@@ -131,14 +131,14 @@ class VecMoran:
131
131
--------
132
132
>>> import numpy as np
133
133
>>> np.random.seed(1)
134
- >>> from pysal_core .weights import DistanceBand
134
+ >>> from libpysal .weights import DistanceBand
135
135
>>> from spint.vec_SA import VecMoran
136
136
>>> vecs = np.array([[1, 55, 60, 100, 500],
137
- >>> [2, 60, 55, 105, 501],
138
- >>> [3, 500, 55, 155, 500],
139
- >>> [4, 505, 60, 160, 500],
140
- >>> [5, 105, 950, 105, 500],
141
- >>> [6, 155, 950, 155, 499]])
137
+ ... [2, 60, 55, 105, 501],
138
+ ... [3, 500, 55, 155, 500],
139
+ ... [4, 505, 60, 160, 500],
140
+ ... [5, 105, 950, 105, 500],
141
+ ... [6, 155, 950, 155, 499]])
142
142
>>> origins = vecs[:, 1:3]
143
143
>>> dests = vecs[:, 3:5]
144
144
>>> wo = DistanceBand(origins, threshold=9999, alpha=-1.5, binary=False)
@@ -148,25 +148,25 @@ class VecMoran:
148
148
>>> vmo = VecMoran(vecs, wo, focus='origin', rand='A')
149
149
>>> vmd = VecMoran(vecs, wd, focus='destination', rand='A')
150
150
>>> vmo.I
151
- -0.764603695022
151
+ 0.6459445943670211
152
152
>>> vmo.p_z_sim
153
- 0.99549579548
154
- >>> vmd.I
155
- 0.645944594367
156
- >>> vmd.p_z_sim
157
- 0.1494726733677
153
+ 0.03898650733809228
154
+ >>> vmd.I
155
+ -0.7646036950223406
156
+ >>> vmd.p_z_sim
157
+ 0.11275129553163704
158
158
159
159
#randomization technique B
160
160
>>> vmo = VecMoran(vecs, wo, focus='origin', rand='B')
161
- >>> vmd = VecMoran(vecs, wd, foucs ='destination', rand='B')
161
+ >>> vmd = VecMoran(vecs, wd, focus ='destination', rand='B')
162
162
>>> vmo.I
163
- -0.764603695022
163
+ 0.6459445943670211
164
164
>>> vmo.p_z_sim
165
- 0.071427063787951814
166
- >>> vmd.I
167
- 0.645944594367
168
- >>> vmd.p_z_sim
169
- 0.086894261015806051
165
+ 0.05087923006558356
166
+ >>> vmd.I
167
+ -0.7646036950223406
168
+ >>> vmd.p_z_sim
169
+ 0.1468368983650693
170
170
171
171
"""
172
172
0 commit comments