-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_cnn.sh
52 lines (41 loc) · 1.71 KB
/
run_cnn.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
CNN_SCR="./dnn_scripts/cnn_crisis.py" #Training
#CNN_SCR="./dnn_scripts/loadAndUsing.py" #Load and Using
MODEL_DIR="saved_modelsBinary/"
data_dir=./data/nn_data/
#log=./mix-in-domain-embGG.log
log=./logBinary.cnn
mkdir -p $MODEL_DIR
###<- Set general DNN settings ->
dr_ratios=(0.2) #dropout_ratio
mb_sizes=(128) #minibatch-size
### <- set CNN settings ->
nb_filters=(150) #no of feature map
filt_lengths=(2)
pool_lengths=(3)
vocab_sizes=(90) # how many words in percentage for vocabulary
### <- embedding file ->
init_type="pretrained"
emb_file="./embeddings/glove_twitter_27B_200d.text"
#emb_file="./embeddings/1tu.text"
for ratio in ${dr_ratios[@]}; do
for mb in ${mb_sizes[@]}; do
for nb_filter in ${nb_filters[@]}; do
for filt_len in ${filt_lengths[@]}; do
for pool_len in ${pool_lengths[@]}; do
for vocab in ${vocab_sizes[@]}; do
echo "INFORMATION: dropout_ratio=$ratio minibatch-size=$mb filter-nb=$nb_filter filt_len=$filt_len pool_len=$pool_len vocab=$vocab" >> $log;
echo "=============================================================================================================================" >> $log;
THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python $CNN_SCR \
--data-dir=$data_dir --model-dir=$MODEL_DIR -i $init_type -f $emb_file\
--vocabulary-size=$vocab --dropout_ratio=$ratio --minibatch-size=$mb\
--nb_filter=$nb_filter --filter_length=$filt_len --pool_length=$pool_len\
--vocabulary-size=$vocab >>$log
wait
echo "==============================================================================================================================" >> $log;
done
done
done
done
done
done
echo "FINISHED TRAINING CNN"