-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
157 lines (126 loc) · 5.84 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import argparse
import collections
import os
import datasets
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import tqdm
import transformers
from model import Transformer
# Initialize global variables
PAD_INDEX = None # Will be set after tokenizer is created
def set_seeds(seed):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def load_data(data_name, tokenizer_name):
if os.path.exists(data_name):
data = datasets.load_from_disk(data_name)
else:
data = datasets.load_dataset(data_name)
tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer_name)
global PAD_INDEX
PAD_INDEX = tokenizer.pad_token_id
def tokenize_and_numericalize_example(example, tokenizer):
ids = tokenizer(example["text"], truncation=True)["input_ids"]
return {"ids": ids}
data = {split: data[split].map(tokenize_and_numericalize_example, fn_kwargs={"tokenizer": tokenizer}) for split in
['train', 'test']}
return data, tokenizer
def prepare_data_loaders(data, batch_size):
data_loaders = {}
if not 'valid' in data:
test_size = 0.25
train_valid_data = data['train'].train_test_split(test_size=test_size)
data["train"] = train_valid_data["train"]
data["valid"] = train_valid_data["test"]
for split, dataset in data.items():
dataset = dataset.with_format(type="torch", columns=["ids", "label"])
shuffle = split == 'train'
data_loader = get_data_loader(dataset, batch_size, PAD_INDEX, shuffle=shuffle)
data_loaders[split] = data_loader
return data_loaders
def get_collate_fn(pad_index):
def collate_fn(batch):
batch_ids = [i["ids"] for i in batch]
batch_ids = nn.utils.rnn.pad_sequence(batch_ids, padding_value=pad_index, batch_first=True)
batch_label = torch.tensor([i["label"] for i in batch])
return {"ids": batch_ids, "label": batch_label}
return collate_fn
def get_data_loader(dataset, batch_size, pad_index, shuffle=False):
collate_fn = get_collate_fn(pad_index)
return torch.utils.data.DataLoader(dataset=dataset, batch_size=batch_size, collate_fn=collate_fn, shuffle=shuffle)
def get_accuracy(prediction, label):
correct_predictions = prediction.argmax(dim=-1).eq(label).sum()
accuracy = correct_predictions.float() / label.size(0)
return accuracy
def train(data_loader, model, criterion, optimizer, device):
model.train()
epoch_loss = 0
epoch_acc = 0
for batch in tqdm.tqdm(data_loader, desc="Training"):
optimizer.zero_grad()
ids, labels = batch['ids'].to(device), batch['label'].to(device)
predictions = model(ids)
loss = criterion(predictions, labels)
acc = get_accuracy(predictions, labels)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / len(data_loader), epoch_acc / len(data_loader)
def evaluate(data_loader, model, criterion, device):
model.eval()
epoch_loss = 0
epoch_acc = 0
with torch.no_grad():
for batch in tqdm.tqdm(data_loader, desc="Evaluating"):
ids, labels = batch['ids'].to(device), batch['label'].to(device)
predictions = model(ids)
loss = criterion(predictions, labels)
acc = get_accuracy(predictions, labels)
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / len(data_loader), epoch_acc / len(data_loader)
def main():
parser = argparse.ArgumentParser(description='Train a Transformer model for text classification.')
parser.add_argument('--data_name', type=str, default='imdb', help='The directory where the data is stored.')
parser.add_argument('--tokenizer_name', type=str, default='bert-base-uncased', help='The name of the tokenizer.')
parser.add_argument('--batch_size', type=int, default=8, help='The batch size for training and evaluation.')
parser.add_argument('--epochs', type=int, default=3, help='The number of epochs to train for.')
parser.add_argument('--lr', type=float, default=1e-5, help='The learning rate.')
parser.add_argument('--seed', type=int, default=1234, help='The seed for random number generation.')
args = parser.parse_args()
set_seeds(args.seed)
data, tokenizer = load_data(args.data_name, args.tokenizer_name)
data_loaders = prepare_data_loaders(data, args.batch_size)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Transformer(args.tokenizer_name, 2, False).to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
criterion = nn.CrossEntropyLoss().to(device)
best_valid_loss = float("inf")
metrics = collections.defaultdict(list)
os.makedirs("model", exist_ok=True)
for epoch in range(args.epochs):
train_loss, train_acc = train(
data_loaders['train'], model, criterion, optimizer, device
)
valid_loss, valid_acc = evaluate(data_loaders['train'], model, criterion, device)
metrics["train_losses"].append(train_loss)
metrics["train_accs"].append(train_acc)
metrics["valid_losses"].append(valid_loss)
metrics["valid_accs"].append(valid_acc)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), "model/transformer.pt")
print(f"epoch: {epoch}")
print(f"train_loss: {train_loss:.3f}, train_acc: {train_acc:.3f}")
print(f"valid_loss: {valid_loss:.3f}, valid_acc: {valid_acc:.3f}")
model.load_state_dict(torch.load("model/transformer.pt"))
test_loss, test_acc = evaluate(data_loaders['test'], model, criterion, device)
print(f"Test Loss: {test_loss:.3f}, Test Acc: {test_acc:.3f}")
if __name__ == "__main__":
main()