-
Notifications
You must be signed in to change notification settings - Fork 528
/
Copy pathschema.py
405 lines (308 loc) · 8.82 KB
/
schema.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# NOTE: This is a placeholder for iterating on export serialization schema design.
# Anything is subject to change and no guarantee is provided at this point.
from dataclasses import dataclass, field
from enum import IntEnum
from typing import Dict, List, Optional, Tuple
import executorch.exir.serde.schema as export_schema
from executorch.exir.serde.union import _Union
# NOTE: Please update this value if any modifications are made to the schema
SCHEMA_VERSION = (5, 3)
TREESPEC_VERSION = 1
class ScalarType(IntEnum):
UNKNOWN = 0
BYTE = 1
CHAR = 2
SHORT = 3
INT = 4
LONG = 5
HALF = 6
FLOAT = 7
DOUBLE = 8
COMPLEXHALF = 9
COMPLEXFLOAT = 10
COMPLEXDOUBLE = 11
BOOL = 12
BFLOAT16 = 13
UINT16 = 14
class Layout(IntEnum):
Unknown = 0
SparseCoo = 1
SparseCsr = 2
SparseCsc = 3
SparseBsr = 4
SparseBsc = 5
_mkldnn = 6
Strided = 7
class MemoryFormat(IntEnum):
Unknown = 0
ContiguousFormat = 1
ChannelsLast = 2
ChannelsLast3d = 3
PreserveFormat = 4
@dataclass
class Device:
type: str
index: Optional[int] = None
@dataclass(repr=False)
class SymExprHint(_Union):
as_int: int
as_float: float
as_bool: bool
# This is for storing the symbolic expressions behind symints/symfloats/symbools
# For example, we can get something like
# SymExpr(expr_str="s0 + s1", hint=SymExprHint(as_int=4)
# if we also have the hint that s0 and s1 are both 2.
@dataclass
class SymExpr:
expr_str: str
hint: Optional[SymExprHint] = None
@dataclass(repr=False)
class SymInt(_Union):
as_expr: SymExpr
as_int: int
@dataclass(repr=False)
class SymBool(_Union):
as_expr: SymExpr
as_bool: bool
@dataclass
class TensorMeta:
dtype: ScalarType
sizes: List[SymInt]
requires_grad: bool
device: Device
strides: List[SymInt]
storage_offset: SymInt
layout: Layout
# In most cases we will use the "as_name" field to store arguments which are
# SymInts.
# The "as_int" field is used in the case where we have a list containing a mix
# of SymInt and ints (ex. [1, s0, ...]). We will serialize this type of list to
# be List[SymIntArgument] and map the SymInts to the "as_name" field, and ints
# to the "as_int" field.
@dataclass(repr=False)
class SymIntArgument(_Union):
as_name: str
as_int: int
# In most cases we will use the "as_name" field to store arguments which are
# SymBools.
# The "as_bool" field is used in the case where we have a list containing a mix
# of SymBool and bools (ex. [True, i0, ...]). We will serialize this type of list to
# be List[SymboolArgument] and map the SymBools to the "as_name" field, and bools
# to the "as_bool" field.
@dataclass(repr=False)
class SymBoolArgument(_Union):
as_name: str
as_bool: bool
@dataclass
class TensorArgument:
name: str
@dataclass
class TokenArgument:
name: str
# This is use for storing the contents of a list which contain optional tensors
# (Tensor?[], ex. [Tensor, None, ...]), where the list will be serialized to the
# type List[OptionalTensorArgument], with tensor values seiralized to the
# "as_tensor" field, and None values serialized to the "as_none" field.
@dataclass(repr=False)
class OptionalTensorArgument(_Union):
as_tensor: TensorArgument
as_none: Tuple[()]
@dataclass
class GraphArgument:
name: str
graph: "Graph"
@dataclass
class CustomObjArgument:
name: str
class_fqn: str
# This is actually a union type
@dataclass(repr=False)
class Argument(_Union):
as_none: Tuple[()]
as_tensor: TensorArgument
as_tensors: List[TensorArgument]
as_int: int
as_ints: List[int]
as_float: float
as_floats: List[float]
as_string: str
as_strings: List[str]
as_sym_int: SymIntArgument
as_sym_ints: List[SymIntArgument]
as_scalar_type: ScalarType
as_memory_format: MemoryFormat
as_layout: Layout
as_device: Device
as_bool: bool
as_bools: List[bool]
as_sym_bool: SymBoolArgument
as_sym_bools: List[SymBoolArgument]
as_graph: GraphArgument
as_optional_tensors: List[OptionalTensorArgument]
as_custom_obj: CustomObjArgument
as_operator: str
@dataclass
class NamedArgument:
# Argument name from the operator schema
name: str
arg: Argument
@dataclass
class Node:
target: str
inputs: List[NamedArgument]
outputs: List[Argument]
metadata: Dict[str, str]
@dataclass
class Graph:
inputs: List[Argument]
outputs: List[Argument]
nodes: List[Node]
tensor_values: Dict[str, TensorMeta]
sym_int_values: Dict[str, SymInt]
sym_bool_values: Dict[str, SymBool]
# This is for deserializing the submodule graphs from higher order ops
# (ex. cond, map) where single tensor returns will just return a single
# tensor, rather than following export schema and returning a singleton
# list.
is_single_tensor_return: bool = False
custom_obj_values: Dict[str, CustomObjArgument] = field(default_factory=dict)
@dataclass
class UserInputSpec:
# Actually, only tensors and SymInts are allowed here
arg: Argument
@dataclass(repr=False)
class ConstantValue(_Union):
as_none: Tuple[()]
as_int: int
as_float: float
as_string: str
as_bool: bool
@dataclass
class ConstantInputSpec:
name: str
value: ConstantValue
@dataclass
class InputToParameterSpec:
arg: TensorArgument
parameter_name: str
@dataclass
class InputToBufferSpec:
arg: TensorArgument
buffer_name: str
persistent: bool
@dataclass
class InputToTensorConstantSpec:
arg: TensorArgument
tensor_constant_name: str
@dataclass
class InputToCustomObjSpec:
arg: CustomObjArgument
custom_obj_name: str
@dataclass
class InputTokenSpec:
arg: TokenArgument
@dataclass(repr=False)
class InputSpec(_Union):
user_input: UserInputSpec
parameter: InputToParameterSpec
buffer: InputToBufferSpec
tensor_constant: InputToTensorConstantSpec
custom_obj: InputToCustomObjSpec
token: InputTokenSpec
constant_input: ConstantInputSpec
@dataclass
class UserOutputSpec:
arg: Argument
@dataclass
class LossOutputSpec:
arg: TensorArgument
@dataclass
class BufferMutationSpec:
arg: TensorArgument
buffer_name: str
@dataclass
class GradientToParameterSpec:
arg: TensorArgument
parameter_name: str
@dataclass
class GradientToUserInputSpec:
arg: TensorArgument
user_input_name: str
@dataclass
class UserInputMutationSpec:
arg: TensorArgument
user_input_name: str
@dataclass
class OutputTokenSpec:
arg: TokenArgument
@dataclass(repr=False)
class OutputSpec(_Union):
user_output: UserOutputSpec
loss_output: LossOutputSpec
buffer_mutation: BufferMutationSpec
gradient_to_parameter: GradientToParameterSpec
gradient_to_user_input: GradientToUserInputSpec
user_input_mutation: UserInputMutationSpec
token: OutputTokenSpec
@dataclass
class GraphSignature:
input_specs: List[InputSpec]
output_specs: List[OutputSpec]
@dataclass
class RangeConstraint:
min_val: int
max_val: int
@dataclass
class ModuleCallSignature:
inputs: List[Argument]
outputs: List[Argument]
# These are serialized by calling pytree.treespec_loads
# And deserialized by calling pytree.treespec_dumps
in_spec: str
out_spec: str
@dataclass
class ModuleCallEntry:
fqn: str
signature: Optional[ModuleCallSignature] = None
@dataclass
class GraphModule:
graph: Graph
signature: GraphSignature
# This is used for unflattening, by tracking the calling structure of all of
# the modules in order to unflatten the modules back to the eager calling
# conventions.
module_call_graph: List[ModuleCallEntry]
# Invariant: Every time a change is made to the schema, one of the versions
# should be upadted.
@dataclass
class SchemaVersion:
major: int # Major version number is bumped every time a breaking change is made.
minor: int # Minor version number is bumped when a compatible change is made.
@dataclass
class ExportedProgram:
graph_module: GraphModule
# Key is the opset namespace (ex. aten), and value is the version number
opset_version: Dict[str, int]
range_constraints: Dict[str, RangeConstraint]
schema_version: SchemaVersion
dialect: str
verifiers: List[str] = field(default_factory=list)
dialect: str = "" # TODO deprecated
@dataclass
class CompileSpec:
key: str
value: str
@dataclass
class LoweredBackendModule:
backend_id: str
processed_bytes: str
compile_specs: List[CompileSpec]
original_module: export_schema.ExportedProgram
original_state_dict: str
original_constants: str
named_data_store: Optional[bytes] = None