FrozenCircuit(
cirq.Moment(cirq.H(q0)),
cirq.Moment(cirq.H(q0)),
cirq.Moment(cirq.H(q0)),
cirq.Moment(cirq.H(q0)),
)
)
)
assert stimcirq.cirq_circuit_to_stim_circuit(cc) == stim.Circuit("""
H 0
TICK
H 0
TICK
H 0
TICK
H 0
TICK
""")
def test_on_tagged_loop():
a, b = cirq.LineQubit.range(2)
c = cirq.Circuit(
cirq.CircuitOperation(
cirq.FrozenCircuit(
cirq.X(a),
cirq.X(b),
cirq.measure(a, key="a"),
cirq.measure(b, key="b"),
),
repetitions=3,
).with_tags('my_tag')
)
stim_circuit = stimcirq.cirq_circuit_to_stim_circuit(c)
assert stim.CircuitRepeatBlock in {type(instr) for instr in stim_circuit}
def test_random_gate_channel():
q0, q1 = cirq.LineQubit.range(2)
circuit = cirq.Circuit(cirq.RandomGateChannel(
sub_gate=cirq.DensePauliString((0, 1)),
probability=0.25).on(q0, q1))
assert stimcirq.cirq_circuit_to_stim_circuit(circuit) == stim.Circuit("""
E(0.25) X1
TICK
""")
def test_custom_tagging():
assert stimcirq.cirq_circuit_to_stim_circuit(
cirq.Circuit(
cirq.X(cirq.LineQubit(0)).with_tags('test'),
cirq.X(cirq.LineQubit(0)).with_tags((2, 3, 4)),
cirq.H(cirq.LineQubit(0)).with_tags('a', 'b'),
),
tag_func=lambda op: "PAIR" if len(op.tags) == 2 else repr(op.tags),
) == stim.Circuit("""
X[('test',)] 0
TICK
X[((2, 3, 4),)] 0
TICK
H[PAIR] 0
TICK
""")
def test_round_trip_example_circuit():
stim_circuit = stim.Circuit.generated(
"surface_code:rotated_memory_x",
distance=3,
rounds=1,
after_clifford_depolarization=0.01,
)
cirq_circuit = stimcirq.stim_circuit_to_cirq_circuit(stim_circuit.flattened())
circuit_back = stimcirq.cirq_circuit_to_stim_circuit(cirq_circuit)
assert len(circuit_back.shortest_graphlike_error()) == 3