You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
PyTorch/XLA normally transfers tensor data asynchronously from host to device once the tensor is defined. This is to overlap the data transfer with the graph tracing time. However, because GSPMD allows the user to modify the tensor sharding _after _the tensor has been defined, we need an optimization to prevent unnecessary transfer of tensor data back and forth between host and device. We introduce Virtual Device Optimization, a technique to place the tensor data on a virtual device SPMD:0 first, before uploading to the physical devices when all the sharding decisions are finalized. Every tensor data inSPMD mode is placed on a virtual device, SPMD:0. The virtual device is exposed to the user as an XLA device XLA:0with the actual shards on physical devices, like TPU:0, TPU:1, etc.
0 commit comments