diff --git a/QOSFTask2 (1).ipynb b/QOSFTask2 (1).ipynb new file mode 100644 index 0000000..9efdc32 --- /dev/null +++ b/QOSFTask2 (1).ipynb @@ -0,0 +1,368 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "QOSF Screening tasks submission for Unitary fund Hackathon Tasks descriptions." + ], + "metadata": { + "id": "Er7RFLDDO8T5" + } + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "\n", + "QOSF Screening Tasks Submission for Unitary Fund Hackathon\n", + "\n", + "Quantum-Inspired Function Optimization\n", + "\n", + "The task involves optimizing a mathematical function using a quantum-inspired algorithm. This optimization aims to find either the minimum or maximum value of the objective function over a specified range of input variables.\n", + "\n", + "\n", + "\n", + "Select a mathematical function to be optimized. This function should be parameterized by one or more variables.\n", + "\n", + " A simple quadratic function:\n", + "\\[\n", + "f(x) = x^2 - 4x + 4\n", + "\\]\n", + "\n", + "The goal is to find the minimum value of this function over a specified range of input variables \\( x \\).\n", + "\n", + "\n", + "\n", + "Design a quantum circuit ansatz that parameterizes the quantum state preparation. This ansatz should depend on the parameters to be optimized and the input variables of the objective function.\n", + "\n", + " For a simple one-qubit rotation ansatz, we can use rotation gates such as \\( R_y \\) and \\( R_z \\) with parameters \\( \\theta \\) and \\( \\phi \\):\n", + "\\[\n", + "|\\psi(\\theta, \\phi)\\rangle = R_y(\\theta) R_z(\\phi) |0\\rangle\n", + "\\]\n", + "\n", + "\n", + "\n", + "Define a quantum cost function that evaluates the expectation value of an observable operator on the quantum circuit output. This cost function will be optimized to minimize or maximize the objective function.\n", + "\n", + " If we are using the Pauli-Z operator as the observable, the cost function \\( C(\\theta, \\phi) \\) can be expressed as:\n", + "\\[\n", + "C(\\theta, \\phi) = \\langle \\psi(\\theta, \\phi) | Z | \\psi(\\theta, \\phi) \\rangle\n", + "\\]\n", + "\n", + "\n", + "\n", + "Choose a classical optimization algorithm to optimize the parameters of the quantum circuit ansatz based on the quantum cost function's evaluation.\n", + "\n", + " Gradient Descent, Nelder-Mead, BFGS, etc.\n", + "\n", + "\n", + "\n", + "Implement a routine to optimize the quantum circuit parameters iteratively. This routine should update the parameters using the classical optimization algorithm until convergence is reached.\n", + "\n", + " Use the Gradient Descent method to iteratively adjust the parameters \\( \\theta \\) and \\( \\phi \\) to minimize the cost function \\( C(\\theta, \\phi) \\).\n", + "\n", + "\n", + "\n", + "Test the quantum-inspired optimization algorithm with different functions and analyze its performance. Compare the optimized function values obtained using the quantum-inspired algorithm with classical optimization methods.\n", + "\n", + " Evaluate the minimum value of \\( f(x) = x^2 - 4x + 4 \\) and compare it with the known analytical minimum.\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "Conduct a comparative analysis of the quantum-inspired optimization algorithm with classical optimization algorithms in terms of convergence speed, accuracy, and scalability.\n", + "\n", + " Compare the performance of the quantum-inspired algorithm with classical methods like Gradient Descent and Newton's Method.\n", + "\n", + "\n", + "\n", + "Extend the optimization algorithm to handle noise and errors in quantum devices. Implement error mitigation techniques to enhance the optimization algorithm's robustness.\n", + "\n", + " Zero Noise Extrapolation (ZNE), Measurement Error Mitigation.\n", + "\n", + "\n", + "\n", + "Explore different strategies for initializing the quantum circuit parameters and evaluate their impact on optimization performance.\n", + "\n", + " Random initialization, Heuristic-based initialization, Grid search.\n", + "\n", + "\n", + "\n", + "Investigate hybrid quantum-classical optimization techniques, where classical optimization algorithms are combined with quantum circuits to achieve better optimization results.\n", + "\n", + "Use a classical optimizer to refine the parameters obtained from a quantum circuit.\n", + "\n", + "\n", + "\n", + "Generalize the optimization algorithm to handle functions with multiple variables. Design quantum circuit ansatz and cost functions suitable for multi-variable optimization tasks.\n", + "\n", + "Extend the ansatz to a multi-qubit system to handle a function \\( f(x, y) = x^2 + y^2 - 4x - 4y + 8 \\).\n", + "\n", + "\n", + "\n", + "Given the function \\( f(x) = x^2 - 4x + 4 \\), we can find its minimum value by following these steps:\n", + "\n", + "\n", + "\n", + "\\[\n", + "f(x) = x^2 - 4x + 4\n", + "\\]\n", + "\n", + "\n", + "\n", + "Use a one-qubit rotation ansatz:\n", + "\\[\n", + "|\\psi(\\theta)\\rangle = R_y(\\theta) |0\\rangle\n", + "\\]\n", + "\n", + "\n", + "\n", + "Define the cost function as the expectation value of the Pauli-Z operator:\n", + "\\[\n", + "C(\\theta) = \\langle \\psi(\\theta) | Z | \\psi(\\theta) \\rangle\n", + "\\]\n", + "\n", + "\n", + "\n", + "Use a classical optimizer like Gradient Descent to minimize \\( C(\\theta) \\).\n", + "\n", + "\n", + "\n", + "Initialize \\( \\theta \\) and iteratively update it to minimize the cost function.\n", + "\n", + "\n", + "\n", + "Compare the result with the analytical minimum of \\( f(x) \\), which is \\( x = 2 \\).\n", + "\n", + "\n" + ], + "metadata": { + "id": "g01ycumc9Wdk" + } + }, + { + "cell_type": "markdown", + "source": [ + "Quantum-Inspired Function Optimization\n", + "\n", + "Problem Statement: The task involves optimizing a mathematical function using a quantum-inspired algorithm. This optimization aims to find either the minimum or maximum value of the objective function over a specified range of input variables.\n", + "\n", + "Requirements:\n", + "\n", + "Choose a Function: Select a mathematical function that serves as the objective function to be optimized. This function should be parameterized by one or more variables.\n", + "\n", + "Quantum Circuit Ansatz: Design a quantum circuit ansatz that parameterizes the quantum state preparation. This ansatz should depend on the parameters to be optimized and the input variables of the objective function.\n", + "\n", + "Quantum Cost Function: Define a quantum cost function that evaluates the expectation value of an observable operator on the quantum circuit output. This cost function will be optimized to minimize or maximize the objective function.\n", + "\n", + "Classical Optimization: Choose a classical optimization algorithm, such as gradient descent, to optimize the parameters of the quantum circuit ansatz based on the quantum cost function's evaluation.\n", + "\n", + "Optimization Routine: Implement a routine to optimize the quantum circuit parameters iteratively. This routine should update the parameters using the classical optimization algorithm until convergence is reached.\n", + "\n", + "Evaluate Results: Test the quantum-inspired optimization algorithm with different functions and analyze its performance. Compare the optimized function values obtained using the quantum-inspired algorithm with classical optimization methods.\n", + "\n", + "Bonus Tasks:\n", + "\n", + "Performance Analysis: Conduct a comparative analysis of the quantum-inspired optimization algorithm with classical optimization algorithms in terms of convergence speed, accuracy, and scalability.\n", + "\n", + "Noise Handling: Extend the optimization algorithm to handle noise and errors in quantum devices. Implement error mitigation techniques to enhance the optimization algorithm's robustness.\n", + "\n", + "Parameter Initialization: Explore different strategies for initializing the quantum circuit parameters and evaluate their impact on optimization performance.\n", + "\n", + "Hybrid Approaches: Investigate hybrid quantum-classical optimization techniques, where classical optimization algorithms are combined with quantum circuits to achieve better optimization results.\n", + "\n", + "Extension to Multi-variable Functions: Generalize the optimization algorithm to handle functions with multiple variables. Design quantum circuit ansatz and cost functions suitable for multi-variable optimization tasks." + ], + "metadata": { + "id": "LTIB2rGWPBMX" + } + }, + { + "cell_type": "markdown", + "source": [ + "You are provided with a simple quadratic function \\( f(x) = x^2 - 4x + 4 \\) as the objective function to optimize. Your task is to find the minimum value of this function over a specified range of input variables \\( x \\)." + ], + "metadata": { + "id": "iPTisIX4QnRc" + } + }, + { + "cell_type": "code", + "source": [ + "import pennylane as qml\n", + "from pennylane import numpy as np\n", + "\n", + "# Define the function to optimize\n", + "# your code here#\n", + " # your code here#\n", + "\n", + "# Define the quantum device\n", + "dev = qml.device(\"default.qubit\", wires=1)" + ], + "metadata": { + "id": "kJUpNqTM8HCq" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Design a quantum circuit ansatz that parameterizes the quantum state preparation. The ansatz should depend on the parameters to be optimized and the input variables of the objective function." + ], + "metadata": { + "id": "zeb8kWS-Qqw0" + } + }, + { + "cell_type": "code", + "source": [ + "# Define the quantum circuit ansatz\n", + "# your code here#\n", + " # your code here#\n", + " # your code here#" + ], + "metadata": { + "id": "jAD_z7DFQv0m" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Define a quantum cost function that evaluates the expectation value of an observable operator on the quantum circuit output. This cost function will be optimized to minimize the objective function." + ], + "metadata": { + "id": "2WL9fgRwRAvW" + } + }, + { + "cell_type": "code", + "source": [ + "# Define the quantum cost function\n", + "@qml.qnode(dev)\n", + "# your code here#\n", + " # your code here#\n", + " # your code here#" + ], + "metadata": { + "id": "ylZMRFezRD0-" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Define the VQE optimzer and the function optimization route" + ], + "metadata": { + "id": "Vi2-QqI1RQ6u" + } + }, + { + "cell_type": "code", + "source": [ + "# Define the VQE optimizer\n", + "# your code here#\n", + "\n", + "# Define the function optimization routine\n", + "def optimize_function(x):\n", + " # your code here#\n", + " # your code here#\n", + "\n", + " for _ in range(num_steps):\n", + " # Optimize parameters\n", + " params = optimizer.step(lambda v: (cost(v, x),), params)\n", + "\n", + " return params" + ], + "metadata": { + "id": "U49MjBgC8R75" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Define the range of values for x and optimize the function for each value" + ], + "metadata": { + "id": "jDA2nIyyS0PN" + } + }, + { + "cell_type": "code", + "source": [ + "# Define the range of values for the variable x\n", + "# your code here#\n", + "\n", + "# Optimize the function for each value of x in the range\n", + "# your code here#\n", + "# your code here#\n", + "\n", + "for x_val in x_range:\n", + " params = optimize_function(x_val)\n", + " optimized_value = my_function(x_val)\n", + " if optimized_value < minimum_value:\n", + " minimum_value = optimized_value\n", + " optimal_x = x_val" + ], + "metadata": { + "id": "W7ci9cn48Ypp" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Print and get the optimal value" + ], + "metadata": { + "id": "nXmd8tiETL3E" + } + }, + { + "cell_type": "code", + "source": [ + "print(\"Optimal value of x:\", optimal_x)\n", + "print(\"Minimum value of the function:\", minimum_value)" + ], + "metadata": { + "id": "W7wdGZAM8rR6" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "References and resources\n", + "https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Number_Theory_(Raji)/02%3A_Prime_Numbers/2.06%3A_The_function_x._the_symbols_O_o_and\n", + "\n", + "https://github.com/iQuHACK/2024_Classiq/blob/main/Classiq%E2%80%99s%20Generalized%20Arithmetic%20Challenge.pdf" + ], + "metadata": { + "id": "dttmj6ggTY6E" + } + } + ] +} \ No newline at end of file