diff --git a/CHANGELOG.md b/CHANGELOG.md index cef03a025e..98d7527bd7 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -2,8 +2,9 @@ ## Features -- Added sensitivity calculation support for `pybamm.Simulation` and `pybamm.Experiment` ([#4415](https://github.com/pybamm-team/PyBaMM/pull/4415)) - Added OpenMP parallelization to IDAKLU solver for lists of input parameters ([#4449](https://github.com/pybamm-team/PyBaMM/pull/4449)) +- Porosity change now works for composite electrode ([#4417](https://github.com/pybamm-team/PyBaMM/pull/4417)) +- Added sensitivity calculation support for `pybamm.Simulation` and `pybamm.Experiment` ([#4415](https://github.com/pybamm-team/PyBaMM/pull/4415)) - Added phase-dependent particle options to LAM #4369 - Added a lithium ion equivalent circuit model with split open circuit voltages for each electrode (`SplitOCVR`). ([#4330](https://github.com/pybamm-team/PyBaMM/pull/4330)) @@ -18,6 +19,7 @@ ## Breaking changes +- The names of most SEI and plating parameters have been changed so that they have domains ([#4463](https://github.com/pybamm-team/PyBaMM/pull/4463)) - The parameters "... electrode OCP entropic change [V.K-1]" and "... electrode volume change" are now expected to be functions of stoichiometry only instead of functions of both stoichiometry and maximum concentration ([#4427](https://github.com/pybamm-team/PyBaMM/pull/4427)) - Renamed `set_events` function to `add_events_from` to better reflect its purpose. ([#4421](https://github.com/pybamm-team/PyBaMM/pull/4421)) diff --git a/docs/source/examples/notebooks/batch_study.ipynb b/docs/source/examples/notebooks/batch_study.ipynb index 63169e6a07..9281f744cf 100644 --- a/docs/source/examples/notebooks/batch_study.ipynb +++ b/docs/source/examples/notebooks/batch_study.ipynb @@ -501,15 +501,15 @@ " \"Mohtat2020_3\": pybamm.ParameterValues(\"Mohtat2020\"),\n", "}\n", "\n", - "# different values for the parameter \"Inner SEI open-circuit potential [V]\"\n", + "# different values for the parameter \"Negative inner SEI open-circuit potential [V]\"\n", "inner_sei_oc_v_values = [2.0e-4, 2.7e-4, 3.4e-4]\n", "\n", - "# updating the value of \"Inner SEI open-circuit potential [V]\" in all the dictionary items\n", + "# updating the value of \"Negative inner SEI open-circuit potential [V]\" in all the dictionary items\n", "for _, v, inner_sei_oc_v in zip(\n", " parameter_values.keys(), parameter_values.values(), inner_sei_oc_v_values\n", "):\n", " v.update(\n", - " {\"Inner SEI open-circuit potential [V]\": inner_sei_oc_v},\n", + " {\"Negative inner SEI open-circuit potential [V]\": inner_sei_oc_v},\n", " )\n", "\n", "# creating a Single Particle Model with \"electron-mitigation limited\" SEI\n", @@ -527,7 +527,7 @@ "batch_study.solve(initial_soc=1)\n", "\n", "labels = [\n", - " f\"Inner SEI open-circuit potential [V]: {inner_sei_oc_v}\"\n", + " f\"Negative inner SEI open-circuit potential [V]: {inner_sei_oc_v}\"\n", " for inner_sei_oc_v in inner_sei_oc_v_values\n", "]\n", "batch_study.plot(labels=labels)" @@ -627,7 +627,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3.8.12 ('conda_jl')", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -641,7 +641,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.4" + "version": "3.10.12" }, "toc": { "base_numbering": 1, @@ -663,5 +663,5 @@ } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/docs/source/examples/notebooks/models/half-cell.ipynb b/docs/source/examples/notebooks/models/half-cell.ipynb index 2085162694..90de72868b 100644 --- a/docs/source/examples/notebooks/models/half-cell.ipynb +++ b/docs/source/examples/notebooks/models/half-cell.ipynb @@ -65,14 +65,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEGCAYAAABCa2PoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAyGklEQVR4nO3dd3wUdf7H8dcnHQIkQAIGAiQhFOlIlCIoYG94KnroKXbs5bw7y+mp6Pm707OdHey9nBXxRFECKNXQO4TQa2iBEAgpn98fO9zFXBIC7Oxkdz/Px2MfzM7OzryH3eST75TvV1QVY4wx5mhFeB3AGGNMaLCCYowxxi+soBhjjPELKyjGGGP8wgqKMcYYv4jyOsDhSkpK0rS0NK9jGGNMUJk1a9Y2VU12cxtBV1DS0tLIycnxOoYxxgQVEVnj9jbskJcxxhi/sIJijDHGL6ygGGOM8QsrKMYYY/zCCooxxhi/cL2giEikiMwRkbFVvHaXiCwWkfki8qOItHE7jzHGGHcEooVyB7CkmtfmAFmq2g34FHgiAHmMMca4wNWCIiKpwDnAa1W9rqrZqlrkPJ0OpLqVJX9PMT8s3uLW6o0xxjWqymPfLGbJpt1eR6mR2y2UZ4G7gfJaLHst8G1VL4jICBHJEZGc/Pz8IwrySc46rnsnh+2FxUf0fmOM8crE5fm8+tOq8C0oInIusFVVZ9Vi2cuBLOAfVb2uqqNVNUtVs5KTj6zngL5tmwLwwxJrpRhjgsurk/M4plEc53Zr4XWUGrnZQjkRGCIiq4GPgMEi8l7lhUTkVOB+YIiqutZ86NkqkY7HNOTNKauxUSqNMcFi4YYCpq7cztUnphETVbcvzHUtnarep6qpqpoGDAMmqOrlFZcRkZ7AKHzFZKtbWZxtcc2J6SzdvIdpK7e7uSljjPGbV3/KIz4mkmEntPY6yiEFvNyJyCMiMsR5+g+gAfAvEZkrImPc3PaQHi1IahDDqz/lubkZY4zxi4279jF2/iaGndCahHrRXsc5pID0NqyqE4GJzvSDFeafGojtHxQXHcnwvmk8PX45yzbvocMxDQO5eWOMOSxvTlkFwNUnpnkbpJbq9gE5Fwzv24Z60ZGMmrzS6yjGGFOt3ftL+HDmOs7pmkJq4/pex6mVsCsoifVjGHZCK8bM3cjGXfu8jmOMMVX6aOZaCotLuX5AhtdRai3sCgrAtf3TUeCNn1d5HcUYY/5HSVk5b05ZTZ+MJnRNTfA6Tq2FZUFJbVyf87ql8OHMtRQUlXgdxxhjfuWb+ZvYVLCfEScFT+sEwrSgANxwclv2HijjvRmuj4ppjDG1pqqMnpxHZrMGDGzfzOs4hyVsC8qxKY04uX0yb05Zxf6SMq/jGGMM4OtmZfGm3YwYkEFEhHgd57CEbUEBuOHkDLYVHuDz2Ru8jmKMMQC8nL2SlIQ4ftOzpddRDltYF5S+GU3plprAqz/lUVZu3bEYY7z1y+odzFy9gxEnZdT5blaqEnyJ/UhEuPHktqzatpfvF232Oo4xJsy9lJ1Lk/gYhh1f97tZqUpYFxSAMzofQ1rT+rw0caV1GmmM8cyijQVkL8vnmhPTqBcT6XWcIxL2BSUyQrhpYFsWbChg0vIjG2vFGGOO1ssTV9IgNoor+qZ5HeWIhX1BAbigZyotEuJ4fkKutVKMMQG3atte/r1gE5f3aRMUnUBWxwoKEBMVwY0D2zJrzU6m5+3wOo4xJsyMmrSS6MgIru2f7nWUo2IFxXFJViuSG8byQvYKr6MYY8LIpoJ9fDZ7/X9+BwUzKyiOuOhIbjgpgym525m1ZqfXcYwxYeK1n1ZRrgRdNytVsYJSwWW9W9O4fjQvTLBWijHGfdsKi3l/xhrO79GCVk2Co4v6mlhBqaB+TBTXDcgge1k+CzcUeB3HGBPiRk/O40BpObcOyvQ6il9YQankir5taBgXxQsTcr2OYowJYdsKi3ln2mrO79GSjOQGXsfxCysolTSKi+bqfmmMW7SZ5Vv2eB3HGBOiXj3YOhkcGq0TCEBBEZFIEZkjImOreO0kEZktIqUiMtTtLLV19Ynp1I+J5HlrpRhjXOBrnazh/B4taRsirRMITAvlDmBJNa+tBa4CPghAjlprHB/D8L5pjJ2/0Vopxhi/e3VyHsWlZSHVOgGXC4qIpALnAK9V9bqqrlbV+UC5mzmOxA0nZVA/OpJ//mBXfBlj/Odg62RI9xYh1ToB91sozwJ3c5QFQ0RGiEiOiOTk5wemv63G8TFc0z+dbxZsYvHG3QHZpjEm9P23ddLO6yh+51pBEZFzga2qOuto16Wqo1U1S1WzkpOT/ZCudq7rn0HDuCie/WF5wLZpjAld2yu0TjKbhVbrBNxtoZwIDBGR1cBHwGARec/F7fldQv1oruufwfeLt7Bgvd2XYow5OqN/Ct3WCbhYUFT1PlVNVdU0YBgwQVUvd2t7brmmfxqJ9aN5evwyr6MYY4LY1j37eWfqGs4L0dYJeHAfiog8IiJDnOnjRWQ9cDEwSkQWBTrPoTSMi2bESb6752evtT6+jDFH5qXslRwoK+fOU9t7HcU1ASkoqjpRVc91ph9U1THO9C9OKyZeVZuqaudA5DlcV/ZNo2l8DM+Mt3MpxpjDt25HEe/PWMMlWamkJ8V7Hcc1dqd8LcTHRnHjyW35acU2Zq6y8VKMMYfnnz+uQES4/ZTQPHdykBWUWrq8TxuSG8by5PfLbFRHY0yt5W7dw+ez1zO8TxtSEup5HcdVVlBqqV5MJLcPzmTmqh1MXGZjzxtjauep75dTLzqSm0OkR+GaWEE5DMNOaE2bpvV5fNxSysqtlWKMqdn89bv4duFmrhuQQZP4GK/juM4KymGIjozgD6d3YOnmPXw1d4PXcYwxddw/vltG4/rRXDcguMeKry0rKIfp3K4pdGnZiKe+X05xaZnXcYwxddS0ldv5acU2bh6YScO4aK/jBIQVlMMUESHcc2ZHNuzax3vT13odxxhTB6kq//huKcc0iuOKvm28jhMwVlCOwIB2yfTPTOLF7Fz27C/xOo4xpo75duFmZq/dxe9Pa0dcdKTXcQLGCsoRuufMjuzYe4BXJ+d5HcUYU4ccKC3n8XFL6dC8IUN7tfI6TkBZQTlCXVMTOKdbCq/+tIqte/Z7HccYU0e8N30Na7YXcd/ZHYmMEK/jBJQVlKPwx9M7UFJWznM/2iBcxhgo2FfCcxNW0D8ziZPbB26ojbrCCspRSE+K57Lerflw5jpW2FDBxoS9l7JzKdhXwn1nd0QkvFonYAXlqN15anvqx0Ty12+WeB3FGOOhdTuKeHPqai7smUrnFglex/GEFZSj1CQ+hjtOacek5flMXLbV6zjGGI88+f0yBPjjGaHbPf2hWEHxg+F900hrWp/HvllCaVm513GMMQE2f/0uvpq7kesGpId8B5A1sYLiBzFREdx71rGs2FrIhzPtZkdjwomq8sjXi2kaH8ONJ7f1Oo6nrKD4yRmdm9M7vQlPj19OwT672dGYcDFm3kZy1uzk7jM7hE0XK9WxguInIsJfzu3Ern0lvJid63UcY0wAFB0o5W//XkqXlo3C7ibGqlhB8aMuLRMYelwqb05ZxZrte72OY4xx2csTV7J5934ePq9z2N3EWBUrKH72pzM6EB0ZYZcRGxPi1u0oYtTkPM7v0YKstCZex6kTXC8oIhIpInNEZGwVr8WKyMcikisiM0Qkze08bmvWKI7bBrdj/OItZNtlxMaErMe+WUKkCPee1dHrKHVGIFoodwDV/bl+LbBTVTOBZ4DHA5DHddf2TycjOZ6RYxbZmCnGhKCpudsYt2gztwxqG9aXCVfmakERkVTgHOC1ahY5H3jbmf4UOEVCoL+CmKgIRg7pzOrtRdYbsTEhprSsnJFfL6ZVk3pcNyDD6zh1itstlGeBu4Hq7vZrCawDUNVSoABoWnkhERkhIjkikpOfn+9SVP8a0C6Zs7ocwwvZuazfWeR1HGOMn7w1dTXLtuzh/rM7hdVYJ7XhWkERkXOBrao662jXpaqjVTVLVbOSk4OnB88Hzu2EIPx1rJ2gNyYUbCrYxzPjlzOoQzJndG7udZw6x80WyonAEBFZDXwEDBaR9yotswFoBSAiUUACsN3FTAHVMrEetw7OZNyizUxeHhwtK2NM9R4du5jScmXkkC5h2ZvwobhWUFT1PlVNVdU0YBgwQVUvr7TYGOBKZ3qos4y6lckL1w1IJz0pnoftBL0xQS172Vb+vWAztw3OpHXT+l7HqZMCfh+KiDwiIkOcp68DTUUkF7gLuDfQedwWGxXJQ+d1Im/bXkZPshP0xgSj/SVlPPTVItomx3P9SXYivjpRgdiIqk4EJjrTD1aYvx+4OBAZvDSwQzPO6ZrC89m5nNMthYzkBl5HMsYchhezc1m7o4gPru9NbJSdiK+O3SkfIA+d14nYqAj+/MUCQuyonjEhbWV+Ia9MWskFPVvSr22S13HqNCsoAdKsURz3nXUs0/N28K9Z672OY4ypBVXlgS8WUi86kj+ffazXceo8KygBNOz4Vhyf1pjHvlnCtsJir+MYYw7ho1/WMS1vO/edfSzJDWO9jlPnWUEJoIgI4W8XdqXoQCmPjl3sdRxjTA02F+zn/75ZQt+Mpgw73rqmrw0rKAGW2awhNw/M5Ku5G20MemPqKFXlgS8XUFJezt8v6mr3nNSSFRQP3DyoLRnJ8Tzw5UL2Fpd6HccYU8nX8zfxw5Kt/PH0DrRpGu91nKBhBcUDsVGRPH5RNzbs2sfj45Z6HccYU8H2wmIeHrOI7q0SufrEdK/jBBUrKB45Pq0JV/dL551pa5iau83rOMYYxyNjF7NnfwlPXNTNRmE8TFZQPPSnMzqQnhTPnz6dT6Ed+jLGc98v2sxXczdyy6BMOhzT0Os4QccKiofqxUTy5MXd2Fiwj//7t/VIbIyXthUWc9/nC+iU0oibB2Z6HScoWUHxWK82Tbh+QAYfzFhrPRIb4xFV5b7PF7BnfynP/LYHMVH2q/FIVNuXl4g8V4v371bVB/yYJyzddVp7flyyhXs/m8+4359Eo7horyMZE1Y+nbWe8Yu3cP/Zx9qhrqNQUxk+H5h1iMdFbgcMB3HRkTx5cXc2797PyDF2w6MxgbR+ZxEjv17MCelNuKa/XdV1NGrqbfgZVX27htcRkcZ+zhO2erZuzC2DMnl+Qi6DOiZzbrcWXkcyJuSVlyt//Nc8VJWnLu5uV3UdpZpaKFMO9WZVfdZ/Ucztp7SjR6tE7vt8ARt27fM6jjEh740pq5iet4OHzutMqyY2aNbRqqmgjBaRFSLyqIh0CliiMBYdGcE/h/WgvFz5/UdzKSu3bu6NccuC9QU8Pm4pp3VqzsVZqV7HCQnVFhRV7QmcC5QCn4rIPBG5V0TSAhUuHLVpGs8j53dh5uodvDJppddxjAlJhcWl3PbhbJIaxPLERd2sry4/qfHaOFVdpqojVbUTMBxIAH4UkUMeDjNH7sLjWnJe9xY8M345c9ft8jqOMSHFN8bJAtbuKOKfw3rSOD7G60gho1YXW4tIBNAMaA7EA9ZNrotEhL/+pgvNG8Vxx0dz2LO/xOtIxoSMz2Zv4Mu5G7njlPackN7E6zghpcaCIiIDROQlYD3wR+AnoIOqXnCoFYtInIjMdA6VLRKRkVUs00ZEfhSR+SIyUUTsQKYjoV40/xzWg/U793HPZ/Nt2GBj/GBlfiF/+XIhvdObcOtguxve36otKCKyDvgbsBjooapnqOqbqlpQy3UXA4NVtTvQAzhTRPpUWuZJ4B1V7QY84mzPOLLSmnD3GR3494LNvDV1tddxjAlq+w6UcesHc4iLjuCfw3raJcIuqOk+lP6quuZIV6y+P6kLnafRzqPyn9mdgLuc6WzgyyPdXqgacVIGOWt28tg3S+jeKpHjWtutP8YcLlXl/i8XsHTzbt648niOSYjzOlJIqumQ19WHerOIPHyI1yNFZC6+cy7jVXVGpUXmARc60xcADUWkaRXrGSEiOSKSk58fXv1diQhPXtydlMQ4bn1/Njv2HvA6kjFB5/0Za/l89gbuOKUdgzo28zpOyJLqjs2LyHrg6ZreC1yvqh0PuRGRROAL4DZVXVhhfgvgBSAdmIyvK5cuqrqrunVlZWVpTk7OoTYZchasL+Cil6fSp21T3rrqeCKsuW5MrcxZu5NLRk2jf2YSr18Zvj87IjJLVbPc3EZNLZRXgYY1PBo4yxySUyCygTMrzd+oqhc697zcX2FZU0nX1AQePK8Tk5fn8+wPy72OY0xQ2FZYzM3vz+aYhDie+W2PsC0mgVLtORRV/Z+rsg6HiCQDJaq6S0TqAacBj1daJgnYoarlwH3AG0ezzVD3u96tmbtuF89NyOXYlEac1TXF60jG1FklZeXc9sEcduw9wGc39SOxvt1v4jY3O/1PAbJFZD7wC75zKGNF5BERGeIsMxBYJiLL8d3j8piLeYKeiPDYBV3o2TqRuz6Zx+KNu72OZEydpKo8PGYR0/K2838XdKVLywSvI4WFas+h1FXheg6loq279zPkhSlERghjbj2Rpg1ivY5kTJ3y9tTVPDRmETecnMF9Zx3rdZw6wetzKKaOatYojlFX9PrP8eGSsnKvIxlTZ0xens/Irxdx6rHNufuMQ14zZPzokAVFRNo7d7MvdJ53ExEbpdFj3Vsl8sTQbsxYtYMHvlhod9IbA+Ru3cMtH8ymffOGPDush928GGC1aaG8iu+EeQmAqs4HhrkZytTO+T1actvgTD7OWceL2blexzHGU9sLi7n27RxioyJ47cosGsTWdN+2cUNt/sfrq+rMSt07l7qUxxymu05rz4ad+3jy++W0bFyPC3pad2gm/OwtLuWat35hc8F+Pri+D6mNbbAsL9SmoGwTkbY43aaIyFBgk6upTK2JCH+/qBubCvZz96fzad4wjn6ZSV7HMiZgSsrKufn92SzYUMCoK7Lo1ca6J/JKbQ553QKMAjqKyAbgTuAmN0OZwxMTFcErV/QiPSmeG96dxbLNe7yOZExAqCr3fDafScvzeeyCrpzWqbnXkcLaIQuKquap6qlAMtBRVfur6mrXk5nDklAvmjevPoF6MZFc8foM1m4v8jqSMa574rtlfD57A78/tT2XntDa6zhhrzZXed0lIncBNwDXO8+vFZEerqczh6VlYj3eu643B8rKuey16Wwu2O91JGNc88qklbw8cSWX9W7N7afY2CZ1QW0OeWUBNwItnccN+PrkelVE7nYxmzkC7Zs35O2rT2BXUQmXvz6D7YXFXkcyxu/e+HkVf/92Ked1b8Gj53exMeHriNoUlFTgOFX9g6r+AeiFbzjgk4CrXMxmjlD3Vom8fmUW63YUMfyNmey2IYRNCHlv+hoeGbuYMzsfw9OXdLd7TeqQ2hSUZvhGXzyoBGiuqvsqzTd1SO+MprxyRS+Wb9nD8NetqJjQ8EnOOh74ciGndGzGc5f2JDrSOvuoS2rzabwPzBCRh0TkIWAK8IGIxOMbHtjUUYM6NOOFy45j0cYCLn9tBgVFVlRM8Prkl3Xc89l8BrRL4sXfHUdMlBWTuqY2V3k9iu+8yS7ncaOqPqKqe1X1d+7GM0frjM7H8MrlvVi6aQ+XvTadnTbiowlCb05Zxd2fzad/ZhKjr8giLjrS60imCrUq8ar6C/AhvlEXt4qIXZ8XRE45tjmjh/dixdZCLn11up2oN0HlxexcRn69mDM6N+e1K7OoF2PFpK6qzWXDQ0RkBbAKmOT8+63bwYx/DezQjNevzGLVtr1cPGoa63fafSqmblNVnhi3lH98t4zf9GjBi5cdR2yUFZO6rDYtlEeBPsByVU0HTgWmu5rKuGJAu2TevbY32/YUc+FLU1myyQboMnVTSVk59362gJec+0yevqQHUXYCvs6rzSdUoqrbgQgRiVDVbHz3ppggdEJ6E/51Yz8iRLhk1DSm5233OpIxv7JnfwnXvp3DxznruH1wJo/9pouNBR8kalNQdolIA2Ay8L6I/BPY624s46YOxzTks5v70axhLMPfmMnY+Ru9jmQMAJsL9nPJqOlMyd3GExd1467TO9hNi0GkNgXlfKAI+D0wDlgJnOtmKOO+lon1+PTGfnRtmcCtH8zh2R+WU15ug3QZ7yzcUMAFL01h7fa9vHHV8VxyfCuvI5nDVJuC8qCqlqtqqaq+rarPAfcc6k0iEiciM0VknogsEpGRVSzTWkSyRWSOiMwXkbOPZCfMkWkcH8MH1/fmwuNa8uwPK7j1w9kUHbChbkzgfTFnPRe9PBUBPrmxLye3T/Y6kjkCtSkop1Ux76xavK8YGKyq3YEewJki0qfSMg8An6hqT3yjQL5Ui/UaP4qNiuSpi7vz57M78u3CzVz8yjQ27NrndSwTJkrLynl07GJ+//E8erRKZMxt/encIsHrWOYIVVtQROQmEVkAdHBaDwcfq4D5h1qx+hQ6T6OdR+VjKgo0cqYTADuY7wERYcRJbXlteBZrthdx7nM/MXHZVq9jmRC3dc9+rnh9Jq//vIqr+qXx3nW9SWoQ63UscxREterj5iKSADQG/gbcW+GlPaq6o1YrF4kEZgGZwIuqek+l11OA753txAOnquqsKtYzAhgB0Lp1615r1qypzebNEViZX8gt789m6eY93DookztPbWeXaxq/m7Q8nz98MpfC4lL++puuDO1lQ1e7TURmqaqrV+jWVFCa1PTG2hYVZ12J+O6yv01VF1aYf5eT4SkR6Qu8DnRR1fLq1pWVlaU5OTm13bQ5AvsOlPHwmEV8nLOO3ulNeO7SnjRvFOd1LBMCDpSW89T3yxg1OY/2zRvwwmXH0b55Q69jhYVAFJSaxpSfxX8PUVW+bk+BjNpuRFV3iUg2vnFUFlZ46VpnHqo6TUTigCTAjrd4qF5MJI8P7cbx6U144MsFnPHsZP76my6c262F19FMEMvdWsgfPpnLvPUF/K53a/5ybifrkyvEVFtQnLvij5iIJOO7KXKXiNTDd3L/8UqLrQVOAd4SkWOBOCD/aLZr/Gdor1R6tk7krk/mcesHc/h+0RYePb8LCfWjvY5mgkhZufLaT3k8NX459WMieel3x3F21xSvYxkX1NRC+Q8RGYJvQC2Aiao6thZvSwHeds6jROC7mmusiDwC5KjqGOAP+EZ+/D2+Vs9VWt0xOOOJtskN+OzGvrw0cSXP/biCmat28LeLujKoQzOvo5kgkLu1kD99Oo85a3dxeqfm/PWCLjRraIdPQ1W151D+s4DI34Hj8Y2LAnAp8Iuq/tnlbFWycyjemb9+F3d9Mo/crYWc2y2FB8/rZL8cTJX2l5TxyqSVvDRxJfVjIhk5pDNDurewu9495OlJ+Qoh5gM9Dp4od1occ1S1m5vBqmMFxVvFpWWMmpTHCxNyiY2O4N6zOnLp8a2tryXzH9lLt/LQmEWs3VFkf3jUIYEoKLW9HjSxwrTddRTGYqMiuf2Udoy7cwBdWiRw/xcLufDlqcxeu9PraMZj63YUcf07OVz91i9ERwrvX9ebFy47zopJGKnNOZS/AXOcq7QE37mUe2t+iwl1GckN+OD63nw+ewN/H7eUC1+ayvk9WnDPmR1pkVjP63gmgHYVHeCFCbm8M20NkRHCPWd25Nr+6TZEbxiq6T6UF4EPVHWKcwPi8c5LM1V1c6ACVmaHvOqevcWlvDxxJa/+lAfADSdlMOLktjSIrdU1HyZI7S8p4+2pq3kxO5fC4lKG9krl96e1JyXB/qCoi7y+sfEOfP1rpQCfAB+q6hw3w9SGFZS6a/3OIh4ft4yv522kcf1obhrYluF90+xegxBTXFrG57M38MKEXDbs2segDsncc1ZHOh7T6NBvNp6pKyfl2+ArLMOAevjGlv9QVZe7Gaw6VlDqvnnrdvHk98v4acU2mjWM5dbBmfz2+FY2fGuQKzpQyocz1/Hq5Dw2795P99QE7jmzI/0yk7yOZmqhThSUXy0s0hN4A+imqp78drCCEjxm5G3nqe+XM3P1Dlom1uOmgW0Z2ivVWixBpmBfCe9MXc0bU1axs6iEPhlNuGVQJv0zk+wy4CBSJwqKiETh665+GL672ifia6F85Waw6lhBCS6qyk8rtvH0+OXMXbeLZg1juX5ABpf1bk28nWOp0/L3FPPGlFW8O20NhcWlnNKxGTcPakuvNjV282fqKK/PoZyG7ybGs4GZwEfAV6rq6fC/VlCCk6oybeV2XpyYy5Tc7STWj+aqfmlc1S+NxPoxXsczFWzYtY/Rk1by0S/rOFBWzjldU7h5YCadWtg5kmDmdUGZAHwAfKaqdeYmAysowW/O2p28NHEl4xdvIT4mkt/1acN1/dNpZj0ae2plfiGvTFzJF3M2IAIX9kzlhpMzyEhu4HU04wd14pBXXWMFJXQs27yHlybm8vW8jURFRnBxr1RuOKktrZvW9zpaWFm0sYCXslfy74WbiI2KYNjxrRlxUobdTxRirKBUwQpK6FmzfS+jJufxac56ylQ5r1sKNw3MpMMxNk6Gm3JW7+DF7Fyyl+XTMDaK4f3acPWJ6TZqYoiyglIFKyiha8vu/bz+8yrem76GogNlnNapOTcPbEvP1o29jhYyDp7Lem7CCqbn7aBJfAzX9k/n8j5tSKhnwxKEMisoVbCCEvp27j3A29NW8+aU1RTsK6Ff26bcPDCTEzOb2mWqR0hVmbQ8n+cn5DJrzU6aNYzlhpPbctkJrakXY5dxhwMrKFWwghI+CotL+XDGWl79KY+te4rpnprALYMyOa1TcysstaSqTFyezzPjlzN/fQEtEuK4aWBbLs5qZfcDhRkrKFWwghJ+9pf4uvp4ZdJK1u4ookerRO49qyN9Mpp6Ha1Om7N2J4+PW8r0vB20alKPWwZmcuFxqdZpY5iyglIFKyjhq7SsnM9mr+eZ8SvYvHs/gzokc/eZHTk2xe6PqGjVtr08MW4p3y7cTFKDGG4b3I5LT2hthSTMWUGpghUUs7+kjLemrual7Fz2FJdySa9W3HNWR5rEh/cNkvsOlPFidi6jJ+cRHSlcf1IG1w3IsF6fDWAFpUpWUMxBBUUlPD9hBW9NXU2DuCjuPqMjw45vFZajR363aDOPfL2YDbv2cWHPltx7dkcb2Mr8SlAXFBGJAyYDsfgG8vpUVR+qtMwzwCDnaX2gmaom1rReKyimsuVb9vDAlwuZuWoHPVol8sTQbrRvHh73sOzYe4C/fLmQbxZsokPzhjxyfmd627klU4VgLygCxKtqoYhEAz8Dd6jq9GqWvw3oqarX1LReKyimKqrKl3M38OjYJRQWl/Kn0ztwTf90IkO4tfLdos3c/8UCCvaVcOep7RlxUgbRkXaexFQtEAXFtYOr6qtUhc7TaOdRU/W6FHiohteNqZaIcEHPVAa0S+bPny/gsX8vYfziLTx1SXdaNQmtrlz2l5Qx8utFfDhzHZ1SGvHutb3twgRTJ7j654yIRIrIXGArMF5VZ1SzXBsgHZhQzesjRCRHRHLy8/Ndy2uCX1KDWEZd0YunLu7Okk27Off5n8leutXrWH6zdnsRF708lQ9nruPGk9vy5S0nWjExdYarBUVVy1S1B5AKnCAiXapZdBi+cyxl1axntKpmqWpWcnKyS2lNqBARLuqVytjb+9MisR5Xv/ULT3+/jLLy4LoApbLspVs55/mfWLejiNeGZ3HvWR3tUmBTpwTk26iqu4Bs4MxqFhmGb2hhY/ymTdN4vri5H5dkpfLchFxGvJND0YFSr2MdkXenrebat3+hVeP6fHP7AE7t1NzrSMb8D9cKiogki0iiM10POA1YWsVyHYHGwDS3spjwFRcdyRNDu/Po+Z3JXraV346aztY9+72OVWtl5cpfxy7mL18tYnDHZvzrxr4hd07IhA43WygpQLaIzAd+wXcOZayIPCIiQyosNwz4SIPthhgTVK7om8ZrV2axMr+QC16cSl5+4aHf5LHSsnL+8MlcXvt5FVf1S2PUFVk2bLKp0+zGRhNWFm4o4Ko3ZyIifHh9bzKb1c37VUrKyrnzo7l8s2ATfzqjA7cMyvQ6kglygbhs2M7ombDSpWUCH43oA8BvR01n6ebdHif6XyVl5dzy/my+WbCJ+88+1oqJCRpWUEzYyWzWkI9G9CEqUrh09HRyt9adw1/l5cof/zWP7xdv4aHzOnH9SRleRzKm1qygmLDUNrkBH43oS2SEMPz1GWwq2Od1JFSVR8Yu5qu5G/nTGR24+sR0ryMZc1isoJiwlZ4Uz1tXn8Du/aUMf30mu4oOeJrn5UkreWvqaq45MZ2bB7b1NIsxR8IKiglrXVomMHp4L9ZsL2LEu7MoKSv3JMe4hZt5Ytwyzu/RggfOOdZGpDRByQqKCXv92ibxxNBuzFy1g5FfLwr49pdu3s1dn8yle6tEHr+oW1h2v29Cg13Ubgzwm54tWbJpN6Mm53FsSiN+17tNQLa7c+8Brn8nhwaxUYy+opeN826CmrVQjHHcfWZHTm6fzENfLWLO2p2ub09V+dOn89hSUMzo4Vk0b2QDYpngZgXFGEdkhPDcsJ40bxTH7R/NYff+Ele39/bU1fywZCv3nd2RHq0SXd2WMYFgBcWYChLqR/PPYT3YuGs/D3yxELd6kli4oYD/+/dSTj22GVf1S3NlG8YEmhUUYyrJSmvCnae0Y8y8jXw2e4Pf17+/pIw7P55L4/honhja3a7oMiHDCooxVbh5UCYnpDdh5NeL2LLbv70TPz9hBblbC3liaHeaxMf4dd3GeMkKijFViIwQHr+oGwdKy7nfj4e+Fm4o4JVJeQztlcrJ7W2wOBNarKAYU430pHj+eHoHfliyha/nbzrq9ZWUlXP3p/NpEh/DX87p5IeExtQtVlCMqcE1/dPp3iqRkWMWUbDv6K76enfaGhZv2s2j53cmoX60nxIaU3dYQTGmBpERwmO/6cKOogM8/+OKI17P9sJinvlhOQPaJXFG52P8mNCYusMKijGH0KVlAsOOb8VbU1cfcVf3T36/nKIDZTx0Xie7qsuELCsoxtTCH07vQL2YSP76zeLDfu+yzXv46Je1DO/bps6OEGmMP1hBMaYWkhrEctvgTCYuy+eX1TsO673//HE58TFR3D64nUvpjKkbrKAYU0tX9EkjqUEsz4xfXuv3LN64m38v2Mw1J6bR2O45MSHOtYIiInEiMlNE5onIIhEZWc1yl4jIYmeZD9zKY8zRqhcTyU0D2zJ15XZm5G2v1Xuen7CChnFRXNvfhvI1oc/NFkoxMFhVuwM9gDNFpE/FBUSkHXAfcKKqdgbudDGPMUftd71bk9wwlpcnrTzksut3FvHdos1c3qeNXSZswoJrBUV9Dl4SE+08Kt9ufD3woqrudN6z1a08xvhDXHQkv+vdmonL8lm1bW+Ny747fQ0AV/QJzNgqxnjN1XMoIhIpInOBrcB4VZ1RaZH2QHsRmSIi00XkzGrWM0JEckQkJz8/383IxhzSZb1bEx0pvDttTbXLFJeW8fEv6zi90zG0SKwXwHTGeMfVgqKqZaraA0gFThCRLpUWiQLaAQOBS4FXRSSxivWMVtUsVc1KTrb+j4y3mjWM48wuKXw2ez0HSqseg37Ssnx2FZXw2xNaBTidMd4JyFVeqroLyAYqt0DWA2NUtURVVwHL8RUYY+q03/RoQcG+En7OrbrFPHb+JhrXj6Z/ZlKAkxnjHTev8ko+2NoQkXrAacDSSot9ia91gogk4TsEludWJmP8ZUC7ZBrFRfH1vP/tNHJ/SRk/LNnCmV1SiI60K/NN+HDz254CZIvIfOAXfOdQxorIIyIyxFnmO2C7iCzG14L5k6rW7npMYzwUExXBGZ2P4YfFWygt+/Vhr5zVOyk6UMZpnZp5lM4Yb0S5tWJVnQ/0rGL+gxWmFbjLeRgTVE7ukMy/Zq1n3voCerVp/J/5P+duIypC6J3e1MN0xgSetceNOUIntk1CBH5ese1X86fkbuO41o2Jj3Xt7zVj6iQrKMYcocbxMXRu0Yhpef8tKEUHSlm0sYA+GU08TGaMN6ygGHMUerZqzMINuykv992zu2TTbsoVuqYmehvMGA9YQTHmKHRNTaCwuJQ85675BesLfPNbJngZyxhPWEEx5ih0d1oi89fvAmDBht0kNYiheaNY70IZ4xErKMYchcxmDYiJimDJpt0ALN28m04tEmxURhOWrKAYcxQiI4SMpHjy8veiqqzatpeMpHivYxnjCSsoxhyltskNyNu2l/w9xRQdKCPdCooJU1ZQjDlKGcnxrN1RxIqtvtEa0qygmDBlBcWYo5SRHE9ZuTJ5ua+jyPSmVlBMeLKCYsxRatW4PgDT87YTIdAiMc7jRMZ4wwqKMUfpmARfAZm3voCmDWKJsh6GTZiyb74xR6l5ozgOXiXcrKHdf2LClxUUY45SdGTEfwqJFRQTzqygGOMHKQm+ceObNbTzJyZ8WUExxg9SnPMoDeKsy3oTvqygGOMHSQ18h7pio+xHyoQv+/Yb4weJ9aMBX1csxoQrKyjG+EFD51BX0YEyj5MY4x3XCoqIxInITBGZJyKLRGRkFctcJSL5IjLXeVznVh5j3NQg1tdCKdxf6nESY7zj5hnEYmCwqhaKSDTws4h8q6rTKy33sare6mIOY1x38GR8YbEVFBO+XCsoqqpAofM02nmoW9szxkuNnXMoZeX2FTfhy9VzKCISKSJzga3AeFWdUcViF4nIfBH5VERaVbOeESKSIyI5+fn5bkY25oj0a5vEbYMzGXl+Z6+jGOMZ8TUkXN6ISCLwBXCbqi6sML8pUKiqxSJyA/BbVR1c07qysrI0JyfH1bzGGBNqRGSWqma5uY2AXOWlqruAbODMSvO3q2qx8/Q1oFcg8hhjjPE/N6/ySnZaJohIPeA0YGmlZVIqPB0CLHErjzHGGHe5eZVXCvC2iETiK1yfqOpYEXkEyFHVMcDtIjIEKAV2AFe5mMcYY4yLAnIOxZ/sHIoxxhy+kDmHYowxJvRZQTHGGOMXVlCMMcb4hRUUY4wxfhF0J+VFJB9Yc4RvTwK2+TFOXRGK+2X7FBxCcZ8gNPerg6o2dHMDQTe8nKomH+l7RSTH7ascvBCK+2X7FBxCcZ8gNPdLRFy/PNYOeRljjPELKyjGGGP8ItwKymivA7gkFPfL9ik4hOI+QWjul+v7FHQn5Y0xxtRN4dZCMcYY4xIrKMYYY/wibAqKiJwpIstEJFdE7vU6T1VEZLWILBCRuQcv8RORJiIyXkRWOP82duaLiDzn7M98ETmuwnqudJZfISJXVpjfy1l/rvNecWEf3hCRrSJScSA11/ehum24uE8Pi8gG57OaKyJnV3jtPiffMhE5o8L8Kr+DIpIuIjOc+R+LSIwzP9Z5nuu8nubHfWolItkislhEFonIHc78oP2satinYP+s4kRkpojMc/Zr5JFm8df+VktVQ/4BRAIrgQwgBpgHdPI6VxU5VwNJleY9AdzrTN8LPO5Mnw18CwjQB5jhzG8C5Dn/NnamGzuvzXSWFee9Z7mwDycBxwELA7kP1W3DxX16GPhjFct2cr5fsUC6872LrOk7CHwCDHOmXwFucqZvBl5xpocBH/txn1KA45zphsByJ3vQflY17FOwf1YCNHCmo4EZzv/rYWXx5/5Wm9VfO12XH0Bf4LsKz+8D7vM6VxU5V/O/BWUZkOJMpwDLnOlRwKWVlwMuBUZVmD/KmZcCLK0w/1fL+Xk/0vj1L1/X96G6bbi4Tw9T9S+pX323gO+c71+V30Hnl8U2IKryd/Xge53pKGc5cekz+wrfIHhB/1lVsU8h81kB9YHZQO/DzeLP/a3uES6HvFoC6yo8X+/Mq2sU+F5EZonICGdec1Xd5ExvBpo709XtU03z11cxPxACsQ/VbcNNtzqHf96ocNjmcPepKbBLVUsrzf/VupzXC5zl/co5JNIT31++IfFZVdonCPLPSkQiRWQusBUYj69FcbhZ/Lm/VQqXghIs+qvqccBZwC0iclLFF9X3Z0JQX+cdiH0I0P/Ty0BboAewCXjK5e25QkQaAJ8Bd6rq7oqvBetnVcU+Bf1npaplqtoDSAVOADp6m6hq4VJQNgCtKjxPdebVKaq6wfl3K/AFvi/OFhFJAXD+3eosXt0+1TQ/tYr5gRCIfahuG65Q1S3OD3k58Cq+z4pDZK9q/nYgUUSiKs3/1bqc1xOc5f1CRKLx/eJ9X1U/d2YH9WdV1T6Fwmd1kKruArLxHX463Cz+3N8qhUtB+QVo51yxEIPvRNUYjzP9iojEi0jDg9PA6cBCfDkPXjlzJb7jwjjzhztX3/QBCpzDCN8Bp4tIY6dpfzq+456bgN0i0se52mZ4hXW5LRD7UN02XHHwF6LjAnyf1cEcw5wrbdKBdvhOTlf5HXT+Qs8GhlaRveI+DQUmOMv7I78ArwNLVPXpCi8F7WdV3T6FwGeVLCKJznQ9fOeFlhxBFn/ub9XcOBlWFx/4rlJZju/Y4/1e56kiXwa+qyvmAYsOZsR3HPNHYAXwA9DEmS/Ai87+LACyKqzrGiDXeVxdYX4Wvh+mlcALuHPS8EN8hxVK8B1zvTYQ+1DdNlzcp3edzPOdH9SUCsvf7+RbRoUr6ar7Djqf/UxnX/8FxDrz45znuc7rGX7cp/74DjXNB+Y6j7OD+bOqYZ+C/bPqBsxx8i8EHjzSLP7a3+oe1vWKMcYYvwiXQ17GGGNcZgXFGGOMX1hBMcYY4xdWUIwxxviFFRRjjDF+YQXFGGOMX1hBMWFLRJrKf7s03yz/7eK8UERecmF7b4nIKhG5sYZlBoiv+/WF1S1jTF1l96EYg2/MDKBQVZ90cRtvAWNV9dNDLJfmLNfFrSzGuMFaKMZUIiIDRWSsM/2wiLwtIj+JyBoRuVBEnhDfwFHjnL6jDg4mNUl8PUV/V6m7j+q2c7GILBTfwEmT3d4vY9xmBcWYQ2sLDAaGAO8B2araFdgHnOMUleeBoaraC3gDeKwW630QOENVuzvrNiaoRR16EWPC3reqWiIiC/CNbjfOmb8A38BbHYAuwHhf/4RE4uv761CmAG+JyCfA54da2Ji6zgqKMYdWDKCq5SJSov898ViO72dIgEWq2vdwVqqqN4pIb+AcYJaI9FJVv3d5bkyg2CEvY47eMiBZRPqCb0wOEel8qDeJSFtVnaGqDwL5/HpMCmOCjrVQjDlKqnpARIYCz4lIAr6fq2fxDUNQk3+ISDt8LZwf8Q1dYEzQssuGjQkQu2zYhDo75GVM4BQAjx7qxkbga2BbwFIZ4yfWQjHGGOMX1kIxxhjjF1ZQjDHG+IUVFGOMMX5hBcUYY4xf/D89aQhfkhsfKgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAGwCAYAAACJjDBkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABgKklEQVR4nO3deVhUZcMG8HsYYFgGhn3fRBSVxX1Bc0tMzUzbXDLRUlOz0upr4a2sbMFey9LqNcvMSs1cy8wl09DcN1BARVEQZFWQHQaYOd8fo1PkBshwzszcv+ua65LhzMzNETg3z3nmOTJBEAQQERERUaNYiB2AiIiIyBixRBERERE1AUsUERERUROwRBERERE1AUsUERERUROwRBERERE1AUsUERERURNYih2gpWm1WuTk5MDBwQEymUzsOERERNQAgiCgrKwMPj4+sLCQxhiQ2ZWonJwc+Pv7ix2DiIiImiArKwt+fn5ixwBghiXKwcEBgO4/wdHRUeQ0RERE1BClpaXw9/fXH8elwOxK1PVTeI6OjixRRERERkZKU3GkcVKRiIiIyMiwRBERERE1AUsUERERUROwRBERERE1AUsUERERUROwRBERERE1AUsUERERUROwRBERERE1AUsUERERUROwRBERERE1gWRK1Lx58yCTyTB79uxbbvP111+jb9++cHZ2hrOzM6Kjo3H48OGWC0lERER0jSRK1JEjR7BkyRJERkbedrv4+HiMGzcOf/75Jw4cOAB/f3/cd999yM7ObqGkRERERDqil6jy8nKMHz8eX3/9NZydnW+77cqVK/HMM8+gU6dOaNeuHZYuXQqtVoudO3e2UFoiIiK6FUEQsC/tCjRaQewoLUL0EjVz5kwMHz4c0dHRjX5sZWUlamtr4eLicstt1Go1SktL690MITm7BNN+OIqX1pwwyPMTERFJ3fHMYoxfegiDF+w2iyJlKeaLr169GsePH8eRI0ea9PhXX30VPj4+ty1gcXFxeOedd5oascE0WgHbU/LhbGcFQRAgk8kM/ppERERS8tORTABA5wBnyC1M/zgo2khUVlYWZs2ahZUrV8LGxqbRj583bx5Wr16NjRs33vbxsbGxKCkp0d+ysrLuJvYthXo5wNJChquVtUi/UmGQ1yAiIpKqcnUdNp/MBQCM7eEvcpqWIVqJOnbsGAoKCtClSxdYWlrC0tISu3fvxqJFi2BpaQmNRnPLx3700UeYN28efv/99ztORlcoFHB0dKx3MwQbKzmiWrsCAH5JzDHIaxAREUnV5hM5qKzRINjdHt0Cbz/H2VSIVqIGDRqEpKQkJCYm6m/dunXD+PHjkZiYCLlcftPH/fe//8W7776Lbdu2oVu3bi2c+vYe7eoHAFh//BK0ZnAumIiI6LrVR3RnesZ08zebKS2izYlycHBAeHh4vfvs7e3h6uqqvz8mJga+vr6Ii4sDAHz44YeYM2cOVq1ahaCgIOTl5QEAlEollEply34BN3FfBy84KCxx6WoVDl4oRO8QN7EjERERGVxqXhkSs4phaSHDw138xI7TYkR/d97tZGZmIjc3V//x4sWLUVNTg0cffRTe3t7620cffSRiyr/ZWsvxYCcfAMCPRwwz94qIiEhqfrp2zBvU3gPuDgqR07QcUd+d92/x8fG3/TgjI6PFsjTVuB4BWHkoE9uT81BYroar0ny+mYiIyPyo6zTYkHAJADC2e4DIaVqWpEeijFG4rwoRvirUaLTYcJwrqRMRkWnbcSofxZW18HK0Qb+27mLHaVEsUQYwroeuif94JBOCwAnmRERkulYd0q0N9Vg3P7NYG+qfWKIM4MFOPrCzluPC5QocTi8SOw4REZFBpF+pwP7zhZDJgDHdzWNtqH9iiTIApcISD3a8NsH8cKbIaYiIiAxj9bVj3IC27vBzthM5TctjiTKQ66f0tiTn4WpFjchpiIiImpe6ToO1x3QTyq8f88wNS5SBRPqp0MHbETV1WmxI4ARzIiIyLb+n5KOoogZejja4t52H2HFEwRJlIDKZDOOuXTto9WFOMCciItNyfUL56O7+sJSbZ50wz6+6hYzs7AsbKwucKyjHsYtXxY5DRETULC5cLseBC4WwMNMJ5dexRBmQo40VRkTqJpiv4gRzIiIyEdevkzcg1AO+TrYipxEPS5SBjeupm2z328lclFTWipyGiIjo7qjrNFhn5hPKr2OJMrDO/k4I9XSAuk6LnxM5wZyIiIzb9n9MKB8Yal4rlP8bS5SB/XOC+apDnGBORETGbdWhiwDMe0L5deb91beQhzr7wcbKAqn5ZZxgTkRERuvC5XIcvFAECxkw1ownlF/HEtUCVHZW+hXMfzh4UeQ0RERETXP9KhwDQz3gY8YTyq9jiWohE3oFAQC2JOXiSrla3DBERESNVF3LCeX/xhLVQiL8VOjo74RajYA1R7PEjkNERNQo25LzcLWyFt4qGwww8wnl17FEtaAnri13sPJgJjRaTjAnIiLj8f2BDAC6UShzn1B+HfdCCxrR0QcqWytkF1chPrVA7DhEREQNkpxdguOZxbC0kHFC+T+wRLUgGys5RnfzA8AJ5kREZDxWXDtmDQ33goejjchppIMlqoWN7xkIANh99jIyCytFTkNERHR7JZW1+sWiY6KCxA0jMSxRLSzIzR792rpDEICVhzkaRURE0rb2WBaqa7Vo5+WA7kHOYseRFJYoEUzopRuNWnMkC9W1GpHTEBER3ZxWK+hP5U2ICoRMJhM5kbSwRIng3nYe8FHZ4GplLbYk5Yodh4iI6Kb+SruCjMJKOCgsMaqTr9hxJIclSgRyCxkev7bcwQpOMCciIon64dqyBo909YO9wlLcMBLEEiWS0d39YSWX4XhmMZKzS8SOQ0REVE9WUSV2ntEtx/PEtWkoVB9LlEg8HGwwNNwbALDyEEejiIhIWlYdzoQgAH1CXBHioRQ7jiSxRIno+gTznxNyUFJZK3IaIiIinepaDX46ortE2fVrv9KNWKJE1D3IGe28HFBVq+H19IiISDK2JOWiqKIGPiobRLf3EDuOZLFEiUgmk2FS7yAAwHcHMng9PSIikoTvD+immTzek9fJux3uGZGN6uwLJzsrXLpahZ2n88WOQ0REZi7pUgkSs4phJZdhTPcAseNIGkuUyGys5BjXQ/dNunx/hrhhiIjI7H27Px0AMCzcG+4OCpHTSBtLlAQ80SsQcgsZ9p8vRGpemdhxiIjITF0uU2PzCd0i0E/d00rkNNLHEiUBvk62GBLmCQBYfu0vACIiopa28tBF1Gi06BzghE7+TmLHkTyWKImY1FvX+DcmZONqRY3IaYiIyNyo6zT6q2g82YejUA3BEiUR3YOcEebjiOpaLX7icgdERNTCNp/IxZXyGng52mBYuJfYcYwCS5RE/HO5gx8OXESdRituICIiMhuCIOgnlE+ICoQVlzVoEO4lCRnR0Qcu9tbILq7CjlNc7oCIiFrG0YtXkZxdCoWlBR7vwWUNGkoyJWrevHmQyWSYPXv2LbdJSUnBI488gqCgIMhkMnz66actlq8l2FjJ9d+833K5AyIiaiHL9upGoR7u4gtne2uR0xgPSZSoI0eOYMmSJYiMjLztdpWVlQgODsa8efPg5WWa52uvL3dwOL0IKTklYschIiITd+lqJban5AH4+01O1DCil6jy8nKMHz8eX3/9NZydnW+7bffu3TF//nyMHTsWCoVpLgDmpfp7Qt93HI0iIiID++HARWgFoE+IK0K9HMSOY1REL1EzZ87E8OHDER0dbZDnV6vVKC0trXeTuutvLf05MQeF5WqR0xARkamqrKnDj4czAQBPchSq0UQtUatXr8bx48cRFxdnsNeIi4uDSqXS3/z9/Q32Ws2lS4ATOvqpUFOnxYqDmWLHISIiE7XheDZKq+sQ6GqHe9t5iB3H6IhWorKysjBr1iysXLkSNjY2Bnud2NhYlJSU6G9ZWdJfg0kmk2Fy32AAwA8HM1BdqxE5ERERmRqtVsC3+3QTyif1DoKFhUzkRMZHtBJ17NgxFBQUoEuXLrC0tISlpSV2796NRYsWwdLSEhpN8xQHhUIBR0fHejdjcH+4F3ydbHGlvAY/J2SLHYeIiEzMnnOXcf5yBZQKSzza1U/sOEZJtBI1aNAgJCUlITExUX/r1q0bxo8fj8TERMjlcrGiSYKl3EK/+ObSvenQagVxAxERkUlZ+pduFGp0N3842FiJnMY4WYr1wg4ODggPD693n729PVxdXfX3x8TEwNfXVz9nqqamBqdOndL/Ozs7G4mJiVAqlQgJCWnZL6AFjOnhj4U7zyGtoBy7z17GQJ6vJiKiZpCSU4K9aVcgt5DhqXuCxI5jtER/d97tZGZmIjc3V/9xTk4OOnfujM6dOyM3NxcfffQROnfujClTpoiY0nAcbawwtrtuIvzSvRdETkNERKbi+ijU8Ahv+DnbiZzGeIk2EnUz8fHxt/04KCgIgmBep7WevKcVvt2fgX1phUjJKUGYj0rsSEREZMRyS6rw64kcAMDUa29ioqaR9EgUAb5Otrg/whsA8M21vxyIiIiaavm+DNRpBfQKdkGEH/8wvxssUUZgal/dAmibTuQgr6Ra5DRERGSsyqprseqQbv3Bp/txFOpusUQZgUg/J/QIckGdVsByXgqGiIia6KcjWShT1yHEQ4kBbflmpbvFEmUkplwbjVp16CIq1HUipyEiImNTq9Fi2V7dtJCpfVtxcc1mwBJlJKLbe6KVmz1Kq+uw5qj0V10nIiJp2ZKUi5ySargprTGyk6/YcUwCS5SRsLCQ4al7dKNRy/alQ8PFN4mIqIEEQcBXe3RL5UyMCoKNlXkvaN1cWKKMyKNd/OBsZ4WsoipsTc698wOIiIgAHLhQiJScUthYWeCJXoFixzEZLFFGxNZajpioIADA4vjzZrdmFhERNc3X10ahRnfzh7O9tchpTAdLlJGZ2DsItlZypOSUYm/aFbHjEBGRxKXmleHP1MuQyYDJ16aFUPNgiTIyLvbWGNtDdymYxfHnRU5DRERStzg+DQAwLNwLga72IqcxLSxRRmhK32BYWsiw/3whTmQVix2HiIgkKquoEr+e1M2hfWZAiMhpTA9LlBHydbLFg518AABf7uZoFBER3dxXey5AoxXQt40bwn15iZfmxhJlpKb3bw0A2JaShwuXy0VOQ0REUnO5TK1fV3DGgNYipzFNLFFGqq2nA6Lbe0AQoF/7g4iI6Lpv96VDXadFJ38nRAW7ih3HJLFEGbHrf1lsOJ6N/FJemJiIiHRKq2vxw4GLAIBnBrSGTMZLvBgCS5QR6xrogu5Bzqj5x/WQiIiIVhy8iDJ1Hdp4KBHd3lPsOCaLJcrIXR+NWnkoEyVVtSKnISIisVXXarBsbwYA3fxZXmjYcFiijNzAUA+EejqgXF2HFQcvih2HiIhEtvbYJVwpV9d7JzcZBkuUkZPJZJg+IBiAbhJhda1G5ERERCSWOo0WX+3RLX0ztW8rWMl5mDck7l0T8ECkD/ycbXGlvAY/Hs4UOw4REYnkt6RcZBVVwcXeGmO6B4gdx+SxRJkAK7mFfm7Ukt0XoK7jaBQRkbnRagX870/dKNSTvYNgay0XOZHpY4kyEY929YO3ygZ5pdVYe/SS2HGIiKiF/X4qH6n5ZVAqLBETFSR2HLPAEmUiFJZyTOunmxu1OP48ajVakRMREVFLEQQBi3aeAwBM6h0ElZ2VyInMA0uUCRnbIwBuSgWyi6uwMSFb7DhERNRCdp4uwKncUthZyzH5nlZixzEbLFEmxMZKjqf76X54/vdnGuo4GkVEZPIEQcBnu3SjUDFRQXC2txY5kflgiTIx43sGwtnOChmFldh8MlfsOEREZGC7z17GiUslsLWSY0pfjkK1JJYoE2OvsMSUvrq5UZ//mQatVhA5ERERGYogCFh4bS7UE710Uzqo5bBEmaCYqEA42lgiraAc21LyxI5DREQGsi+tEAmZxVBYWmDqtTcXUcthiTJBDjZWmNRHN6T72a40CAJHo4iITNGia3OhxvUIgIeDjchpzA9LlIl6qk8Q7K3lOJ1bij9OF4gdh4iImtnBC4U4nF4Ea7kFpvdvLXYcs8QSZaKc7KwR0zsIAPDZrnMcjSIiMjHX14Ua090fXiqOQomBJcqETbmnFWyt5Dh5qQS7znA0iojIVBzNKML+84WwksswfQBHocTCEmXCXJUKTLw2GrVgx1mORhERmYhP/9CNQj3a1R++TrYipzFfLFEm7ul+wbC3liMlpxTbU/LFjkNERHfp0IVC7E27Aiu5DM9wFEpULFEmzsXeGk9duwTAJzvOct0oIiIjJggCPv79LADdXCh/FzuRE5k3ligzMOWeYDjYWCI1vwxbkrmKORGRsdqbdgWHM4pgbWmBZwe2ETuO2WOJMgMqOytMuUe3CNunf5yDhqNRRERG55+jUE/0DOQ78iRAMiVq3rx5kMlkmD179m23W7t2Ldq1awcbGxtERERgy5YtLRPQyD15TxBUtlZIKyjHphPZYschIqJG2nWmAIlZxbC1kmMG50JJgiRK1JEjR7BkyRJERkbedrv9+/dj3LhxmDx5MhISEjBq1CiMGjUKycnJLZTUeDnaWOHpa5cEWPjHOdRptCInIiKihtJqBSzYoRuFmtg7CO4OvEaeFIheosrLyzF+/Hh8/fXXcHZ2vu22CxcuxNChQ/Hyyy+jffv2ePfdd9GlSxd8/vnnLZTWuE3qHQQXe2tkFFZiQwJHo4iIjMX2lDyk5JRCqbDENF4jTzJEL1EzZ87E8OHDER0dfcdtDxw4cMN2Q4YMwYEDB275GLVajdLS0no3c2WvsMT0/rofvkU7z6GWo1FERJKn0Qr45A/dKNRTfYLgbG8tciK6TtQStXr1ahw/fhxxcXEN2j4vLw+enp717vP09EReXt4tHxMXFweVSqW/+fv731VmYzehVxDclApculqFtUcviR2HiIjuYPPJHJzNL4ejjSUm9+UolJSIVqKysrIwa9YsrFy5EjY2hnuHQWxsLEpKSvS3rKwsg72WMbC1lusXZ/ts1zlU12pETkRERLdSp9HqVyd/ul8wVLZWIieifxKtRB07dgwFBQXo0qULLC0tYWlpid27d2PRokWwtLSERnPjwd3Lywv5+fVX3c7Pz4eXl9ctX0ehUMDR0bHezdw93jMAPiob5JZU44cDF8WOQ0REt7DheDbSr1TA2c4Kk/q0EjsO/YtoJWrQoEFISkpCYmKi/tatWzeMHz8eiYmJkMvlNzwmKioKO3furHffjh07EBUV1VKxTYKNlRyzB7cFAHwRn4bS6lqRExER0b9V12r0c6GeGRACpcJS5ET0b6KVKAcHB4SHh9e72dvbw9XVFeHh4QCAmJgYxMbG6h8za9YsbNu2DR9//DHOnDmDt99+G0ePHsWzzz4r1pdhtB7u7IsQDyWKK2vx1e4LYschIqJ/+f5ABnJLquGjssGEqECx49BNiP7uvNvJzMxEbu7flynp3bs3Vq1aha+++godO3bEunXr8PPPP+tLFzWcpdwCLw8JBQB8szcdBWXVIiciIqLrSqpq8cWf5wEALwxuCxurG8/OkPhkgiCY1TVASktLoVKpUFJSYvbzowRBwEP/24/ErGJM6BWId0exjBIRScGH285gcfx5tPVUYuusfpBbyMSOJDopHr8lPRJFhiWTyfDq0HYAgB8PZ+JiYYXIiYiIKK+kGsv2pgMAXhnSjgVKwliizFxUa1f0b+uOun9cUoCIiMSzcOdZqOu06BbojEHtPcSOQ7fBEkX6uVG/JOYgJadE5DREROYrraAcPx3RrWf42rB2kMk4CiVlLFGEcF8VHuzoAwCYvz1V5DRERObro+2p0ApAdHtPdAtyETsO3QFLFAEAXhzcFpYWMsSnXsaB84VixyEiMjvHM69iW0oeLGTAK0NDxY5DDcASRQCAIDd7jOsRAAB4f8spaLVm9aZNIiJRCYKAeVvPAAAe6eKHtp4OIieihmCJIr1Z0W2gVFgiObsUPydmix2HiMhs/H4qH4fTi6CwtNBfUYKkjyWK9NyUCjwzUHdx4vnbU1FVw4sTExEZWk2dVj8KNaVvK/g62YqciBqKJYrqeaqP7gc4t6Qa3+zl5WCIiAxtxcGLSL9SATelNWYMCBE7DjUCSxTVY2Ml109oXBx/HpfL1CInIiIyXcWVNVi48xwA4MXBobzIsJFhiaIbjIj0QaSfChU1f19BnIiImt+inWkoqapFqKcDRnfzEzsONRJLFN3AwkKGN4Z3AACsPpyJs/llIiciIjI96Vcq8P2BDADA68Pbw1LOQ7Kx4f8Y3VSPVi4YEuYJrQB8sOW02HGIiEzOvK2nUacVMCDUHf3auosdh5qAJYpu6bVh7fULcP517rLYcYiITMbBC4XYnpIPuYUMr9/fXuw41EQsUXRLrdzs8USvQADAe5tPo06jFTkREZHx02oFvPfbKQDA2O7+aMOFNY0WSxTd1qxBbaCytUJqfhlWHc4UOw4RkdFbd+wSkrNLoVRY4gUurGnUWKLotpztrfF/9+l+yD/+/SyuVtSInIiIyHiVVNXiw226hTWfHxQCN6VC5ER0N1ii6I7G9QhAOy8HlFTV4uMdqWLHISIyWgv/OIfCihoEu9tjUu9WYsehu8QSRXdkKbfA2w+GAQBWHcpESk6JyImIiIzP2fwyfHdtSYO3RoTB2pKHYGPH/0FqkF7Brhge6Q2tALyz6RQEQRA7EhGR0RAEAe/8mgKNVsDgDp7ozyUNTAJLFDXYf+5vDxsrCxzOKMLmk7lixyEiMhrbkvOwL60Q1pYWePPaYsZk/FiiqMF8nWzxzLWLY36w5TQqa+pETkREJH1VNRq895tu0eJp/YIR4GonciJqLixR1ChP9wuGn7MtckuqsTj+vNhxiIgk78vd55FdXAUflY3+D1EyDSxR1Cg2VnL9dfWW7LmAzMJKkRMREUlXVlElvtyt+4Pz9eEdYGstFzkRNSeWKGq0IWGeuCfEDTV1WszZlMxJ5kRENyEIAt7elAJ1nRa9gl1wf4SX2JGombFEUaPJZDLMHRkGa7kF4lMvY1tyntiRiIgkZ3tKPnaeKYCVXIb3RoVDJpOJHYmaGUsUNUmwuxLT+wcDAN759RTK1ZxkTkR0Xbm6Du/8mgJAN5c0xIPXxzNFLFHUZM8MDEGgqx3ySqvxyY6zYschIpKMT3ecRW5JNfxdbPHswDZixyEDYYmiJrOxkmPuyHAAwPL9GVzJnIgIQEpOCb7dnwEAmDsynJPJTZhlQzZycXFp1JPKZDIcP34cgYGBTQpFxqN/W3cMj/DGb0m5eOPnZKyf3hsWFjzvT0TmSasV8PrGZGi0AoZHeGNgqIfYkciAGlSiiouL8emnn0KlUt1xW0EQ8Mwzz0Cj0dx1ODIObz7QAfGpBUjILMbqI1l4vGeA2JGIiETx45FMJGYVQ6mwxJsPcGVyU9egEgUAY8eOhYdHwxr1c8891+RAZHy8VDZ46b5QzN18Ch9uO4P7wjzhplSIHYuIqEVdLlPjw61nAAAv3dcWXiobkRORoTVoTpRWq21wgQKAsrIyBAcHNzkUGZ+YqEB08HZESVUt3t18Suw4REQt7t3Np1BaXYdwX0dM6MXpLOagwRPLN2/eDK1Wa8gsZMQs5RaY90gELGTAL4k52HUmX+xIREQt5o9T+dh0IgcWMuCDhyJgKef7tsxBg/+XR40aBX9/f7z++utIS0szZCYyUpF+TpjSVzcC+frGZJRV14qciIjI8Eqra/HGz8kAgKl9gxHp5yRuIGoxDS5R6enpmDZtGlavXo3Q0FD0798fP/zwA6qqqgyZj4zMC9FtEehqh9ySany47YzYcYiIDC5uyxnklVYjyNUOs6Pbih2HWlCDS5S/vz/mzJmD8+fP448//kBQUBBmzJgBb29vTJ8+HUeOHDFkTjISttZyxD0UAQBYcTATh9OLRE5ERGQ4+89fwY+HMwEA8x6J5JpQZqZJJ20HDhyI7777Drm5uZg/fz6SkpLQq1cvdOzYsVHPs3jxYkRGRsLR0RGOjo6IiorC1q1bb7l9bW0t5s6di9atW8PGxgYdO3bEtm3bmvIlkAH1DnHD2O7+AIDX1p9EdS2XuyAi01NVo0HshiQAwPieAegV7CpyImppdzXzzcHBAYMGDcLAgQPh5OSEU6ca964sPz8/zJs3D8eOHcPRo0dx7733YuTIkUhJSbnp9m+88QaWLFmCzz77DKdOncL06dPx0EMPISEh4W6+DDKA2Pvbw8NBgQtXKrBo5zmx4xARNbsFO1JxsbAS3iobvDasndhxSAQyQRCExj6oqqoKa9euxbJly/DXX3+hVatWePLJJzFp0iT4+vreVSAXFxfMnz8fkydPvuFzPj4+eP311zFz5kz9fY888ghsbW2xYsWKBj1/aWkpVCoVSkpK4OjoeFdZ6fa2p+Rh2g/HILeQ4ZeZfRDue+fFWomIjEFiVjEe/t8+aAVg2aRuuLedp9iRTJ4Uj98NXmwTAA4ePIhly5ZhzZo1qKmpwcMPP4w//vgDAwcOvOsgGo0Ga9euRUVFBaKiom66jVqtho1N/cXLbG1tsXfv3ls+r1qthlqt1n9cWlp611mpYYaEeekvCfN/a0/gl2f7QGHJ+QJEZNyqazV4aU0itAIwspMPC5QZa/DpvA4dOqBPnz44fvw44uLikJubixUrVtx1gUpKSoJSqYRCocD06dOxceNGdOhw86XyhwwZggULFuDcuXPQarXYsWMHNmzYgNzc3Fs+f1xcHFQqlf7m7+9/V3mpcd4ZGQZXe2ucySvDwj94Wo+IjN/87ak4f7kC7g4KvD0iTOw4JKIGn857/vnnMXny5EZPHr+TmpoaZGZmoqSkBOvWrcPSpUuxe/fumxapy5cvY+rUqfj1118hk8nQunVrREdHY9myZbdcauFmI1H+/v6SGg40dduSczF9xXFYyIB1M3qjS4Cz2JGIiJrk4IVCjPv6IAQB+HZSdwxsxwsMtxQpns5r0pwoQ4qOjkbr1q2xZMmSW25TXV2NwsJC+Pj44LXXXsPmzZtvORn936T4n2AOXvgpERsTshHsZo/fnu/LtwETkdEpV9dh6Kd7cOlqFcZ298e8RyLFjmRWpHj8btDpvC5duuDq1asNftJ77rkH2dnZTQqk1WrrjRzdjI2NDXx9fVFXV4f169dj5MiRTXotajlvjwiDl6MNLlyp4CKcRGSU3tt8CpeuVsHP2RZvPHDzaSdkXho0sTwxMREnTpyAi4tLg540MTHxjkUIAGJjYzFs2DAEBASgrKwMq1atQnx8PLZv3w4AiImJga+vL+Li4gAAhw4dQnZ2Njp16oTs7Gy8/fbb0Gq1eOWVVxqUi8SjsrPCh49GYuKyw1i+PwP3hXmid2s3sWMRETXIrjP5WH0kCzIZ8NFjHaFUNOp9WWSiGvxdMGjQIDT0zJ9MJmvQdgUFBYiJiUFubi5UKhUiIyOxfft2DB48GACQmZkJC4u/B8uqq6vxxhtv4MKFC1Aqlbj//vvxww8/wMnJqaFfBomof1t3PN4zAKsOZeLltSexbXZfONhYiR2LiOi2rlbU4NX1ukU1n+rTiotqkl6D5kRdvHix0U/s5+cHuVx6816keE7VnJSr6zBs4R5kFVXh4S6+WDC6k9iRiIhuSRAEzFhxHNtS8hDiocTm5+6BjZX0jm3mQIrH7waNRAUGBho6B5kJpcISC0Z3wpglB7DheDb6t3XHyE53t0ArEZGh/Hg4C9tS8mAll+GT0Z1YoKieu7rsC1FTdA9ywbP3tgEAvLExGVlFlSInIiK60bn8MszdrHvn98tDQhHhx6suUH0sUSSK5+8NQZcAJ5Sp6zBrdQLqNFqxIxER6VXXavDcjwmortWibxs3TLknWOxIJEEsUSQKS7kFFo7tDAeFJY5nFmPRrjSxIxER6c3begZn8srgam+Nj0d3hIVFw94wReaFJYpE4+9ih/cfjgAAfL7rHA6nF4mciIhIt5zB8v0ZAHTLGXg42Nz+AWS2mlSiiouLsXTpUsTGxqKoSHfgO378eJMX2CTz9WBHHzzSxQ9aAZi9OgEllbViRyIiM1ZQWo3/W3sSADCpdxAv60K31egSdfLkSbRt2xYffvghPvroIxQXFwMANmzYgNjY2ObOR2bgnZFhCHS1Q05JNV5ed6LB65ERETWnOo0Wz/2YgKKKGrTzcsBrw9qJHYkkrtEl6sUXX8SkSZNw7tw52Nj8PcR5//33Y8+ePc0ajsyDUmGJz8Z1hrXcAr+fysfSv9LFjkREZujjHWdxKL0I9tZyfDG+C5czoDtqdIk6cuQIpk2bdsP9vr6+yMvLa5ZQZH4i/Zzw5gPtAQDztp3B0QzOjyKilrPzdD4Wx58HAHz4aCRauytFTkTGoNElSqFQoLS09Ib7z549C3d392YJRebpiV6BGNHRBxqtgGdXJaCw/M7XXyQiultZRZV44adEALp5UA9E+ogbiIxGo0vUgw8+iLlz56K2VjcBWCaTITMzE6+++ioeeeSRZg9I5kMmkyHu4Qi0drdHXmk1Zv+UCI2W86OIyHDUdRrMXHUcpdV16OTvhP/c317sSGREGl2iPv74Y5SXl8PDwwNVVVXo378/QkJC4ODggPfff98QGcmMKBWWWPxEV9hayfHXuStYtPOc2JGIyIS9t/k0Tl4qgZOdFb4Y3wXWllz5hxquQdfO+yeVSoUdO3Zg7969OHnyJMrLy9GlSxdER0cbIh+ZobaeDnj/oXC8uOYEFu06hy6BzujflqeKiah5rTmahR8OXgQAfDKmE3ydbEVORMZGJpjZ+8mleBVournYDUn48XAmHG0ssenZexDkZi92JCIyEQmZVzFmyUHUaLSYNagNXhjcVuxIdAdSPH43eiRq0aJFN71fJpPBxsYGISEh6NevH+RyvjWU7s7bD3bAmbxSJGQWY+r3R7FxZh8oFY3+liUiqie/tBrTfjiGGo0W93XwxKxBbcSOREaq0SNRrVq1wuXLl1FZWQlnZ2cAwNWrV2FnZwelUomCggIEBwfjzz//hL+/v0FC3w0pNlm6tfzSaoz4bC8KytS4r4MnvnyiK69hRURNpq7TYOxXB5GQWYy2nkpseIZ/nBkLKR6/Gz2D7oMPPkD37t1x7tw5FBYWorCwEGfPnkXPnj2xcOFCZGZmwsvLCy+88IIh8pKZ8XS0wZIJXfULcS7kRHMiaiJBEPDGxmQkZBbD0cYSX03oxgJFd6XRI1GtW7fG+vXr0alTp3r3JyQk4JFHHsGFCxewf/9+PPLII8jNzW3OrM1Cik2W7mzN0Sy8sk53Pasvn+iKoeFeIiciImOzfF863v71FCxkwPIne6Af37BiVKR4/G70SFRubi7q6upuuL+urk6/YrmPjw/KysruPh3RNaO7+WNS7yAAwItrEnEq58YFX4mIbuXPMwWYu/kUACB2WHsWKGoWjS5RAwcOxLRp05CQkKC/LyEhATNmzMC9994LAEhKSkKrVq2aLyURgNeHt0fv1q6orNFg8ndHkF9aLXYkIjICKTkleHbVcWgF4LGufpjSl8cnah6NLlHffPMNXFxc0LVrVygUCigUCnTr1g0uLi745ptvAABKpRIff/xxs4cl82Ylt8Di8V3R2t0euSXVeGr5EVSobxwVJSK6LrekSve7okaDPiGu+ODhCMhkfHMKNY8mrxN15swZnD17FgAQGhqK0NDQZg1mKFI8p0qNk1lYiYf+tw+FFTUY1M4DX8V0g5zv2COifylX1+GxLw/gdG4p2ngosW5Gb6hsrcSORU0kxeM3F9sko3Q88yrGfXUQ6jotJvUOwtsPhokdiYgkpE6jxZTvjyI+9TLclNbY+Ewf+LvYiR2L7oIUj99Nem/npUuXsGnTJmRmZqKmpqbe5xYsWNAswYhup0uAMxaM7oSZq45j+f4MBLra4ck+nOdARLqlDN78JQXxqZdhY2WBpRO7s0CRQTS6RO3cuRMPPvgggoODcebMGYSHhyMjIwOCIKBLly6GyEh0U8MjvZF1tR3mbT2DuZtPwd1BgQcifcSORUQiW7DjLH48nAmZDPh0TCd08ncSOxKZqEZPLI+NjcX//d//ISkpCTY2Nli/fj2ysrLQv39/PPbYY4bISHRL0/oFY0KvQAgC8MJPidhz9rLYkYhIRN/uS8dnu9IAAO+ODMfQcG+RE5Epa3SJOn36NGJiYgAAlpaWqKqqglKpxNy5c/Hhhx82e0Ci25HJZHj7wTA8EOmNWo2A6SuOISHzqtixiEgEPydk451fdWtBvTS4LZ7oFShyIjJ1jS5R9vb2+nlQ3t7eOH/+vP5zV65cab5kRA0kt5BhwehO6NvGDZU1Gjy5/AjSCrjYK5E5+fNMAf5v7QkAwKTeQXj23hCRE5E5aHSJ6tWrF/bu3QsAuP/++/HSSy/h/fffx1NPPYVevXo1e0CihrC2tMCXT3RFR38nFFfWYsI3h5FdXCV2LCJqAYcuFGLGymOo0woY1ckHcx7owLWgqEU0ukQtWLAAPXv2BAC88847GDRoEH766ScEBQXpF9skEoO9whLfTuquX4zziaWHuKo5kYk7mlGEJ5cfQXWtFgND3TH/sY6w4Lpx1EK4ThSZnJziKjz25QFkF1ehtbs9Vj8dBXcHhdixiKiZHc+8iphvDqNcXYd7QtywdGI32FjJxY5FBiLF43ejR6KCg4NRWFh4w/3FxcUIDg5ullBEd8PHyRY/Tu0FH5UNzl+uwONfH8SVcrXYsYioGZ3IKsbEawUqKtgVX8ewQFHLa3SJysjIgEajueF+tVqN7OzsZglFdLcCXO2wamoveDoqcK6gHE8sPYSiipo7P5CIJC85uwQTvjmEMnUdegS54JtJ3WBrzQJFLa/Bi21u2rRJ/+/t27dDpVLpP9ZoNNi5cyeCgoKaNRzR3Qhys8ePU3thzFcHcSavDE8sPYSVU3rC2d5a7GhE1ESJWcWYuOwwSqvr0DXQGcue7A476yZdfIPorjV4TpSFhW7QSiaT4d8PsbKyQlBQED7++GM88MADzZ+yGUnxnCoZVlpBOcZ+pTul187LAT9M7sk5UkRG6OCFQkxefgQVNRp0CXDCd0/1gIMNLyhsLqR4/G7w6TytVgutVouAgAAUFBToP9ZqtVCr1UhNTZV8gSLzFOKhxI9Te8LDQYEzeWUYveQAlz8gMjLxqQWYuOwwKmo06N3aFT9M7skCRaJr9Jyo9PR0uLm5GSILkcG08XTA2ulR8HWyRfqVCoz+8gAyrlSIHYuIGmBbci6mfn8U6jot7m3ngWWTusNewVN4JL4Gnc5btGhRg5/w+eefb/C2ixcvxuLFi5GRkQEACAsLw5w5czBs2LBbPubTTz/F4sWLkZmZCTc3Nzz66KOIi4uDjY1Ng15TisOB1HJyiqvwxNJDuHClAu4OCqyY3BOhXg5ixyKiW1h37BJeXX8SGq2A4RHe+GRMJ1hbNvrvfzIBUjx+N6hEtWrVqmFPJpPhwoULDX7xX3/9FXK5HG3atIEgCPjuu+8wf/58JCQkICws7IbtV61ahaeeegrLli1D7969cfbsWUyaNAljx47FggULGvSaUvxPoJZ1uUyNCd8cwpm8MjjZWeGbid3RNdBZ7FhE9A+CIOCLP9Pw0e9nAQCPdvXDh49EQs6FNM2WFI/fklts08XFBfPnz8fkyZNv+Nyzzz6L06dPY+fOnfr7XnrpJRw6dEh/KZo7keJ/ArW84soaTPr2CBKziqGwtMCicZ0xJMxL7FhEBKBOo8WcTSlYdSgTADCtfzBeHdKOK5GbOSkev+9qTFQQhBveqddUGo0Gq1evRkVFBaKiom66Te/evXHs2DEcPnwYAHDhwgVs2bIF999//y2fV61Wo7S0tN6NyMnOGqum9sSgdh5Q12kxfcUxfH8gQ+xYRGavqkaD6SuOYdWhTMhkwDsPhiF2WHsWKJKkJpWo77//HhEREbC1tYWtrS0iIyPxww8/NClAUlISlEolFAoFpk+fjo0bN6JDhw433fbxxx/H3Llzcc8998DKygqtW7fGgAED8J///OeWzx8XFweVSqW/+fv7NyknmR47a0ssmdAV43oEQBCAOb+kIG7raWi1khqcJTIbBWXVGPf1QfxxugAKSwssHt8FE3sHiR2L6JYafTpvwYIFePPNN/Hss8+iT58+AIC9e/fiiy++wHvvvYcXXnihUQFqamqQmZmJkpISrFu3DkuXLsXu3btvWqTi4+MxduxYvPfee+jZsyfS0tIwa9YsTJ06FW+++eZNn1+tVkOt/vuSH6WlpfD395fUcCCJ699zLx6I9Mb8RztyBWSiFpScXYKp3x9Fbkk1nOyssDSmG7oFuYgdiyREiqfzGl2iWrVqhXfeeQcxMTH17v/uu+/w9ttvIz09/a4CRUdHo3Xr1liyZMkNn+vbty969eqF+fPn6+9bsWIFnn76aZSXl+sXBL0dKf4nkDSsv/YuoDqtgAhfFb6K6Qpvla3YsYhM3pakXLy4JhHVtVoEu9tjaUw3BLsrxY5FEiPF43ejT+fl5uaid+/eN9zfu3dv5Obm3nWg64t33kxlZeUNRUku140WSGx+PBmhR7r6YcWUnnC2s0JSdgke/HwfjmdeFTsWkcnSagV8+sdZPLPyOKprtejX1h0bn+nDAkVGo9ElKiQkBGvWrLnh/p9++glt2rRp1HPFxsZiz549yMjIQFJSEmJjYxEfH4/x48cDAGJiYhAbG6vffsSIEVi8eDFWr16N9PR07NixA2+++SZGjBihL1NEd6NXsCs2PXsP2nk54HKZGmO/Ooj1xy6JHYvI5JRW1+KZlcfx6R/nAACT72mFZRO7QWXLVcjJeDR6ydd33nkHY8aMwZ49e/Rzovbt24edO3fetFzdTkFBAWJiYpCbmwuVSoXIyEhs374dgwcPBgBkZmbWG3l64403IJPJ8MYbbyA7Oxvu7u4YMWIE3n///cZ+GUS35O9ih/UzeuOFnxLx+6l8vLT2BFJySvHasHZc5I+oGZzKKcUzK48ho7ASVnIZ3h8VgdHd+aYfMj4NnhOVnJyM8PBwAMCxY8fwySef4PTp0wCA9u3b46WXXkLnzp0Nl7SZSPGcKknT9VMNi3alAQA6Bzjh88e7wNeJ86SImmrNkSy8+Usy1HVa+DrZ4ovxXdDJ30nsWGQEpHj8bnCJsrCwQPfu3TFlyhSMHTsWDg7GeakMKf4nkLTtOJWPl9YkorS6Dk52VvhkTCcMDPUQOxaRUamu1eDNn5Ox9trp8YGh7lgwuhOc7a1FTkbGQorH7wafm9i9ezfCwsLw0ksvwdvbG5MmTcJff/1lyGxEkjC4gyd+e74vIv1UKK6sxZPfHsFH21NRp9GKHY3IKJzKKcWDn+/F2mOXYCEDXh4Sim8mdmeBIqPX6CUOKioqsGbNGixfvhx//fUXQkJCMHnyZEycOBFeXtK/bIYUmywZB3WdBu9tPo0fDl4EAHQLdMYnYzrB38VO5GRE0qTVCli2Lx3/3ZaKGo0WbkoFFo7thD4hbmJHIyMkxeP3XV07Ly0tDd9++y1++OEH5OXlYejQodi0aVNz5mt2UvxPIOOy6UQO/rMhCeXqOigVlnjnwTA83MUXMhkvS0F0XX5pNV5acwJ7064AAKLbe+LDRyLgqlSInIyMlRSP33d9AeKKigqsXLkSsbGxKC4uhkajaa5sBiHF/wQyPllFlXhxTSKOZOjWkRoe4Y33HwqHkx1PT5B5EwQBW5Ly8PrPSSiurIWNlQXefKADHu8RwD806K5I8fjd5Pdr79mzB5MmTYKXlxdefvllPPzww9i3b19zZiOSLH8XO6x+OgovDwmFpYUMvyXlYuinf2H32ctiRyMSTUFZNWasOI6Zq46juLIWEb4q/PZ8X4zvGcgCRSapUSNROTk5WL58OZYvX460tDT07t0bkydPxujRo2Fvb2/InM1Gik2WjNvJS8WYvToRF65UAAAe6eKHNx9oz1EpMhuCIGDD8WzM3XwKJVW1sLSQ4ZmBIXh2YAjXVqNmI8Xjd4NL1LBhw/DHH3/Azc0NMTExeOqppxAaGmrofM1Oiv8JZPwqa+owf3sqlu/PgCAA7g4KvDsyHEPDpf9mC6K7kVtShf9sSMKfqbpR2HBfR/z3kY7o4MPfr9S8pHj8bvCK5VZWVli3bh0eeOABXmKF6F/srC3x1ogwPBDpjVfWncT5yxWYvuIYhkd44+0Hw+DuwMm0ZFpqNVp8tz8Dn+w4i4oaDazlFpg9uA2e7hsMSzlHn8g83PXEcmMjxSZLpqW6VoPPdp3Dl7svQKMV4GhjiZeHhOLxnoGQW3BeCBm/IxlFePPnZJzJKwMAdAlwwn8fjUSIh3EuwkzGQYrHb5YoIgNJzi7BaxtOIjm7FAAQ4avCu6PCeYkLMlpXytWYt/UM1l1bddzZzgqvDWuHx7r6w4J/IJCBSfH4zRJFZEAarYCVhy5i/vZUlFXXQSYDxnYPwCtDQrlaMxmNmjotVh26iE/+OIeSqloAwLge/nhlSDt+H1OLkeLxmyWKqAVcLlMjbutpbDieDUD3F/yL94ViXHd/zh8hyRIEAb8l5WL+9lRcLKwEAIT5OOLdUeHoEuAscjoyN1I8frNEEbWgQxcK8eYvyTibXw4AaOupxOvDO6B/W3eRkxHVd/BCIeK2nMaJSyUAADelArOj22Asiz+JRIrHb5YoohZWq9Fi1aFMfPLHWRRX6k6N9G/rjjeGt0cbT07MJXGdzS/Dh1vPYOeZAgCAnbUc0/q1xpS+rWCvaPAbuomanRSP3yxRRCIpqazFol3n8P2BDNRqBMgtZHi8RwBeGNwWLpxnQi0sr6QaC3akYt2xS9AKgKWFDON6BOD5QW24RAdJghSP3yxRRCJLv1KBuC2n8fupfACAg8IS0/oH46l7WsHOmn/5k2GVVtfiy/jzWLYvHdW1WgDAsHAvvDwkFMHuSpHTEf1NisdvligiiThwvhDv/XYKKTm6JRHcHRSYNagNxnT3hxXnoFAzq6nTYsXBi/hs1zlcvXZauXuQM14b1h5dAzlpnKRHisdvligiCdFqBfx6Mgcf/Z6KrKIqAEArN3u8dF9bDI/w5kVc6a5ptQI2J+Xio+2pyCzSveOutbs9XhvWHtHtPfg9RpIlxeM3SxSRBF1fl+ezXWkorKgBAET6qfDq0HboE+ImcjoyVvvPX8G8rWdw8to77twdFHhxcFs81tWP77gjyZPi8ZslikjCytV1WPrXBXy95wIqajQAgL5t3PDq0HYI91WJnI6MxZm8Uny49Yz+IsH21nJM6697xx3n3ZGxkOLxmyWKyAhcKVfj811pWHnoImo1uh/ZByK98fKQUAS62oucjqQqt6QKC34/i3XHL0G49o678T0D8NygNnBT8h13ZFykePxmiSIyIpmFlViwIxW/nMiBIABWchnG9wzEc/eGwJUHRbqmpKoWX+4+j2V706Gu073jbniEN/5vSChaubF0k3GS4vGbJYrICKXklODDbanYc1Z3ekapsMSMAa3xVJ9WsLWWi5yOxFJTp8XKQxexaOff77jr0coFscPaoTMv00JGTorHb5YoIiO299wVxG09rV8WwdNRN1H40a7+kFvwXVbmQhAEbE/Jw7ytZ5Bx7Rp3IR5KvDa0HQbxHXdkIqR4/GaJIjJyWq2ATSdyMH97KrKLdcsitPVU4tWh7XBvOx5ATV1C5lW8/9tpHL14FYDuGncvDm6L0d34jjsyLVI8frNEEZkIdZ0GPxzQLYtQUvX3qZzX72+Pjv5O4oajZpdVVIkPt53B5pO5AAAbKws83TcYT/dvDSWvcUcmSIrHb5YoIhNTUlWLxdcu41FzbVLx6G5+eGVoO74jywRU12rw5e7zWBx/Huo6LWQy4LGufnhxcCi8VDZixyMyGCkev1miiExUTnEVPtqeig0J2QAABxtLvBDdFhOiAnkZGSMkCAL+OF2AuZtT9KvZRwW74s0HOqCDD3+XkemT4vGbJYrIxB27WIS3NqUgOVs3+bytpxJvPxiG3q258rmxuFhYgbc3pegXy/RW2eCN4R1wf4QX57yR2ZDi8ZslisgMaLQCfjqShfnbz+jf+j6ykw/mPNCB60tJWJ1Gi2X70vHx72ehrtPCSi7D1L7BmDkwBPac90RmRorHb5YoIjNSXFmDBTvOYsXBi9AKgIu9NeY80AEjO/lwRENiTueW4tX1J/XXubsnxA1zR4Yh2F0pcjIicUjx+M0SRWSGTmQV49X1J3EmrwwAMCDUHe+NCoefs53IyaimTovPd53D/+LPo04rwNHGEm880AGPdfVj0SWzJsXjN0sUkZmq1WixZPd5LNqZhhqNFvbWcrw1IgyPdePBWixpBeWYtTpBv3jqkDBPvDsyHB6OfNcdkRSP3yxRRGYuraAcsRtO4kiGbrHGoWFe+ODhCLjYW4uczHwIgoBVhzPx7uZTqK7VwtnOCu+NiuDEcaJ/kOLxmyWKiKDRCvj6rwv4+PdU1GoEeDgoMP+xjujf1l3saCbvakUNXll/EjtO5QMA+rZxw0ePdYQnR5+I6pHi8Zslioj0krNLMPunRKQVlAMAnhnQGi8ObsvLhxjIyUvFmLHiOLKLq2Att8ArQ0PxVJ9WsOB1D4luIMXjt6i/GRcvXozIyEg4OjrC0dERUVFR2Lp16y23HzBgAGQy2Q234cOHt2BqItMV7qvC5ufuQUxUIADgf/HnEbPsMK6Uq0VOZnp+OpKJR788gOziKgS52mHjzN6Y0jeYBYrIiIg6EvXrr79CLpejTZs2EAQB3333HebPn4+EhASEhYXdsH1RURFqamr0HxcWFqJjx45YunQpJk2a1KDXlGKTJZKiTSdy8Nr6k6is0cDTUYH/je+CroEuYscyeuo6Dd76JQWrj2QBAKLbe+Lj0R2hsrUSORmRtEnx+C2503kuLi6YP38+Jk+efMdtP/30U8yZMwe5ubmwt7dv0PNL8T+BSKrO5Zdh+opjOH+5AlZyGd5/KAKju/mLHctoFVfW4OkfjuFwehFkMuD/7gvFjP6tOfpE1ABSPH5LZqKDRqPB6tWrUVFRgaioqAY95ptvvsHYsWNvW6DUajVKS0vr3YioYdp4OuCXZ+/B/RFeqNUIeGXdSfx32xlotZL628soZFypwMP/24/D6UVQKizx7aTumDkwhAWKyIiJXqKSkpKgVCqhUCgwffp0bNy4ER06dLjj4w4fPozk5GRMmTLlttvFxcVBpVLpb/7+/CuaqDGUCkt8Pq4Lnrs3BIBuntSzPx5HVY1G5GTG49jFIjy8eD8uXKmAr5Mt1s/ojQGhHmLHIqK7JPrpvJqaGmRmZqKkpATr1q3D0qVLsXv37jsWqWnTpuHAgQM4efLkbbdTq9VQq/+eFFtaWgp/f39JDQcSGYv1xy7htQ0nUasR0CXACd9O6gGVHefy3E58agGmrziG6lotInxV+GZiNy6eSdQEUjydJ3qJ+rfo6Gi0bt0aS5YsueU2FRUV8PHxwdy5czFr1qxGPb8U/xOIjMnh9CJM/f4oSqpq0c7LAT9M7gl3B17E+Ga2JuXi+dUJqNUIGBjqji/Gd4GdNS8cTNQUUjx+i34679+0Wm29kaObWbt2LdRqNZ544okWSkVE1/Vo5YKfpvWCu4MCZ/LK8NiX+3HpaqXYsSRn/bFLmLnqOGo1AoZHeGPJhG4sUEQmRtQSFRsbiz179iAjIwNJSUmIjY1FfHw8xo8fDwCIiYlBbGzsDY/75ptvMGrUKLi6urZ0ZCIC0M7LEWunRcHXyRYZhZV47MsDuFhYIXYsyVh7NAsvrT0BrQCM7uaHReM6w9pScn+zEtFdEvWnuqCgADExMQgNDcWgQYNw5MgRbN++HYMHDwYAZGZmIjc3t95jUlNTsXfv3gYtgUBEhhPkZo/1M3qjtbs9ckuq8fjXhzgiBd36Wq+u183VnNQ7CPMejoSc78AjMkmSmxNlaFI8p0pkzArKqjF2yUFcuFIBfxdbrJkWBW+VrdixRLE9JQ/PrDwOjVbA4z0D8P6ocF5AmKiZSPH4zfFlIrorHg42WDW1FwJd7ZBVVIXHvz6EgrJqsWO1uD1nL+PZVboC9XBnX7w3kgWKyNSxRBHRXfNS6YqUr5Mt0q9U4KnlR1CurhM7VotJzi7BjBXH9JPI//toJBfRJDIDLFFE1Cx8nWyxckpPuNpbIzm7FM+sPI5ajVbsWAaXXVyFp5YfQUWNBlHBrvhkTCdYyvmrlcgc8CediJpNkJs9vpnUHbZWcuw5exmxG5JgytMuS6pq8eS3h1FQpkZbTyW+nNCV78IjMiP8aSeiZtXJ3wmfP94ZFjJg3bFLWLQzTexIBlGn0eLZVcdxNr8cno4KLH+yB1S2XL2dyJywRBFRsxvU3hPvjYoAAHzyx1lsT8kTOVHzm789FX+duwJbKzm+mdgdPk7m+Y5EInPGEkVEBvF4zwBM6h0EAHjxp0SczS8TN1Az+vVEDpbsuQAAmP9YJMJ9VSInIiIxsEQRkcG8Prw9ooJdUVGjwdTvj6K4skbsSHftVE4pXlmnW0xzev/WeCDSR+RERCQWligiMhgruQW+GN8Fvk62uFhYidk/JUKrNd6J5mXVtZix8hiqajXo19YdLw8JFTsSEYmIJYqIDMrF3hpfx3SDwtIC8amXsXTvBbEjNYkgCHjz52RcLKyEr5MtFo3txMu5EJk5ligiMrgOPo6YM6IDAOC/21KRkHlV5ESNt/54Nn5OzIHcQoZF4zrByc5a7EhEJDKWKCJqEY/3CMDwCG/UaQU892MCSqpqxY7UYBcul2POL8kAgBei26BroIvIiYhICliiiKhFyGQyxD0SAX8XW1y6WoXXNyaJHalBajVaPL86AZXXViSfMSBE7EhEJBEsUUTUYhxtrPDZuC6QW8iw+WQuNp/METvSHS2OP4/k7FI42VnhU86DIqJ/YIkiohbVyd8JMwe0BgC8+XMyLpepRU50a6dzS/HZrnMAgHceDIOno43IiYhISliiiKjFPXtvG3TwdsTVylr8Z6M0r69Xq9Hi/9aeQK1GwJAwTzzYketBEVF9LFFE1OKsLS3w8eiOsJLLsONUPjYmZIsd6QaL488jJUd3Gu/dUeGQyXgaj4jqY4kiIlG093bErEFtAADvbj6FogrprGZ+/nJ5vdN4Hg48jUdEN2KJIiLRTOvfGu28HHC1shbztp4WOw4A3aKac35JRq1GwIBQd57GI6JbYokiItFYyS3w/kPhAIA1Ry/hcHqRyImAX0/mYl9aIRSWFpj7IE/jEdGtsUQRkai6BrpgXA9/AMB/Niahpk4rWpay6lq8t/kUAGDmwBAEuNqJloWIpI8liohE9+rQdnC1t0ZaQTm+2ZsuWo5PdpxDQZkardzs8XS/YNFyEJFxYIkiItE52Vkj9v72AIAv/kwTZe2o85fL8d2BDAC6yeQ2VvIWz0BExoUliogk4eHOvoj0U6FcXYcFO1Jb/PXjtpyBRisgur0H+rV1b/HXJyLjwxJFRJJgYSHDmw90AAD8dCQLp3NLW+y1D5wvxB+n8yG3kOG1Ye1b7HWJyLixRBGRZHQPcsHwCG9oBeC93061yErmWq2AD7bolld4vEcAQjyUBn9NIjINLFFEJCmvDWsHa7kF9qUVIv7sZYO/3qYTOUjKLoFSYYlZ0W0M/npEZDpYoohIUvxd7DCxdyAA4OPfUw06GlWr0WLBjrMAgBkDWsNNqTDYaxGR6WGJIiLJmd6/Neyt5UjOLsX2lHyDvc7G49nILKqEq701nuwTZLDXISLTxBJFRJLjqlTgqXtaAQAW7EiFRtv8o1E1dVosunZ9vOn9W8PO2rLZX4OITBtLFBFJ0pS+wXC0scTZ/HJsPpnT7M+//vglXLpaBTelAk/0Cmz25yci08cSRUSSpLK1wrT+rQEAC3eeg7YZR6NqNVp8visNADC9fzBsrbmwJhE1HksUEUnWxN5BcLSxxIXLFdhxuvnmRm1JykV2cRXclNYchSKiJmOJIiLJUiosMSFKV3K+3H2+Wd6pJwgCvtpzAQAwMSqIl3choiZjiSIiSZvUuxWsLS2QkFmMIxlX7/r5DpwvREpOKWysLDgKRUR3hSWKiCTN3UGBR7v6AdCNRt2tr/7SjUKN7uYPZ3vru34+IjJfLFFEJHlT+wZDJgN2nSlAxpWKJj9PxpUKxKdehkwGTL62hAIRUVOJWqIWL16MyMhIODo6wtHREVFRUdi6dettH1NcXIyZM2fC29sbCoUCbdu2xZYtW1ooMRGJoZWbPQa0dQcA/Hg4s8nPs/pIFgCgf1t3BLraN0s2IjJfopYoPz8/zJs3D8eOHcPRo0dx7733YuTIkUhJSbnp9jU1NRg8eDAyMjKwbt06pKam4uuvv4avr28LJyeilja+p27+0pqjWVDXaRr9+Jo6LdYd05WocT0CmjUbEZknUZfoHTFiRL2P33//fSxevBgHDx5EWFjYDdsvW7YMRUVF2L9/P6ysrAAAQUFBLRGViEQ2sJ0HfFQ2yCmpxrbkPIzs1Lg/nnaezseV8hq4OyhwbzsPA6UkInMimTlRGo0Gq1evRkVFBaKiom66zaZNmxAVFYWZM2fC09MT4eHh+OCDD6DR3PqvUrVajdLS0no3IjI+cgsZxl4bQWrKKb11xy4BAB7r6gcruWR+9RGRERP9N0lSUhKUSiUUCgWmT5+OjRs3okOHDjfd9sKFC1i3bh00Gg22bNmCN998Ex9//DHee++9Wz5/XFwcVCqV/ubv72+oL4WIDOzhLrrRp0PpRcgrqW7w40oqa7Hn3GUAwEOdefqfiJqH6CUqNDQUiYmJOHToEGbMmIGJEyfi1KlTN91Wq9XCw8MDX331Fbp27YoxY8bg9ddfx5dffnnL54+NjUVJSYn+lpWVZagvhYgMzM/ZDt0CnSEIaNT19LafykOtRkCopwPaeDoYMCERmRPRS5S1tTVCQkLQtWtXxMXFoWPHjli4cOFNt/X29kbbtm0hl/+9wnD79u2Rl5eHmpqamz5GoVDo3/13/UZExmtkJx8AwKYTDS9Rm0/mAgAeiPQ2SCYiMk+il6h/02q1UKvVN/1cnz59kJaWBq1Wq7/v7Nmz8Pb2hrU1F80jMgf3R3hDbiHDyUsluFh45zWjSqpqsS/tCgBgOEsUETUjUUtUbGws9uzZg4yMDCQlJSE2Nhbx8fEYP348ACAmJgaxsbH67WfMmIGioiLMmjULZ8+exW+//YYPPvgAM2fOFOtLIKIW5qpUoHuQMwDgzzMFd9x+f9oVaLQCWrvbI9hdaeh4RGRGRF3ioKCgADExMcjNzYVKpUJkZCS2b9+OwYMHAwAyMzNhYfF3z/P398f27dvxwgsvIDIyEr6+vpg1axZeffVVsb4EIhLBve08cPBCEXalXsakPrdfeXz3Wd2E8n7XFuskImouopaob7755rafj4+Pv+G+qKgoHDx40ECJiMgY3NvOAx9sOYODFwpRWVMHO+ub/yoTBAF7rpWo/ixRRNTMJDcniojoTlq7K+HvYouaOi32pxXecrvzl8uRU1INhaUFegW7tmBCIjIHLFFEZHRkMhn6ttGNLB28cOsSdSi9CADQNdAZNlbyW25HRNQULFFEZJR6BLkAAI5kFN1ym2MXrwIAugU6t0gmIjIvLFFEZJS6t9KVqOScUlSo6266zfFrJaoLSxQRGQBLFBEZJV8nW/g62UKjFfQjTv90pVyNjMJKAEDnAJYoImp+LFFEZLS6XVsv6kRW8Q2fS8zU3dfGQwmVrVULpiIic8ESRURGK8JXBQBIzim54XOnc0vrbUNE1NxYoojIaHXw0V0LMyWn9IbPnckrAwC08+YFh4nIMFiiiMhohfnoRpkuXa1CcWX9i5CfztMVq3ZevOg4ERkGSxQRGS2VrRUCXOwA1B+NqqrRIOOK7uLEHIkiIkNhiSIio9b+Wkk6m1+mv+9cQRm0AuBqbw13pUKsaERk4liiiMioBbsrAQAXLlfo70u/NgrV2l0JmUwmSi4iMn0sUURk1ILd7AHorpN3XcYV3fpQQW52omQiIvPAEkVERq21x40jUReLdP8OdLUXJRMRmQeWKCIyaq3ddCUqr7Qa5dcu/3Lx2krlga4ciSIiw2GJIiKjprKzgqu9NQDo35F3sfDaSJQLR6KIyHBYoojI6PldW+bg0tVKlKvrcKVct2ZUAEeiiMiAWKKIyOj5OdkC0C26mXntVJ6znRWvmUdEBsUSRURGz9dZV6JyiquRW1IFAPC5VqyIiAyFJYqIjJ7vtcKUXVyJvNJqAICXo42YkYjIDLBEEZHR+7tEVSG/VA0A8FSxRBGRYbFEEZHRu346L/tqFfJLOBJFRC2DJYqIjN71EnW1shbp15Y38HTkNfOIyLBYoojI6DnaWMHOWg4ASLpUAgDw5EgUERkYSxQRmQQ3pW7kqapWAwDw4pwoIjIwligiMgnuDvVP37na83QeERkWSxQRmQR3Zf3SxIU2icjQWKKIyCT8cyTKzloOa0v+eiMiw+JvGSIyCf8sURyFIqKWwBJFRCaBJYqIWhpLFBGZhH/OiXK0YYkiIsNjiSIik+Bsb63/t8KKv9qIyPD4m4aITIKz3d+jT1Zy/mojIsPjbxoiMgnOdn+PRMlEzEFE5oMliohMguM/JpNX1NSJmISIzAVLFBGZBLnF3+NPFWqNiEmIyFywRBGRyalQcySKiAxP1BK1ePFiREZGwtHREY6OjoiKisLWrVtvuf3y5cshk8nq3WxseJFRIqqvnCWKiFqApZgv7ufnh3nz5qFNmzYQBAHfffcdRo4ciYSEBISFhd30MY6OjkhNTdV/LJNxCikR1ceRKCJqCaKWqBEjRtT7+P3338fixYtx8ODBW5YomUwGLy+vlohHREaqooZzoojI8CQzJ0qj0WD16tWoqKhAVFTULbcrLy9HYGAg/P39MXLkSKSkpNz2edVqNUpLS+vdiIiIiO6W6CUqKSkJSqUSCoUC06dPx8aNG9GhQ4ebbhsaGoply5bhl19+wYoVK6DVatG7d29cunTpls8fFxcHlUqlv/n7+xvqSyEika2a0hP+Lrb4YXIPsaMQkRmQCYIgiBmgpqYGmZmZKCkpwbp167B06VLs3r37lkXqn2pra9G+fXuMGzcO77777k23UavVUKvV+o9LS0vh7++PkpISODo6NtvXQURERIZTWloKlUolqeO3qHOiAMDa2hohISEAgK5du+LIkSNYuHAhlixZcsfHWllZoXPnzkhLS7vlNgqFAgqF4pafJyIiImoK0U/n/ZtWq603cnQ7Go0GSUlJ8Pb2NnAqIiIiovpEHYmKjY3FsGHDEBAQgLKyMqxatQrx8fHYvn07ACAmJga+vr6Ii4sDAMydOxe9evVCSEgIiouLMX/+fFy8eBFTpkwR88sgIiIiMyRqiSooKEBMTAxyc3OhUqkQGRmJ7du3Y/DgwQCAzMxMWFj8PVh29epVTJ06FXl5eXB2dkbXrl2xf//+Bs2fIiIiImpOok8sb2lSnJhGREREtyfF47fk5kQRERERGQOWKCIiIqImYIkiIiIiagKWKCIiIqImYIkiIiIiagKWKCIiIqImYIkiIiIiagKWKCIiIqImYIkiIiIiagJRL/sihusLtJeWloqchIiIiBrq+nFbShdaMbsSVVZWBgDw9/cXOQkRERE1VmFhIVQqldgxAJjhtfO0Wi1ycnLg4OAAmUzWrM9dWloKf39/ZGVlSea6PsaC+67puO+ajvuuabjfmo77rulKSkoQEBCAq1evwsnJSew4AMxwJMrCwgJ+fn4GfQ1HR0f+cDQR913Tcd81Hfdd03C/NR33XdNZWEhnOrd0khAREREZEZYoIiIioiZgiWpGCoUCb731FhQKhdhRjA73XdNx3zUd913TcL81Hfdd00lx35ndxHIiIiKi5sCRKCIiIqImYIkiIiIiagKWKCIiIqImYIkiIiIiagKWqGbyxRdfICgoCDY2NujZsycOHz4sdiSDevvttyGTyerd2rVrp/98dXU1Zs6cCVdXVyiVSjzyyCPIz8+v9xyZmZkYPnw47Ozs4OHhgZdffhl1dXX1tomPj0eXLl2gUCgQEhKC5cuX35BF6vt+z549GDFiBHx8fCCTyfDzzz/X+7wgCJgzZw68vb1ha2uL6OhonDt3rt42RUVFGD9+PBwdHeHk5ITJkyejvLy83jYnT55E3759YWNjA39/f/z3v/+9IcvatWvRrl072NjYICIiAlu2bGl0lpZ0p303adKkG74Phw4dWm8bc9x3cXFx6N69OxwcHODh4YFRo0YhNTW13jZS+hltSJaW0pB9N2DAgBu+76ZPn15vG3Pcd4sXL0ZkZKR+IdGoqChs3bq1UVmNbr8JdNdWr14tWFtbC8uWLRNSUlKEqVOnCk5OTkJ+fr7Y0QzmrbfeEsLCwoTc3Fz97fLly/rPT58+XfD39xd27twpHD16VOjVq5fQu3dv/efr6uqE8PBwITo6WkhISBC2bNkiuLm5CbGxsfptLly4INjZ2QkvvviicOrUKeGzzz4T5HK5sG3bNv02xrDvt2zZIrz++uvChg0bBADCxo0b631+3rx5gkqlEn7++WfhxIkTwoMPPii0atVKqKqq0m8zdOhQoWPHjsLBgweFv/76SwgJCRHGjRun/3xJSYng6ekpjB8/XkhOThZ+/PFHwdbWVliyZIl+m3379glyuVz473//K5w6dUp44403BCsrKyEpKalRWVrSnfbdxIkThaFDh9b7PiwqKqq3jTnuuyFDhgjffvutkJycLCQmJgr333+/EBAQIJSXl+u3kdLP6J2ytKSG7Lv+/fsLU6dOrfd9V1JSov+8ue67TZs2Cb/99ptw9uxZITU1VfjPf/4jWFlZCcnJyQ3Kaoz7jSWqGfTo0UOYOXOm/mONRiP4+PgIcXFxIqYyrLfeekvo2LHjTT9XXFwsWFlZCWvXrtXfd/r0aQGAcODAAUEQdAdHCwsLIS8vT7/N4sWLBUdHR0GtVguCIAivvPKKEBYWVu+5x4wZIwwZMkT/sbHt+38XAa1WK3h5eQnz58/X31dcXCwoFArhxx9/FARBEE6dOiUAEI4cOaLfZuvWrYJMJhOys7MFQRCE//3vf4Kzs7N+3wmCILz66qtCaGio/uPRo0cLw4cPr5enZ8+ewrRp0xqcRUy3KlEjR4685WO473QKCgoEAMLu3bsFQZDWz2hDsojp3/tOEHQlatasWbd8DPfd35ydnYWlS5ea7PccT+fdpZqaGhw7dgzR0dH6+ywsLBAdHY0DBw6ImMzwzp07Bx8fHwQHB2P8+PHIzMwEABw7dgy1tbX19km7du0QEBCg3ycHDhxAREQEPD099dsMGTIEpaWlSElJ0W/zz+e4vs315zCFfZ+eno68vLx6X4NKpULPnj3r7SsnJyd069ZNv010dDQsLCxw6NAh/Tb9+vWDtbW1fpshQ4YgNTUVV69e1W9zu/3ZkCxSFB8fDw8PD4SGhmLGjBkoLCzUf477TqekpAQA4OLiAkBaP6MNySKmf++761auXAk3NzeEh4cjNjYWlZWV+s9x3wEajQarV69GRUUFoqKiTPZ7zuwuQNzcrly5Ao1GU+8/HQA8PT1x5swZkVIZXs+ePbF8+XKEhoYiNzcX77zzDvr27Yvk5GTk5eXB2tr6hqtse3p6Ii8vDwCQl5d30312/XO326a0tBRVVVW4evWq0e/761/rzb6Gf+4HDw+Pep+3tLSEi4tLvW1atWp1w3Nc/5yzs/Mt9+c/n+NOWaRm6NChePjhh9GqVSucP38e//nPfzBs2DAcOHAAcrmc+w6AVqvF7Nmz0adPH4SHhwOApH5GG5JFLDfbdwDw+OOPIzAwED4+Pjh58iReffVVpKamYsOGDQDMe98lJSUhKioK1dXVUCqV2LhxIzp06IDExEST/J5jiaImGTZsmP7fkZGR6NmzJwIDA7FmzRrY2tqKmIzMydixY/X/joiIQGRkJFq3bo34+HgMGjRIxGTSMXPmTCQnJ2Pv3r1iRzE6t9p3Tz/9tP7fERER8Pb2xqBBg3D+/Hm0bt26pWNKSmhoKBITE1FSUoJ169Zh4sSJ2L17t9ixDIan8+6Sm5sb5HL5DbP68/Pz4eXlJVKqlufk5IS2bdsiLS0NXl5eqKmpQXFxcb1t/rlPvLy8brrPrn/udts4OjrC1tbWJPb99Zy3+xq8vLxQUFBQ7/N1dXUoKipqlv35z8/fKYvUBQcHw83NDWlpaQC475599lls3rwZf/75J/z8/PT3S+lntCFZxHCrfXczPXv2BIB633fmuu+sra0REhKCrl27Ii4uDh07dsTChQtN9nuOJeouWVtbo2vXrti5c6f+Pq1Wi507dyIqKkrEZC2rvLwc58+fh7e3N7p27QorK6t6+yQ1NRWZmZn6fRIVFYWkpKR6B7gdO3bA0dERHTp00G/zz+e4vs315zCFfd+qVSt4eXnV+xpKS0tx6NChevuquLgYx44d02+za9cuaLVa/S/vqKgo7NmzB7W1tfptduzYgdDQUDg7O+u3ud3+bEgWqbt06RIKCwvh7e0NwHz3nSAIePbZZ7Fx40bs2rXrhtOVUvoZbUiWlnSnfXcziYmJAFDv+84c993NaLVaqNVq0/2ea9Q0dLqp1atXCwqFQli+fLlw6tQp4emnnxacnJzqvcPA1Lz00ktCfHy8kJ6eLuzbt0+Ijo4W3NzchIKCAkEQdG8fDQgIEHbt2iUcPXpUiIqKEqKiovSPv/5W1vvuu09ITEwUtm3bJri7u9/0rawvv/yycPr0aeGLL7646VtZpb7vy8rKhISEBCEhIUEAICxYsEBISEgQLl68KAiC7q3xTk5Owi+//CKcPHlSGDly5E2XOOjcubNw6NAhYe/evUKbNm3qvU2/uLhY8PT0FCZMmCAkJycLq1evFuzs7G54m76lpaXw0UcfCadPnxbeeuutm75N/05ZWtLt9l1ZWZnwf//3f8KBAweE9PR04Y8//hC6dOkitGnTRqiurtY/hznuuxkzZggqlUqIj4+v9zb8yspK/TZS+hm9U5aWdKd9l5aWJsydO1c4evSokJ6eLvzyyy9CcHCw0K9fP/1zmOu+e+2114Tdu3cL6enpwsmTJ4XXXntNkMlkwu+//96grMa431iimslnn30mBAQECNbW1kKPHj2EgwcPih3JoMaMGSN4e3sL1tbWgq+vrzBmzBghLS1N//mqqirhmWeeEZydnQU7OzvhoYceEnJzc+s9R0ZGhjBs2DDB1tZWcHNzE1566SWhtra23jZ//vmn0KlTJ8Ha2loIDg4Wvv322xuySH3f//nnnwKAG24TJ04UBEH39vg333xT8PT0FBQKhTBo0CAhNTW13nMUFhYK48aNE5RKpeDo6Cg8+eSTQllZWb1tTpw4Idxzzz2CQqEQfH19hXnz5t2QZc2aNULbtm0Fa2trISwsTPjtt9/qfb4hWVrS7fZdZWWlcN999wnu7u6ClZWVEBgYKEydOvWGAm2O++5m+wxAvZ8fKf2MNiRLS7nTvsvMzBT69esnuLi4CAqFQggJCRFefvnleutECYJ57runnnpKCAwMFKytrQV3d3dh0KBB+gLV0KzGtt9kgiAIjRu7IiIiIiLOiSIiIiJqApYoIiIioiZgiSIiIiJqApYoIiIioiZgiSIiIiJqApYoIiIioiZgiSIiIiJqApYoIiIioiZgiSIi0U2aNAmjRo1q8dddvnw5ZDIZZDIZZs+e3aDHTJo0Sf+Yn3/+2aD5iEjaLMUOQESmTSaT3fbzb731FhYuXAixLp7g6OiI1NRU2NvbN2j7hQsXYt68efqLzRKR+WKJIiKDys3N1f/7p59+wpw5c5Camqq/T6lUQqlUihENgK7keXl5NXh7lUoFlUplwEREZCx4Oo+IDMrLy0t/U6lU+tJy/aZUKm84nTdgwAA899xzmD17NpydneHp6Ymvv/4aFRUVePLJJ+Hg4ICQkBBs3bq13mslJydj2LBhUCqV8PT0xIQJE3DlypVGZ/7f//6HNm3awMbGBp6ennj00UfvdjcQkQliiSIiSfruu+/g5uaGw4cP47nnnsOMGTPw2GOPoXfv3jh+/Djuu+8+TJgwAZWVlQCA4uJi3HvvvejcuTOOHj2Kbdu2IT8/H6NHj27U6x49ehTPP/885s6di9TUVGzbtg39+vUzxJdIREaOp/OISJI6duyIN954AwAQGxuLefPmwc3NDVOnTgUAzJkzB4sXL8bJkyfRq1cvfP755+jcuTM++OAD/XMsW7YM/v7+OHv2LNq2bdug183MzIS9vT0eeOABODg4IDAwEJ07d27+L5CIjB5HoohIkiIjI/X/lsvlcHV1RUREhP4+T09PAEBBQQEA4MSJE/jzzz/1c6yUSiXatWsHADh//nyDX3fw4MEIDAxEcHAwJkyYgJUrV+pHu4iI/okliogkycrKqt7HMpms3n3X3/Wn1WoBAOXl5RgxYgQSExPr3c6dO9eo03EODg44fvw4fvzxR3h7e2POnDno2LEjiouL7/6LIiKTwtN5RGQSunTpgvXr1yMoKAiWlnf3q83S0hLR0dGIjo7GW2+9BScnJ+zatQsPP/xwM6UlIlPAkSgiMgkzZ85EUVERxo0bhyNHjuD8+fPYvn07nnzySWg0mgY/z+bNm7Fo0SIkJibi4sWL+P7776HVahEaGmrA9ERkjFiiiMgk+Pj4YN++fdBoNLjvvvsQERGB2bNnw8nJCRYWDf9V5+TkhA0bNuDee+9F+/bt8eWXX+LHH39EWFiYAdMTkTGSCWItE0xEJLLly5dj9uzZTZrvJJPJsHHjRlEuV0NE0sCRKCIyayUlJVAqlXj11VcbtP306dNFXWGdiKSDI1FEZLbKysqQn58PQHcaz83N7Y6PKSgoQGlpKQDA29u7wdfcIyLTwxJFRERE1AQ8nUdERETUBCxRRERERE3AEkVERETUBCxRRERERE3AEkVERETUBCxRRERERE3AEkVERETUBCxRRERERE3w/+XHt1biZIBuAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -109,19 +107,17 @@ "name": "stderr", "output_type": "stream", "text": [ - "At t = 285.669 and h = 7.17426e-14, the corrector convergence failed repeatedly or with |h| = hmin.\n" + "At t = 285.669 and h = 2.09913e-14, the corrector convergence failed repeatedly or with |h| = hmin.\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAwdElEQVR4nO3dd3hUVfrA8e+bTgmEEiIQIHQJSgsiRVEUK8UCdlFs2HXVXVdXf/a1rbuWxQJiV2zYsVMU6SbSQuidUBJKAqGkzfv7Yy5ujGmEmdyZzPt5nnm4c++Ze9+bS/LOuefcc0RVMcYYE7rC3A7AGGOMuywRGGNMiLNEYIwxIc4SgTHGhDhLBMYYE+Ii3A7gcDVt2lSTkpLcDsMYY4JKWlraDlWNL2tb0CWCpKQkUlNT3Q7DGGOCiohsKG+b3RoyxpgQZ4nAGGNCnCUCY4wJcZYIjDEmxFkiMMaYEOf3RCAi4SKyQEQml7HtThHJEJHFIjJVRNr4Ox5jjDF/VBM1gtuBZeVsWwD0VtVuwCTg6RqIxxhjTAl+TQQikggMASaUtV1Vp6vqfuftXCDRn/EYY0ww8niUxyZnsHzbHr/s3981gueAuwFPFcpeA3xb1gYRGSMiqSKSmp2d7cPwjDEm8E1bnsWEmevI2BJkiUBEhgJZqppWhbKXA72Bf5W1XVXHq2pvVe0dH1/mE9LGGFMrqSpjp68msVEdhnVv4Zdj+LNGMAAYLiLrgQ+AU0Tk3dKFRGQwcB8wXFXz/RiPMcYEnTlrd7JwUw7Xn9SeyHD//Mn2WyJQ1XtVNVFVk4CLgWmqennJMiLSExiHNwlk+SsWY4wJVi9NX0PT+tFckOK/JtQaf45ARB4RkeHO238B9YGPRWShiHxZ0/EYY0ygWrgph5mrd3DdiW2JiQz323FqZPRRVf0J+MlZfqDE+sE1cXyA6Suy+GJBJs9e1AMRqanDGmNMtb00fTUNYiK4rK9/H7EKmSeLM3cf4POFW9iae9DtUIwxplKrtu/lh4ztjB7QlvrR/v3OHjKJoGOz+gCsyspzORJjjKnc2OmrqRMZzlX9k/x+rJBJBB0OJYLte12OxBhjKrY6K4+vFm3hiv5taFQvyu/HC5lE0KR+NI3rRbEm22oExpjANnbaKqIjwhlzYrsaOV7IJALw1gpWbbdEYIwJXKuz8vjSqQ00qR9dI8cMqUTQsVl9VmXloapuh2KMMWWq6doAhGAiyD1QSHaePcBsjAk8a7Kd2kC/mqsNQKglgoRYAFbb7SFjTAAaO2010RHhXDew5moDEGKJ4FDPodXWYGyMCTBrsvP4YmEmV/RrQ9MarA1AiCWCZrHRxMZEWIOxMSbguFUbgBBLBCJC54RYFmfmuh2KMcb8zs3aAIRYIgA4pUszFm3KYdOu/ZUXNsaYGvDfqatcqw1ACCaCYd28Ezt8vWSry5EYYwws37aHLxZt4cr+Sa7UBiAEE0GrxnXp0SqOrxZtcTsUY4zhme9XUj86ghtPau9aDCGXCACGdmvO0i17bLgJY4yr0jbsZsqy7dxwUnsa1o10LY4QTQQtEIHPfst0OxRjTIhSVf71/XKa1o/iqgFJrsYSkongqIYxDOrcjA9TN1FQ5HE7HGNMCPpl1Q7mrt3FLYM6UDeqRuYIK1dIJgKAUX3bkL03nx8ytrkdijEmxHhrAytoGVeHS45v7XY4oZsIBnaKp1XjOrw7d4PboRhjQsx36dtYkpnLHad1IjrCf3MRV5XfE4GIhIvIAhGZXMa2gSLym4gUichIf8dSUniYcGmfNsxdu4tlW/fU5KGNMSGsqNjDMz+soEOz+pzXs6Xb4QA1UyO4HVhWzraNwGhgYg3E8SeX9GlFvahwXvl5jRuHN8aEoE8XZLImex9/Pb0T4WHidjiAnxOBiCQCQ4AJZW1X1fWquhhwpcU2rm4Ul/Vtw1eLtrBh5z43QjDGhJCDhcU89+NKuiU25IyuR7kdzu/8XSN4DribI/xDLyJjRCRVRFKzs7N9Etgh15zQloiwMMbNWOvT/RpjTGmvzVzHltyD3HtWF0QCozYAfkwEIjIUyFLVtCPdl6qOV9Xeqto7Pj7eB9H9T0KDGEakJDIpdTNZew76dN/GGHPIjrx8Xv5pDYO7JNCvfRO3w/kDf9YIBgDDRWQ98AFwioi868fjVdsNJ7WjyOPhtZnr3A7FGFNLPT9lFQcKi7nnrKPdDuVP/JYIVPVeVU1U1STgYmCaql7ur+MdiTZN6jG0WwvenbuB3P2FbodjjKllVmflMXH+Ri7t0/r3CbICSY0/RyAij4jIcGf5OBHZDFwAjBORpTUdzyE3ntyefQXFvDHbagXGGN968tvl1IkM5/bBHd0OpUw1kghU9SdVHeosP6CqXzrLvzq1hnqq2kRVu9ZEPGXp0rwBpycn8Nov69i9r8CtMIwxtcycNTuZsmw7N57c3rVhpisTsk8Wl+Wu0zuTV1BkzxUYY3zC41Ee/2YZzRvGcM0Jbd0Op1yWCErofFQs5/VoyZuz17PdehAZY47Ql4u2sCQzl7+d0ZmYSPeHkiiPJYJS/jK4E8Ue5b/TVrkdijEmiB0oKObp75bTtUUDzu0RGENJlMcSQSmtm9Tl4j6t+GD+Jnva2BhTbS//vIYtuQd5cFhXwgJkKInyWCIow62ndCQ8THj2x5Vuh2KMCUKbdu1n3M9rGNa9BX3aNnY7nEpZIihDQoMYRg9I4otFW0jPzHU7HGNMkHn8m2WEiXBvAD48VhZLBOW46eQONKobxWNfZ6CqbodjjAkSs1bv4Nv0bdw8qD0t4uq4HU6VWCIoR8M6kdwxuCNz1+7ih4ztbodjjAkCRcUeHv5qKa0a1+HaE9u5HU6VWSKowCXO4+BPfLPM5jY2xlTq3bkbWLk9j/uHJAd0d9HSLBFUICI8jPuGdGH9zv28PWe92+EYYwLYzrx8/vPjSk7s2JTTkxPcDuewWCKoxMmd4jmxY1NemLrKhp4wxpTrmR9Wsr+gmAeHJQfUXANVYYmgEiLC/UOSycsv4vmp9pCZMebPFm7K4YNfN3JFvyQ6NIt1O5zDZomgCjofFcvFfVrz7twNrMnOczscY0wAKSr28I9Pl9AsNpo7TgvM0UUrY4mgiu48rRMxkeE8/vUyt0MxxgSQt+ZsIGPrHh4c1pXYmEi3w6kWSwRV1LR+NDcP6sDU5Vn8tCLL7XCMMQFga+4B/vPDCk7uHM9ZxwTOZPSHyxLBYbj6hCTaNa3HQ18uJb+o2O1wjDEue+SrDIo8yqPnHBN0DcQlWSI4DNER4Tw0vCvrd+7n1Rlr3Q7HGOOiacu38236Nm47tSOtGtd1O5wjYongMA3s5K0Cjp2+mk279rsdjjHGBQcKivm/z5fSsVl9rguiJ4jLY4mgGu4fmowgPDo5w+1QjDEueGHaKjJzDvDYuccQFRH8f0aD/wxc0DKuDree2oEfMrYz3RqOjQkpGVv28OqMtYxMSeT4dk3cDscn/J4IRCRcRBaIyOQytkWLyIcislpE5olIkr/j8ZVrT2hHu3hvw/HBQms4NiYUFBV7uPuTRcTVjeS+s7u4HY7P1ESN4HagvM731wC7VbUD8CzwVA3E4xNREWE8PLwrG6zh2JiQMf6XtaRn7uHRc46hUb0ot8PxGb8mAhFJBIYAE8opcg7wlrM8CThVgqgP1okd4zn7WGs4NiYUrM7ay3NTVnH2sUdx1rHN3Q7Hp/xdI3gOuBsobwznlsAmAFUtAnKBP910E5ExIpIqIqnZ2dl+CrV6/m9oMhFhwj8+W2IT2BhTSxV7lLsnLaZuVDgPDz/G7XB8zm+JQESGAlmqmnak+1LV8araW1V7x8fH+yA632nesA5/O6Mzv6zawRcLt7gdjjHGD96avZ7fNubw4LBk4mOj3Q7H5/xZIxgADBeR9cAHwCki8m6pMplAKwARiQAaAjv9GJNfjOqXRI9WcTwyOYNdNlS1MbXKhp37ePr75ZxydDPO7dHS7XD8wm+JQFXvVdVEVU0CLgamqerlpYp9CVzpLI90ygTd/ZXwMOHJEcey50Ah/7RB6YypNTwe5Z5PlhAZFsY/zwvuYSQqUuPPEYjIIyIy3Hn7GtBERFYDdwL31HQ8vnL0UQ24/qR2fPLbZmat3uF2OMYYH3h7znrmrN3JP4Z0oXnD4JiIvjok2L6A9+7dW1NTU90Oo0wHC4s587kZKPD9XwYG1Zylxpg/Wp21lyEvzKR/+ya8Pvq4oK8NiEiaqvYua5s9WexDMZHhPH7+sWzYud9mMzMmiBUUefjLhwupFx3BUyO7BX0SqIwlAh/r374pF6QkMn7GWtIzc90OxxhTDS9MXUV65h4eP+9YmsXGuB2O31ki8IP7hnShcb0o/vrxIgqKynuEwhgTiNI27OKln1ZzQUoiZwbxZDOHwxKBH8TVjeLx845l+ba9jJ1mt4iMCRZ5+UXc8eEiWsTV4YFhyW6HU2MsEfjJackJnN+rJS/+tIYlm+0WkTHB4NGvMti0ez/PXtQjaOcfrg5LBH704NCuNK0fxV0fL7SpLY0JcN+lb+XD1E3ccFJ7jktq7HY4NcoSgR81rBvJk+d3Y+X2PJ6fYreIjAlUm3bt52+TFtM9sSF3DO7kdjg1zhKBnw06uhkX9k7klZ/XsHBTjtvhGGNKKSjycMv7CwAYe2mvWjHj2OEKvTN2wf1Dk0loEMNdHy20SWyMCTBPf7ecRZtyeHpEt6CfhL66LBHUgAYxkTw1ohtrsvfx9Hcr3A7HGOOYkrGdCTPXcUW/NrVujoHDYYmghgzsFM+V/drw+qx1/LwysOZUMCYUbck5wF8nLaJriwb8oxZNO1kdEeVtEJEXqvD5Pap6vw/jqdXuPbsLc9bu5K8fL+K720+kSf3aN665McGgsNjDre8voLDIw9hLe4X8uGAV1QjOAdIqeY3wd4C1SUxkOM9f3JPcA4XcPWmxzWhmjEue+nY5aRt288SIbrRtWs/tcFxXbo0AeFZV36pgOyLSyMfx1HpdmjfgnjOP5pHJGbw7byOj+rZxOyRjQsoXCzOZMHMdV/Zrw/DuLdwOJyBUVCOYVdmHVfU534USOq4akMRJneJ5bHIGq7bvdTscY0JGemYud09aTJ+2jbl/aOgMIVGZihLBeBFZJSKPioj9xHxIRPjXBd2oHx3BbR/YU8fG1IRd+wq4/p00GteL4qXLehEZbn1lDin3J6GqPYGhQBEwSUQWicg9IpJUU8HVZs1iY3h6ZDeWbd3DE98sdzscY2q1omIPt0z8jey8fMaNSqGpddT4gwpToqquUNWHVTUZuALv5PJTRaTS20amcqd2SeCqAUm8OXs9Xy/e6nY4xtRaT367nNlrdvL4ecfSLTHO7XACTpXqRiISBjQDEoB6QJY/gwol957VhZ6t4/j7J4tZt2Of2+EYU+t8+ttmJsxcx+j+SYxMSXQ7nIBUYSIQkRNF5CVgM/BX4Begs6qeV9mORSRGROY7t5SWisjDZZRpIyJTRWSxiPwkIiF3laIiwhh7aS8iwoUb302zISiM8aG5a3fy908W069dE+4bEtoPjVWk3EQgIpuAJ4AMoIeqnqGqb6hqVQfXzwdOUdXuQA/gTBHpW6rMM8DbqtoNeMQ5XshpGVeHZy/qwfJte3nwi6Vuh2NMrbA6K48xb6fSpkk9XhmVYo3DFajoJ3OCqp6gqmNV9bBvBalXnvM20nmVfoIqGZjmLE/H+xBbSBrUuRk3D2rPh6mbmJS22e1wjAlqO/LyuerN+URFhPHG6ONoWCd0JpmpjooSwVWVfVhEHqpke7iILMTbpvCjqs4rVWQRcL6zfB4QKyJNytjPGBFJFZHU7OzaO07PHYM70bddY+7/fAnLt+1xOxxjgtLBwmKufSuV7L35TLjyuJAdUfRwSHnDHIjIZuA/FX0WuE5Vj670ICJxwGfAraqaXmJ9C2As0BaYgXfIimNUNae8ffXu3VtTU1MrO2TQytp7kCEvzKRuVDhf3DyAuLpRbodkTNDweJSbJ/7Gd0u38fJlKSEz+XxViEiaqvYua1tFNYJXgdgKXvWdMpVy/rBPB84stX6Lqp7vPLNwX4myIatZbAyvXN6LrTkHuWXiAoqKPW6HZExQUFUe+3oZ36Zv476zu1gSOAzljjWkqn/q5XM4RCQeKFTVHBGpA5wGPFWqTFNgl6p6gHuB14/kmLVFSpvGPHbuMdz9yWIe/2Y5DwyzB7uNqczzU1fx+ixvN9FrTmjrdjhBxZ/N6M2B6SKyGPgVbxvBZBF5RESGO2VOBlaIyEq8zyj804/xBJULj2vF6P5JvD5rHR+nbnI7HGMC2msz1/HclFWMTEnkgaHJiIjbIQWVikYfPSKquhjoWcb6B0osTwIm+SuGYHf/kC6sytrLfZ+l0y6+PiltbLBXY0r7KHUTj07O4MyuR/Hk+ccSFmZJ4HBZx9oAFhEexthLenFUwxhueDeNbbkH3Q7JmIDyzZKt3PPJYk7s2JTnL+lBhD0rUC2V/tREpJPz9G+6876biNisZDWkUb0oJlzZm/35RVzz1q/syy9yOyRjAsJPK7K4/YMF9GzdiHGjUoiOCO1Zxo5EVdLnq3gbcgvh91s+F/szKPNHnRJiGXtpL5Zv28tN7/1GofUkMiHupxVZjHknjY7NYnl99HHUjfLbXe6QUJVEUFdV55daZ19La9igo5vx2LnH8PPKbO7/LN2muTQha/ryLMa8nUaH+Pq8d+3x9tSwD1Qlje4QkfY4w0OIyEjAxkx2wSV9WrMl5wD/nbaalo3qcNupHd0OyZgaNXXZdm589zc6HVWfd6853h649JGqJIKbgfHA0SKSCawDLvdrVKZcd57WicycA/znx5U0bxjDBb1buR2SMTVi8uIt3PHhQpKbN+Dtq4+nYV2rCfhKpYlAVdcCg0WkHhCmqjbJrotEhCfP70bWnnzu/XQJCQ1iGNgp3u2wjPGr9+Zt4P7P0+ndphETrrRB5Hyt3LGGfi8gcmcZq3OBNFVd6I+gKlLbxxqqqr0HC7nglTls3LWfd67pQ0qbxm6HZIzPqSov/bSGf32/glOObsaLl/aiTpT1DqqO6o41dEhv4AagpfO6Hu+YQa+KyN0+i9IcltiYSN6+pg8JDWIY/fqvpGdWdZoIY4JDsUd5ZHIG//p+Bef2aMG4USmWBPykKokgEeilqnep6l1ACt5pKwcCo/0Ym6lEs9gY3rv2eBrUiWTUa/NYsc3u2pna4UBBMTe+m8Ybs9Zz9YC2/OfCHjaxjB9V5SfbDO9sY4cUAgmqeqDUeuOCFnF1mHjd8USGh3HZhHk277EJetl787l4/BymLNvOQ8OSeWBYsg0b4WdVSQTvAfNE5EEReRCYBUx0Go8z/BqdqZI2Terx3rXH41Hlslfnsnn3frdDMqZaMrbs4byXZrFyex7jRvVm9AAbRbQmVJoIVPVRvO0COc7rBlV9RFX3qepl/g3PVFXHhFjeuaYPeflFXPLqXDbtsmRggsvkxVsY8fJsioqVD6/vy2nJCW6HFDKqdNNNVX8F3sc7y1iWiLT2a1SmWrq2aMjb1xxP7v5CLhw3h7XZeZV/yBiXFXuUp79bzi0TF9C1RQO+vHUA3RLj3A4rpFRl0LnhIrIK74NkPzv/fuvvwEz19GgVxwdj+lFQ5OHCcXOtAdkEtOy9+Vzx+jxe+mkNl/RpzcTr+tIsNsbtsEJOVWoEjwJ9gZWq2hYYDMz1a1TmiCS3aMCH1/clPAwuGj+HJZuta6kJPHPW7OTsF34hdf1unhpxLE+cfyxREdYzyA1V+akXqupOIExEwlR1Ot5nC0wA69Aslo+v70/96AgufXUuqet3uR2SMQAUFnt4bspKLpswl9iYCL64ZQAXHWd3m91UlUSQIyL1gRnAeyLyPGB9FINA6yZ1+ej6fsTHRjPqtfn8mLHd7ZBMiFudlcfIl2fz3JRVnNOjJV/dcgJHH9XA7bBCXlUSwTnAfuAO4DtgDTDUn0EZ32kRV4cPr+9Hp4T6XP9OKm/NXu92SCYEeTzKG7PWMeSFX9i4az8vXtqLZy/qQb1om0cgEFQlETygqh5VLVLVt1T1BeDvlX1IRGJEZL6ILBKRpSLycBllWovIdBFZICKLReTs6pyEqVh8bDTvj+nLqV0SePDLpTw2OQOPx+YzMDVj8+79XDZhHg9/lcEJHZry/R0DGdKtudthmRKqkghOK2PdWVX4XD5wiqp2B3oAZ4pI31Jl7gc+UtWeeGc9e6kK+zXVUDcqglcuT2F0/yQmzFzHTe/9xsHCYrfDMrVYYbGH8TPWcPqzM1i8OYenRhzLhCt7W6+gAFRuvUxEbgRuAtqJyOISm2LxPl1cIfUOa3qoI3uk8yr9NVSBQzcIGwJbqha2qY7wMOGh4V1p1bguj32dwcXj5zJuVAoJDewX0/hW6vpd3PdZOiu27+XUo5v9/v/OBKZyh6EWkYZAI+AJ4J4Sm/aqapW6oIhIOJAGdABeVNW/l9reHPjBOU49YLCqppWxnzHAGIDWrVunbNiwoSqHNxX4Ln0bd360kHrREbx0WS+OS7JhrM2R27WvgCe+WcbHaZtp0TCGB4d35fTkBERsrCC3VTQMdUWJoMK/DFVNBs6+4vA+lXyrqqaXWH+nE8O/RaQf8BpwjKqWOzu7zUfgOyu37+X6d9LYtGs/9w3pwuj+SfYLa6rlYGExb89Zz9hpq9lfUMw1J7bl9lM72qTyAaSiRFDRVUrjf7dySv91UKBdVQNQ1RwRmY53HoP0EpuucdahqnNEJAZoCmRVdd+m+jolxPLFLQO466NFPPxVBgs35fDE+cfaL6+pMo9H+WJRJs98v5LMnAOc3Dmef5zdhU4JsW6HZg5Dub/xzlPE1SYi8XgfRssRkTp4G52fKlVsI3Aq8KaIdAFigOwjOa45PA1iIhl3eQov/7yGZ35YwYptexl7aU86NLNfZFM+VWXm6h088c1yMrbu4ZiWDXh6ZDcGdGjqdmimGiqdqhK84w3hnYgG4CdVnVyFz3QD3gLC8fZO+khVHxGRR4BUVf1SRJKBV4H6eGsZd6vqDxXt124N+c+Mldn85cOF7Msv4r4hXRjVt43dKjJ/oKr8smoHL0xdReqG3bSMq8PdZ3ZmWLcWNmdAgKtWG0GJDz8JHId3XgKAS4BfVfUfPo2yiiwR+FfW3oP87ePF/Lwym0Gd43l6ZHfiY6PdDsu4TFX5aWU2z09ZxcJNOTRvGMNNJ7fnwuNaER1h00cGgyNNBIuBHocacJ2eQAtUtZvPI60CSwT+p6q8PWcDj3+zjPrRETw1ohuDbWz4kFRY7OGbJVt5beY6Fm/OpWVcHW4e1IERKS0tAQSZ6jYWlxQHHOol1NAXQZnAJSJc2T+J/u2bcNsHC7n27VTO79mS+4cm07helNvhmRqwa18BE+dt4J25G9i+J5+2Tevx1IhjOa9noo0QWgtVJRE8ASxwev0I3raCeyr+iKkNOibE8vnN/Rk7bTUv/7SG6SuyuH9IMuf3amltB7XU8m17eGPmej5fmEl+kYcTOzblyfO7cVKneGsDqMUqeo7gRWCiqs5yHvw6ztk0X1W31VSApdmtIXes2LaXez9dzG8bczihQ1P+ed4xtGlSz+2wjA8Ue5Rpy7N4Y9Y6Zq/ZSUxkGOf3SuSq/kl0tG6gtUZ1Hyi7He/4P82Bj4D3VXWB36KsIksE7vF4lPfmb+Spb5dTWOzhxpPbc/3A9tSJsnvFwWjvwUI+Tt3Mm7PXs3HXfpo3jOGKfklc0qcVcXXtFmBtc6SNxW3wJoSLgTp45y5+X1VX+jrQqrBE4L5tuQd5dHIGXy/ZSvOGMdx9ZmfO6d7Sbh0EifU79vHm7PVMSttMXn4RKW0acfWAtpzRNYGIcLv/X1sdUSIotaOewOtAN1V15WugJYLAMX/dLh6ZvJT0zD10bxXHA0OTSWnTyO2wTBlUldlrdvLGrHVMXZ5FRJgwtFsLrhqQZBPFh4gjrRFE4B12+mK8TwH/hLdG8IWP46wSSwSBxeNRPl2QydPfLSdrbz5nHXMUd5zWyYYYCBAHC4v5YmEmr89cz4rte2lSL4rLjm/N5X3b0MxGnQ0p1W0jOA3vw2NnA/OBD4AvVNXVaSotEQSmfflFjJ+xltdmrmNfQRHndG/B7YM70bapNSi7Yfe+At6du4G35qxnR14BXZo34KoBSQzv3oKYSGvTCUXVTQTTgInAJ6q624/xHRZLBIFt174Cxs1Yw1uz11NYrIzslcgtp3SwsehryIad+3ht5jo+St3EwUIPgzrHc92J7ejXvol1+Q1xPmsjCASWCIJD1t6DvDR9DRPnbaRYleHdW3DDSe3pfJTdMvKHdTv28d+pq/h8YSbhYcK5PVpy3cB2dovO/M4SgXHN1twDTPhlHe/P38j+gmIGd2nGjSd3sEZlH9mwcx8vTF3N5wsziQwXruiXxLUntLX7/+ZPLBEY1+3eV8Bbc9bz5uz15OwvpE/bxtx0cntO6hRvtyyqYWvuAZ77cRWTfttMRJgwqm8brj+pvQ0QaMplicAEjH35RXzw6yYm/LKWrbkHOfqoWMYMbMew7i2ItD7slTpQUMz4GWt5+efVeBQu7dOam05ubzUAUylLBCbgFBR5+HxhJq/OWMuqrDyaN4zhqgFJXNKnNbExkW6HF3BUlW/Tt/HY5Ay25B5kyLHNueeso60R3lSZJQITsDwe5eeV2YybsYa5a3cRGx3Bpce3ZvSAJJo3rON2eAFh+56D/N/n6fyQsZ3k5g14cFgyx7dr4nZYJshYIjBBYfHmHMbPWMs3S7YSJsLw7i24bmA7ujRv4HZorlBVPk7dzKNfZ1BQ5OGu0ztx9YC2NgyEqRZLBCaobNq1//e+8PsLihnYKZ4xJ7ZjQIfQ6Qu/52Ah93yymG+WbKNP28Y8NaKbPZxnjoglAhOUcvYX8N68jbwxaz078vJJbt6AMQPbMaRb81rdsLxkcy43T/yNzJwD3H1GZ647sZ0N6GeOmCuJQERigBlANN4JcCap6oOlyjwLDHLe1gWaqWpcRfu1RBB6Do2XM37GWtZk76NlXB1uOaUDI1MSa11C+OjXTdz/eTpN60fx30t7ktKmsdshmVrCrUQgQD1VzRORSGAmcLuqzi2n/K1AT1W9uqL9WiIIXR5nApX/Tl/Nok05tG5cl9tO7ci5PVoE/X1zVeWFqat5dspKTuzYlBcu7kkjmxbU+FBFicBvvz3qlee8jXReFWWdS/DOdWBMmcLChMHJCXx+U39eu7I3sTER/PXjRZz+7Ay+WJiJxxNctzkPKSr28I/PlvDslJWMTEnk9dHHWRIwNcqvbQQiEg6kAR2AF1X17+WUawPMBRJVtbiM7WOAMQCtW7dO2bBhg99iNsFDVfl+6Xae/XElK7bvpXtiQx4YlhxUt1MKijzcPPE3fszYzi2DOnDX6Z1CpkHc1CzXG4tFJA74DLhVVdPL2P53vEng1sr2ZbeGTGkej/LZgkye/n452/fkM7x7C+49++iAfw6hqNjDbR8s4Jsl23h4eFeu7J/kdkimFnPl1lBJqpoDTAfOLKfIxdhtIVNNYWHCiJREpt11Mred0oHvl25j8L9/5q3Z6ykO0NtFqsr9n6fzzZJt/N/QZEsCxlV+SwQiEu/UBBCROsBpwPIyyh0NNALm+CsWExrqRUdw5+mdmXLnSfRq04gHv1zKyFdms2LbXrdD+5PXZ63ng183cfOg9lxzQlu3wzEhzp81gubAdBFZDPwK/Kiqk0XkEREZXqLcxcAHGmwPNJiA1apxXd6+ug/PXtSd9Tv2Mey/M5nwy9qAaUyevWYH//w6gzO6JnDXaZ3dDscYe6DM1G478/L5+ydLmLJsOwM7xfPMBd1oFuveSJ25Bwo587kZ1IkK56tbTqBedIRrsZjQ4nobgTFuaVI/mlevSOHRc49h3tqdnPXcL8xevcO1eB76cilZe/N59sIelgRMwLBEYGo9Ee/ELV/degKN60Ux6vX5vDV7PTVdG56zZiefLcjk5kEd6N4qrkaPbUxFLBGYkNEpIZZPb+rPoM7xPPjlUv7x2RIKijw1cmxV5clvl9G8YQw3ndy+Ro5pTFVZIjAhJTYmkvGjenPLoA68P38TV7w+j70HC/1+3K+XbGXR5lzuPK0TMZHhfj+eMYfDEoEJOWFhwl/P6MxzF/Ugdf1uLpswj937Cvx2PFVl7LTVdEqoz/m9Ev12HGOqyxKBCVnn9mzJuFEpLN+2lwvHzWH7noN+OU7G1j0s37aXUX3bEG7DSZsAZInAhLRTuyTw5lXHsSXnACNfmc2WnAM+P8YnaZlEhYcxrHsLn+/bGF+wRGBCXv/2TXnvur7k7Ctk1Gvz2OXD20SFxR6+WJjJqV2aEVfXRhQ1gckSgTFAj1ZxvHplbzbtPsBVb8wnL7/IJ/udsTKbnfsKrG3ABDRLBMY4+rZrwouX9iJ9yx5ueCeN/KI/jYh+2NIz9wAwsFPTI96XMf5iicCYEk5LTuDpEd2YuXoH93yy5IgfOss5UEBsdATREdZl1AQue8bdmFJGpCSyJecA//5xJce2bMjVRzA6aO7+QhrWjfRhdMb4ntUIjCnDzYM6cHpyAv/8Zhlz1uys9n5yDhQSZ4nABDhLBMaUISxM+PeF3UlqUpdbJv5GZjW7lebsLyCujvUWMoHNEoEx5YiNiWT8Fb3JL/Jw47tp1RqXKOeA3Roygc8SgTEVaB9fn39f2J3Fm3P59w8rDvvzufsLiatjicAENksExlTijK5HcenxrRk3Yy2zDmMuA1W1NgITFCwRGFMF/zckmfbx9fjbx4uqPFrpvoJiij1qbQQm4FkiMKYK6kSF868LurN1z0Ge/HZ5lT6Ts987VIW1EZhAZ4nAmCrq1boR1wxoy3vzNjJ3beVdSnP2e2sODa2NwAQ4vyUCEYkRkfkiskhElorIw+WUu1BEMpwyE/0VjzG+cNfpnUlsVIf/+zydwuKKexHlHvAmAmssNoHOnzWCfOAUVe0O9ADOFJG+JQuISEfgXmCAqnYF/uLHeIw5YnWiwnloWFdWZeXxxqx1FZY9VCOwUUdNoPNbIlCvPOdtpPMqPXDLdcCLqrrb+UyWv+IxxlcGJycwuEsznpuyiqy95U9mk3PA20ZgvYZMoPNrG4GIhIvIQiAL+FFV55Uq0gnoJCKzRGSuiJxZzn7GiEiqiKRmZ2f7M2RjquT+IckUFHl4fsqqcstYG4EJFn5NBKparKo9gESgj4gcU6pIBNAROBm4BHhVROLK2M94Ve2tqr3j4+P9GbIxVZLUtB6XHt+aD37dxNrsvDLL5B4oJCYyzCarNwGvRnoNqWoOMB0o/Y1/M/Clqhaq6jpgJd7EYEzAu+3UjsREhPHvH1aWud3GGTLBwp+9huIPfbsXkTrAaUDpDtif460NICJN8d4qWuuvmIzxpab1oxk9IIlv0reypoxaQc5+e6rYBAd/1giaA9NFZDHwK942gski8oiIDHfKfA/sFJEMvDWGv6lq9cf8NaaGXTWgLVHhYYz/+c/fX3IOFFr7gAkKfpuYRlUXAz3LWP9AiWUF7nRexgSdpvWjuei4Vrw/fyN3nNaJoxrG/L4td38hSU3ruhidMVVjTxYbc4SuO7EdxR7lnbnr/7A+54C1EZjgYInAmCPUqnFdTuwYz2e/ZeLx/O9RGWsjMMHCEoExPjAiJZEtuQd/H4PoYGEx+UUeG3DOBAVLBMb4wOnJCcRGRzDpt83A/8YZssZiEwwsERjjAzGR4Qzp1pzv0rexL7+IvQeLAKgf7bf+GMb4jCUCY3xkWPcW7C8oZt66nRwaVitMxN2gjKkCSwTG+EhKm0ZEhYcxd+0ut0Mx5rBYIjDGR2Iiw+nROq5Kk9YYE0gsERjjQ33bNSE9M5c9ThuBMcHAEoExPtSvXRM8Cr+us9tDJnhYIjDGh3q2jiMqIsxuD5mgYonAGB+KiQynZ6s4azA2QcUSgTE+1i2xIQcKi90Ow5gqs0RgjI8lNa3ndgjGHBZLBMb4WFtLBCbIWCIwxscsEZhgY4nAGB9LiI2pvJAxAcQSgTE+FhYmRIbbGEMmeFgiMMYPkprY7SETPPyWCEQkRkTmi8giEVkqIg+XUWa0iGSLyELnda2/4jGmJh1qJyguMWOZMYHKn4Ol5wOnqGqeiEQCM0XkW1WdW6rch6p6ix/jMKbGHUoEm3fvdzkSYyrnt0SgqgrkOW8jnZd9PTIhoX2z+gDs3FfgciTGVM6v0yeJSDiQBnQAXlTVeWUUGyEiA4GVwB2quqmM/YwBxgC0bt3ajxEb4xvn9WzJuh37uPaEtm6HYkylxPvF3c8HEYkDPgNuVdX0EuubAHmqmi8i1wMXqeopFe2rd+/empqa6td4jTGmthGRNFXtXda2Guk1pKo5wHTgzFLrd6pqvvN2ApBSE/EYY4z5H3/2Gop3agKISB3gNGB5qTLNS7wdDizzVzzGGGPK5s82gubAW047QRjwkapOFpFHgFRV/RK4TUSGA0XALmC0H+MxxhhThhppI/AlayMwxpjD53obgTHGmMBlicAYY0KcJQJjjAlxlgiMMSbEBV1jsYhkAxuq+fGmwA4fhhOI7ByDX20/P7BzdEMbVY0va0PQJYIjISKp5bWa1xZ2jsGvtp8f2DkGGrs1ZIwxIc4SgTHGhLhQSwTj3Q6gBtg5Br/afn5g5xhQQqqNwBhjzJ+FWo3AGGNMKZYIjDEmxIVMIhCRM0VkhYisFpF73I6nqkSklYhMF5EMEVkqIrc76xuLyI8issr5t5GzXkTkBec8F4tIrxL7utIpv0pErnTrnMojIuEiskBEJjvv24rIPOdcPhSRKGd9tPN+tbM9qcQ+7nXWrxCRM1w6lTKJSJyITBKR5SKyTET61abrKCJ3OP9H00XkfRGJCfZrKCKvi0iWiJScUMtn10xEUkRkifOZF0REavYMHapa619AOLAGaAdEAYuAZLfjqmLszYFeznIs3ik9k4GngXuc9fcATznLZwPfAgL0BeY56xsDa51/GznLjdw+v1LneicwEZjsvP8IuNhZfgW40Vm+CXjFWb4Y+NBZTnaubTTQ1rnm4W6fV4nzewu41lmOAuJqy3UEWgLrgDolrt3oYL+GwECgF5BeYp3Prhkw3ykrzmfPcuU83f4PVEMXsx/wfYn39wL3uh1XNc/lC7yT/KwAmjvrmgMrnOVxwCUlyq9wtl8CjCux/g/l3H4BicBU4BRgsvOLsQOIKH0Nge+Bfs5yhFNOSl/XkuXcfgENnT+UUmp9rbiOTiLY5Pyxi3Cu4Rm14RoCSaUSgU+umbNteYn1fyhXk69QuTV06D/pIZuddUHFqT73BOYBCaq61dm0DUhwlss710D/GTwH3A14nPdNgBxVLXLel4z393Nxtuc65QP5HNsC2cAbzu2vCSJSj1pyHVU1E3gG2AhsxXtN0qhd1/AQX12zls5y6fU1LlQSQdATkfrAJ8BfVHVPyW3q/ToRtP2ARWQokKWqaW7H4kcReG8xvKyqPYF9eG8r/C6Yr6Nzn/wcvAmvBVCPUnOU10bBfM1KCpVEkAm0KvE+0VkXFEQkEm8SeE9VP3VWbxdnzmfn3yxnfXnnGsg/gwHAcBFZD3yA9/bQ80CciByaTrVkvL+fi7O9IbCTwD7HzcBmVZ3nvJ+ENzHUlus4GFinqtmqWgh8ive61qZreIivrlmms1x6fY0LlUTwK9DR6cEQhbdx6kuXY6oSpxfBa8AyVf1PiU1fAod6H1yJt+3g0PornB4MfYFcpxr7PXC6iDRyvr2d7qxznareq6qJqpqE99pMU9XLgOnASKdY6XM8dO4jnfLqrL/Y6ZHSFuiItzHOdaq6DdgkIp2dVacCGdSe67gR6CsidZ3/s4fOr9ZcwxJ8cs2cbXtEpK/zM7uixL5qlpuNMDX5wtuivxJvL4T73I7nMOI+AW/VczGw0Hmdjfd+6lRgFTAFaOyUF+BF5zyXAL1L7OtqYLXzusrtcyvnfE/mf72G2uH9I7Aa+BiIdtbHOO9XO9vblfj8fc65r8ClHhgVnFsPINW5lp/j7UFSa64j8DCwHEgH3sHb8yeoryHwPt42j0K8tbprfHnNgN7Oz2sNMJZSnQlq6mVDTBhjTIgLlVtDxhhjymGJwBhjQpwlAmOMCXGWCIwxJsRZIjDGmBBnicAYY0KcJQITskSkiYgsdF7bRCTTWc4TkZf8cLw3RWSdiNxQQZkTxTvkeHp5ZYzxNXuOwBhARB4C8lT1GT8e4028D8tNqqRcklPuGH/FYkxJViMwphQROVn+NznOQyLyloj8IiIbROR8EXnamUzkO2ccqEMTjPwsImki8v2hsWgqOc4F4p3EZZGIzPD3eRlTHksExlSuPd6B8IYD7wLTVfVY4AAwxEkG/wVGqmoK8Drwzyrs9wHgDFXt7uzbGFdEVF7EmJD3raoWisgSvLPdfeesX4J30pLOwDHAj85Mg+F4x6epzCzgTRH5CO9onca4whKBMZXLB1BVj4gU6v8a1jx4f4cEWKqq/Q5np6p6g4gcDwwB0kQkRVV3+jJwY6rCbg0Zc+RWAPEi0g+880eISNfKPiQi7VV1nqo+gHf2slaVfcYYf7AagTFHSFULRGQk8IKINMT7e/UcsLSSj/5LRDrirVFMxTtpuzE1zrqPGlNDrPuoCVR2a8iYmpMLPFrZA2XAV8COGovKhDyrERhjTIizGoExxoQ4SwTGGBPiLBEYY0yIs0RgjDEh7v8BgSx9+x99+gEAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABcUElEQVR4nO3deVhUZcMG8HsWGPZhkx1EBEERFHfcSkVNzbRs0cylrDfLUsu3hTe11bBcSlvMNNNKszS1MpXc9xVBwQVQQBBBVIRhHWDmfH+g80kqgc5wZrl/1zXXFTNnZu45BXN3znOeRyIIggAiIiIiMyEVOwARERGRPrHcEBERkVlhuSEiIiKzwnJDREREZoXlhoiIiMwKyw0RERGZFZYbIiIiMitysQM0Na1Wi0uXLsHR0RESiUTsOERERNQAgiCgpKQEPj4+kErrPzZjceXm0qVL8Pf3FzsGERER3YOcnBz4+fnVu43FlRtHR0cAtTvHyclJ5DRERETUECqVCv7+/rrv8fpYXLm5eSrKycmJ5YaIiMjENGRICQcUExERkVlhuSEiIiKzwnJDREREZoXlhoiIiMwKyw0RERGZFZYbIiIiMissN0RERGRWWG6IiIjIrLDcEBERkVlhuSEiIiKzYjTlZvbs2ZBIJJg6depdt1myZAl69eoFFxcXuLi4ICYmBkeOHGm6kERERGT0jKLcHD16FIsXL0ZkZGS92+3atQujRo3Czp07cfDgQfj7+2PAgAHIzc1toqRERERk7EQvN6WlpRg9ejSWLFkCFxeXerdduXIlXn75ZbRv3x5hYWFYunQptFottm/f3kRpiYiI6G4EQcC+9KvQaAVRc4hebiZNmoQhQ4YgJiam0c8tLy9HdXU1XF1d77qNWq2GSqWqcyMiIiL9O559Hc98dxj9P9uNGo1WtBxy0d4ZwOrVq3H8+HEcPXr0np7/1ltvwcfHp95iFBcXh/fff/9eIxIREVED/XQoGwDQIcAFcpl4x09Ee+ecnBxMmTIFK1euhI2NTaOfP3v2bKxevRrr16+v9/mxsbEoLi7W3XJycu4nNhEREd1BYVkV/jqZBwB4pltzUbOIduQmISEBBQUF6NChg+4+jUaDPXv24Msvv4RarYZMJrvjc+fOnYvZs2dj27Zt/zoIWaFQQKFQ6DU7ERER1fXrsRxUabSI8FWinZ9S1CyilZt+/fohOTm5zn3PPvsswsLC8NZbb9212Hz66aeYNWsW4uPj0alTp6aISkRERPXQagWsOlx7SuqZbgGQSCSi5hGt3Dg6OqJt27Z17rO3t4ebm5vu/rFjx8LX1xdxcXEAgE8++QQzZ87EqlWrEBgYiPz8fACAg4MDHBwcmvYDEBEREQBgT/oVZBeWw9FGjkfa+YodR/yrpeqTnZ2NvLw83c+LFi1CVVUVHn/8cXh7e+tuc+fOFTElERGRZfvp0AUAwOMd/WBrfeczL01J1Kul/mnXrl31/pyVldVkWYiIiOjf5RSWY/vZAgDA6K7iDiS+yaiP3BAREZFx++nwBQgC0CvEHcEexjFEhOVGTwRBwLVSNTKulIodhYiIqElUVmvwy9HaKVbGRgeKG+YWLDd6siv1Cjp+tA2TViWKHYWIiKhJ/JF0CUXl1fBzsUXfMA+x4+iw3OhJgJsdAODCtTIIgrhrahARERmaIAhYfiALADCmW3PIpOJe/n0rlhs98Xexg1QClFdpcKVELXYcIiIig0q4cB2n81RQyKV4spO/2HHqYLnRE2u5FL4utgCAzKtlIqchIiIyrBUHay//Ht7eFy721iKnqYvlRo8C3ewBABeulYuchIiIyHAKVJXYnFw7D93Y7sZx+fetWG706Ga5ybzGIzdERGS+Vh7ORo1WQOdAF4T7iLuO1J2w3OhRoPvNIzcsN0REZJ6qarRYdaR2HSljuvz7Viw3etTCvfaKqcyrPC1FRETmaXNKHq6UqOHhqMBDbb3EjnNHLDd61Nzt/4/c8HJwIiIyRz/cGEg8umtzWMmMs0YYZyoTxcvBiYjInJ3IKULCheuwkkkwqqtxXf59K5YbPbr1cvAsXjFFRERmZtn+TADA0HY+8HC0ETnN3bHc6NnNK6ayONcNERGZkfziSvx1svby7+d6tBA5Tf1YbvRMV254xRQREZmRHw5moUYroGsLV7T1Nb7Lv2/FcqNnNy8HZ7khIiJzUVGl0V3+/VxP4z5qA7Dc6F3gjQU0s3g5OBERmYl1iRdRVF6NAFc7xLT2FDvOv2K50bNbj9zwcnAiIjJ1Wq2AZftqBxKP7x5oVKt/3w3LjZ7VuRy8lJeDExGRaduTfgXnr5TBQSHHE538xI7TICw3elbncnCemiIiIhP33Y2jNk919oejjZXIaRqG5cYAbl4xlXq5ROQkRERE9y7tcgn2pl+FVFJ7SspUsNwYQLcgNwDArrMFIichIiK6d9/vzwIA9G/jCX9XO3HDNALLjQH0DfMAAOw7dxUVVRqR0xARETXetVI11h2/CACY0DNI5DSNw3JjAGFejvB1toW6RosD56+KHYeIiKjRfjh4AeoaLSL9lOgc6CJ2nEZhuTEAiUSiO3qz7QxPTRERkWmpqNLgx0O1q3//p3cQJBLjv/z7Viw3BtKvdW252XH2Mue7ISIik/Lb8YsoLKuCn4stHgr3EjtOo7HcGEi3IDfYWctwWaXGqUsqseMQERE1iEYrYOneDADAhJ4tIJeZXlUwvcQmwsZKhp7B7gCA7Tw1RUREJmLr6cvIulYOpa0VnuzkL3ace8JyY0A319/YduayyEmIiIga5ts95wEAz3QLgL1CLnKae8NyY0B9wjwglQDJucXIuspVwomIyLglXCjE8ewiWMukGGdCk/b9E8uNATVzVKBnSDMAwIakXJHTEBER1e/bPbVjbR6N8oWHo43Iae4dy42BPRrlAwDYkJjLq6aIiMhoZVwpxd+na4dRvNC7hchp7g/LjYENaOMFWysZsq6VIymnSOw4REREd/TdvkwIAtAvzAPBHo5ix7kvLDcGZq+QY2B47cDiDYk8NUVERMbnaqkaaxNql1p4obdpLbVwJyw3TWB4lC8A4M+TeajWaEVOQ0REVNf3+zOhrtGinb8zurZwFTvOfWO5aQI9g93h7mCNwrIq7E69InYcIiIinZLKavxwsHaphZcfbGlySy3cCctNE5DLpBjWvvbozS/HckROQ0RE9P9WHs5GSWUNgj0c0P/G/GymzmjKzezZsyGRSDB16tS7bnPq1CmMGDECgYGBkEgk+Pzzz5ss3/0a1aV2lscdZwuQX1wpchoiIiKgslqD7/ZlAgAmPtASUqnpH7UBjKTcHD16FIsXL0ZkZGS925WXlyMoKAizZ8+Gl5dpLeQV7OGILoGu0GgFrOHRGyIiMgJrEy7iSokaPkobDGvvI3YcvRG93JSWlmL06NFYsmQJXFxc6t22c+fOmDNnDkaOHAmFQtFECfVnVNfaozerj+ZAo+WcN0REJJ4ajVY3ad8LvYNgZYILZN6N6J9k0qRJGDJkCGJiYgzy+mq1GiqVqs5NLIPaekNpa4XcogrsTefAYiIiEs9fyXnILiyHq701RnYOEDuOXolablavXo3jx48jLi7OYO8RFxcHpVKpu/n7i7fCqY2VDI91qB1YvOpwtmg5iIjIsgmCgEW7ahfIHN89ELbWMpET6Zdo5SYnJwdTpkzBypUrYWNjuPUrYmNjUVxcrLvl5Ig73uXpLrXteNuZy7h4vVzULEREZJl2pV7B2fwS2FvLMC46UOw4eidauUlISEBBQQE6dOgAuVwOuVyO3bt3Y+HChZDL5dBoNHp5H4VCAScnpzo3MYV4OqJHsBu0AvDjjXkFiIiImtLNozajuzWH0s5K5DT6J1q56devH5KTk5GUlKS7derUCaNHj0ZSUhJkMvM6RHar53rULkj285FslKlrRE5DRESW5HDGNRzJKoS1TIoJPU17gcy7kYv1xo6Ojmjbtm2d++zt7eHm5qa7f+zYsfD19dWNyamqqsLp06d1/5ybm4ukpCQ4ODggODi4aT/AfegT6oFANztkXSvHuuMXMcYMDwkSEZFx+nLnOQDA45384OlkuGEhYhL9aqn6ZGdnIy8vT/fzpUuXEBUVhaioKOTl5WHu3LmIiorC888/L2LKxpNKJXj2xtGb7/dnQcvLwomIqAkkZl/H3vSrkEsleOmBlmLHMRjRjtzcya5du+r9OTAwEIJgHkXg8Y5+mPt3KjKulmF32hX0CfMQOxIREZm5L3bUHrV5NMoX/q52IqcxHKM+cmPO7BVyjOxce1n6sv2ZIqchIiJzl5JbjB1nCyCVAJP6mM5QjnvBciOisdGBkEqAvelXkXa5ROw4RERkxr7YkQ4AeKSdDwLd7UVOY1gsNyLyd7XDwPDaNbK+59EbIiIykLP5KsSfugyJBRy1AVhuRPfcjcvw1h3PRWFZlchpiIjIHH15Y6zNoLZeCPF0FDmN4bHciKxTcxdE+CqhrtHi5yNckoGIiPTr/JVS/JVce+XxK31CRE7TNFhuRCaRSPBcz0AAwIoDWVDX6GdmZiIiIgD4auc5CAIQ09oTbXzEnaW/qbDcGIEhET7wcrJBQYka64/nih2HiIjMRNbVMvyedAkAMLmf+Y+1uYnlxghYy6V4vlft2JvFezKg4aR+RESkBwt3pEOjFfBgaDNE+jmLHafJsNwYiVFdAuBsZ4XMq2XYnJL3708gIiKqR8aVUmxIrD0bMDWmlchpmhbLjZGwV8gxvnsgAODrnefNZiZmIiISxxc7zkErAP3CPNDe31nsOE2K5caIjO8eCDtrGU7nqbAr7YrYcYiIyESdKyjF70mWedQGYLkxKs521ni6SwAAYNHO8yKnISIiU7Vwezq0AtC/jSci/JRix2lyLDdG5vleQbCSSXAkqxDHsgrFjkNERCYm7XIJ/jxZe4XU1BjLmNfmn1hujIyX0gYjOvgBAL7exaM3RETUOAu2p0MQgIHhngj3sbyjNgDLjVF68YGWkEqAHWcLcCZPJXYcIiIyEWfzVdh0YzZiSxxrcxPLjRFq4W6PQRHeAIBFPHpDREQNtGBb7VGbwRFeaO1tGbMR3wnLjZF6+cGWAICNJy8h40qpyGmIiMjYnbpUjM0p+ZBIgCn9LPeoDcByY7TCfZToG+YBrQB8ufOc2HGIiMjIzfs7DQDwcKQPQr3Mf+Xv+rDcGLEp/WpHuf+edAlZV8tETkNERMbqWFYhdpwtgEwqwev9LfuoDcByY9Ta+TujT2gzaLQCvtjBozdERHQ7QRDwaXwqAODJTn5o4W4vciLxsdwYuSk3RrtvSMrl0RsiIrrNnvSrOJJZCGu5FK/2tcx5bf6J5cbItfd3xoM3jt5w7A0REd1KEATMiT8LABjTrTl8nG1FTmQcWG5MwM2xN+sTc3HhGo/eEBFRrS0p+UjJVcHeWqa7ypZYbkxCVIALHmhVe/TmKx69ISIiABqtgLl/1461mdArCG4OCpETGQ+WGxMx5cb6IL8dz0X2tXKR0xARkdjWJ+bi/JUyONtZ4fleLcSOY1RYbkxEhwAX9ObRGyIiAlBVo8Xn22rntXnpgZZwsrESOZFxYbkxITfH3vx2/CLH3hARWbCfDl3AxesV8HBUYFz3QLHjGB2WGxPSsXnt2JsarYAF29LFjkNERCJQVVbjix213wGv9W8FGyuZyImMD8uNifnvgFAAwPqkXKRfLhE5DRERNbVvdp3H9fJqtGxmjyc6+okdxyix3JiYCD8lBoZ7QhCA+VvTxI5DRERNKL+4Esv2ZwIA3nooDHIZv8bvhHvFBE0bEAqJBNicko+U3GKx4xARURP5bGsaKqu16NTcBf3beIodx2ix3JigVp6OGNbOBwAw78YcB0REZN7SLpdgTUIOACB2cBgkEonIiYwXy42JmhrTCjKpBDtTryDhQqHYcYiIyMA+2XwWWgF4KNwLHZu7ih3HqLHcmKhA9/8fSDY3nmNviIjM2eGMa9h+tgAyqQRvPBQqdhyjx3Jjwl7tFwJrmRQHM65h/7mrYschIiIDEAQBH2+uXRxzZGd/tGzmIHIi48dyY8J8nW3xdNcAAMCc+FQIgiByIiIi0reNJ/NwIqcIdtYy3VI8VD+WGxP3cp+WsLWSISmnCFtPXxY7DhER6VFltQazbxy1+U/vIHg42oicyDQYTbmZPXs2JBIJpk6dWu92a9asQVhYGGxsbBAREYFNmzY1TUAj5eFog+d6BgIAPo1PRY1GK24gIiLSm+/2ZSK3qAJeTjb4T+8gseOYDKMoN0ePHsXixYsRGRlZ73YHDhzAqFGjMGHCBCQmJmL48OEYPnw4UlJSmiipcXrxgZZwtrPCuYJS/Hb8othxiIhID66UqPH1jYWS33woFHbWcpETmQ7Ry01paSlGjx6NJUuWwMXFpd5tFyxYgIceeghvvPEGWrdujQ8//BAdOnTAl19+2URpjZOTjRVe6RMMAPhsazoqqjQiJyIiovs1f2sqyqo0iPRTYnh7X7HjmBTRy82kSZMwZMgQxMTE/Ou2Bw8evG27gQMH4uDBg3d9jlqthkqlqnMzR2Oim8PX2Rb5qkosP5AldhwiIroPZ/JU+OVo7YR9Mx5uA6mUE/Y1hqjlZvXq1Th+/Dji4uIatH1+fj48PetON+3p6Yn8/Py7PicuLg5KpVJ38/f3v6/Mxkohl2HagFYAgK93nUNReZXIiYiI6F4IgoCP/joNrQAMifBG50BO2NdYopWbnJwcTJkyBStXroSNjeFGf8fGxqK4uFh3y8nJMdh7iW1Ye1+EeTmipLIGi3adFzsOERHdgx1nC7D/3DVYy6R466EwseOYJNHKTUJCAgoKCtChQwfI5XLI5XLs3r0bCxcuhFwuh0Zz+7gRLy8vXL5c93Lny5cvw8vL667vo1Ao4OTkVOdmrmRSie4X4fsDWbhUVCFyIiIiaoxqjRazNp0BADzbMxABbnYiJzJNopWbfv36ITk5GUlJSbpbp06dMHr0aCQlJUEmk932nOjoaGzfvr3OfVu3bkV0dHRTxTZ6D4Y2Q9cWrqiq0eKzrVyWgYjIlKw4kIWMK2Vws7fWXShCjSdauXF0dETbtm3r3Ozt7eHm5oa2bdsCAMaOHYvY2Fjdc6ZMmYItW7Zg3rx5OHv2LN577z0cO3YMr7zyilgfw+hIJBK8Paj26M1vxy/ibL55DqAmIjI3V0rUWLAtHQDw34GhcLSxEjmR6RL9aqn6ZGdnIy8vT/dz9+7dsWrVKnz77bdo164d1q5diw0bNujKENWKCnDB4AgvaAVg1l9nxI5DREQN8OmWsyhR1yDCV4knO5nnxS9NRSJY2IJEKpUKSqUSxcXFZj3+5sK1MsTM341qjYAVz3XBA62aiR2JiIjuIjH7Oh79+gAAYN3L3dEhoP553yxRY76/jfrIDd275m72GBsdCAD4+K8z0GgtqsMSEZkMrVbAe3+cAgCM6ODHYqMHLDdm7NW+wVDaWiH1cgl+PWa+l8ATEZmytQkXceJiMRwUcrw1KFTsOGaB5caMOdtZY3K/EADAvL/TUKquETkRERHdqriiGp9sqV31e0q/EK76rScsN2ZuTLfmCHSzw9VSNRbv5sR+RETGZMG2dFwrq0LLZvYY1z1Q7Dhmg+XGzFnLpbpLw5fszUBeMSf2IyIyBmmXS7DiYBYA4L1HwmEt51eyvnBPWoCB4V7oEuiKymot5sSnih2HiMjiCYKA6etToNEKGBjuiV4hvKJVn1huLIBEIsE7Q1oDANYdz8XJi0XiBiIisnBrEy7iSFYhbK1kmDk0XOw4ZoflxkK083fG8PY+AID3/zwNC5veiIjIaFwvq8LHN9aPmhoTAl9nW5ETmR+WGwvy1qAw2FrJkHDhOv44cUnsOEREFumTLWdxvbwaoZ6OeK5nC7HjmCWWGwvirbTFpD4tAQBxm86ivIqXhhMRNaWEC4VYfbR23rGPHm0LKxm/hg2Be9XCPN8rCH4utshXVeKbXbw0nIioqdRotHhnfQoA4ImOfugc6CpyIvPFcmNhbKxkmH5jcPHiPRnIKSwXORERkWVYfiALZ/NL4GxnhdjBrcWOY9ZYbizQwHAvRAe5QV2jRdxmrhpORGRol4oqMH9rGgAgdlAYXO2tRU5k3lhuLJBEIsG7j7SBVAJsSs7HgfNXxY5ERGS2BEHAjA0pKK/SoGNzFzzR0V/sSGaP5cZChXk5YXTX5gCAD/48jRqNVuRERETmaePJPGw/WwArmQRxj0VAKpWIHcnssdxYsNf7t4LS1gpn80uw8nC22HGIiMzO9bIqvPfHKQDAyw8Go5Wno8iJLAPLjQVzsbfGfweGAgDm/p2KKyVqkRMREZmXWZvO4FpZFUI8HPDyjak4yPBYbizc010CEOGrREllDQcXExHp0d70K1ibcBESCTB7RCQUcpnYkSwGy42Fk0kl+HB4W0gktetOHcksFDsSEZHJK6+qwf/WJwMAxkUHomNzF5ETWRaWG0J7f2eM7Fw7en/m7ykcXExEdJ/m/52GnMIK+ChtdKf/qemw3BAA4M2BYXC2qx1cvOLgBbHjEBGZrBM5RVi2PxMAMOvRCDgo5CInsjwsNwSgdnDxWw+FAQA+25qGy6pKkRMREZmeymoNpq05Aa0ADGvvgz5hHmJHskgsN6TzVCd/tPN3Rqm6Bh9v4uBiIqLG+mxbGs4VlMLdQYH3hoaLHcdisdyQjlQqwUfDagcX/550CQfOceZiIqKGSrhwHUv2ZAAAPn60LVy4xIJoWG6ojgg/JZ65MXPxOxtSUFmtETkREZHxq6zW4I0bp6Mei/LFgHAvsSNZNJYbus0bD4XCw1GBzKtl+GrnObHjEBEZvbnxqci4WgYPRwXe5eko0bHc0G2cbKzw3iO1v5zf7D6P9MslIiciIjJeR7MK8d2Nq6Nmj4iA0s5K5ETEckN3NKitF/qFeaBaI+B/65Oh1QpiRyIiMjrlVTV4Y80JCALwREc/9A3zFDsSgeWG7kIikeCD4W1hZy3D0azr+OVYjtiRiIiMTtyms8i6Vg5vpQ2mP9xG7Dh0Q4NmFnJ1dW3Ui0okEhw/fhzNmze/p1BkHHydbfF6/1b46K8ziNt0BjGtPdHMUSF2LCIio7Dj7GX8eKh20tNPH4+E0pano4xFg8pNUVERPv/8cyiVyn/dVhAEvPzyy9BoeJWNORjfPRAbknKRkqvChxtPY+GoKLEjERGJ7mqpGm+uPQkAeK5HC/QKaSZyIrpVg+eEHjlyJDw8GjbT4quvvnrPgci4yGVSxD0aiWFf7cMfJy7h0Q6+6BPKGTeJyHIJgoC31p7E1dIqhHk54s2HuHaUsWnQmButVtvgYgMAJSUlCAoKuudQZFwi/JR4rkcLAMD/1iWjpLJa5EREROJZeTgb288WwFomxecj28PGSiZ2JPqHBg8o3rhxI7RarhZtqaYNCEVzNzvkFVcibvNZseMQEYni/JVSfPTXaQDAmw+FIszLSeREdCcNLjfDhw+Hv78/3nnnHZw7x4ndLI2ttQyzH4sEAKw6nM2lGYjI4lTVaDF1dRIqq7XoGeyuO6JNxqfB5SYzMxMvvvgiVq9ejdDQUDzwwAP48ccfUVFRYch8ZESiW7rhmW4BAIC31p1EeVWNyImIiJrOvK2pSM4thrOdFeY92Q5SqUTsSHQXDS43/v7+mDlzJs6fP49t27YhMDAQL730Ery9vTFx4kQcPXrUkDnJSLw9qDV8nW2RU1iBufFpYschImoSO1MLsHh37aKYsx+LgKeTjciJqD73NIlfnz59sGLFCuTl5WHOnDlITk5Gt27d0K5du0a9zqJFixAZGQknJyc4OTkhOjoamzdvvuv21dXV+OCDD9CyZUvY2NigXbt22LJly718BLpHDgo5Pn4sAgDw/YFMJFwoFDkREZFh5RdXYtqvJwAA46Kb46G23iInon9zXzMUOzo6ol+/fujTpw+cnZ1x+vTpRj3fz88Ps2fPRkJCAo4dO4a+ffti2LBhOHXq1B23nz59OhYvXowvvvgCp0+fxsSJE/Hoo48iMTHxfj4GNdIDrZrh8Y5+EATgjbUnuXI4EZmtGo0Wk1cnorCsCuE+Togd3FrsSNQAEkEQGr1oUEVFBdasWYNly5Zh7969aNGiBZ599lmMHz8evr6+9xXI1dUVc+bMwYQJE257zMfHB++88w4mTZqku2/EiBGwtbXFTz/91KDXV6lUUCqVKC4uhpMTR7nfq+LyasR8thtXStT4T+8g/I+/8ERkhuZvTcPC7elwUMix8dWeCHS3FzuSxWrM93eDJ/EDgEOHDmHZsmX49ddfUVVVhcceewzbtm1Dnz597iswAGg0GqxZswZlZWWIjo6+4zZqtRo2NnXPc9ra2mLfvn13fV21Wg21Wq37WaVS3XdWApR2Vpj9WAQmrDiGJXsz0C/MA12D3MSORUSkN/vPXcUXO9IBAB8/FsFiY0IafFqqTZs26NGjB44fP464uDjk5eXhp59+uu9ik5ycDAcHBygUCkycOBHr169HmzZ3Xnxs4MCBmD9/PtLT06HVarF161asW7cOeXl5d339uLg4KJVK3c3f3/++8tL/69faE0918ocgANPWnECpmldPEZF5uFKixpTVSRAEYFQXfzzSzkfsSNQIDT4tNXnyZEyYMKHRg4b/TVVVFbKzs1FcXIy1a9di6dKl2L179x0LzpUrV/DCCy/gzz//hEQiQcuWLRETE4Nly5bd9ZL0Ox258ff352kpPSmprMZDn+9FblEFRnXxR9yNuXCIiExVjUaLZ747jEMZhQj1dMTvr/TgLMRGoDGnpe5pzI0hxcTEoGXLlli8ePFdt6msrMS1a9fg4+ODt99+Gxs3brzrIOR/4pgb/TuUcQ2jlhyCIADLxndC3zBPsSMREd2zWX+dxpK9mXBQyLFhUg8EeziIHYnQuO/vBp2W6tChA65fv97gAD179kRubm6Dt7+VVqutc6TlTmxsbODr64uamhr89ttvGDZs2D29F+lHtyA3TLgxU+eba5NRWFYlciIionuz8eQlLNmbCQCY+0Qki42JatCA4qSkJJw4cQKurq4NetGkpKR/LSgAEBsbi0GDBiEgIAAlJSVYtWoVdu3ahfj4eADA2LFj4evri7i4OADA4cOHkZubi/bt2yM3NxfvvfcetFot3nzzzQblIsP578BQ7E67gvSCUszYkIIvn46CRMLZO4nIdKRdLsGba08CACY+0JLz2ZiwBl8t1a9fPzT0DFZDv9QKCgowduxY5OXlQalUIjIyEvHx8ejfvz8AIDs7G1Lp/x9cqqysxPTp05GRkQEHBwcMHjwYP/74I5ydnRv6MchAbKxkmP9kezz69X78lZyHmCQPPBrlJ3YsIqIGUVVWY+KPCSiv0qBHsBv+O6CV2JHoPjRozM2FCxca/cJ+fn6QyYxvABbH3BjWwu3pmL81DQ4KOTZN7oUANzuxIxER1UurFTDxpwT8ffoyfJQ2+PPVnnBzUIgdi/5B7/PcNG/eXC/ByPy9/GBL7E2/gqNZ1zF5dSLWTIyGley+JsImIjKor3edw9+nL8NaJsWiZzqy2JgBfuuQXsllUnw+MgqONnIk5RRhwbZ0sSMREd3VlpQ8zP27dhHg94eFo52/s7iBSC9YbkjvfJ1tEXdjcc2vdp3DoYxrIiciIrrdqUvFeO2X2gUxx3cPxKguASInIn1huSGDeDjSB092ql1c87VfklBUzsvDich4FJRU4oUVx1BRrUGvEHdMH8L18cwJyw0ZzLtDwxHkbo+84kq8/Vtyg6+2IyIypMpqDV78MQGXiisR5G6PL5/uADnHBpqVe/q3WVRUhKVLlyI2NhaFhYUAgOPHj9/zxH1knuwVciwYGQUrmQRbTuVj5eFssSMRkYUTBAH/W5eMxOwiONnIsXRcJyhtrcSORXrW6HJz8uRJtGrVCp988gnmzp2LoqIiAMC6desQGxur73xk4iL8lHhzYBgA4IM/TyMlt1jkRERkyb7edR7rEnMhk0rw9eiOCGrGGYjNUaPLzeuvv47x48cjPT0dNjY2uvsHDx6MPXv26DUcmYfne7VATGsPVGm0eHnlcagqq8WOREQWaH3iRcyJTwUAvDu0DXqGuIuciAyl0eXm6NGjePHFF2+739fXF/n5+XoJReZFIpFg3hPt4edii+zCcry55iTH3xBRk9p/7qpuaYX/9A7C2OhAcQORQTW63CgUCqhUqtvuT0tLQ7NmzfQSisyP0s4KXz3dQTf+5vv9WWJHIiILcSZPhYk/JqBaI+DhSG+8/VCY2JHIwBpdbh555BF88MEHqK6uPbUgkUiQnZ2Nt956CyNGjNB7QDIf7fydMX1IGwDAx5vO4Hh2w1eaJyK6F5eKKvDs90dRoq5B1xaumPdkO0ilXNTX3DW63MybNw+lpaXw8PBARUUFHnjgAQQHB8PR0RGzZs0yREYyI2Ojm2NIhDdqtAJeWXkc18s4/w0RGUZxRTXGf38E+apKhHg44NsxnaCQG9+ah6R/DVo480727duHkydPorS0FB06dEBMTIy+sxkEF84UX0llNYZ+sQ9Z18rRK8Qdy5/tAhn/T4qI9KiiSoNxy47gSFYhPBwVWD+pB3ydbcWORfehMd/f91xuTBXLjXE4k6fCY18fQEW1BhMfaIm3B/EcOBHpR1WNFi/8cAy7067A0UaO1f/phnAfpdix6D7pfVXwWy1cuPCO90skEtjY2CA4OBi9e/eGTMZDf3R3rb2d8MnjkZj8cyK+2X0ebX2d8HCkj9ixiMjEabQCXvslCbvTrsDWSobvx3dmsbFAjS43n332Ga5cuYLy8nK4uLgAAK5fvw47Ozs4ODigoKAAQUFB2LlzJ/z9/fUemMzHI+18cCq3GIv3ZOCNNScR7OGAMC8eTSOieyMIAmLXncRfyXmwlkmxeExHdAp0FTsWiaDRA4o//vhjdO7cGenp6bh27RquXbuGtLQ0dO3aFQsWLEB2dja8vLzw2muvGSIvmZk3BoaiZ7A7Kqo1+M8PCVxgk4juiSAI+OivM/j12EVIJcDCUe3RuxWnJ7FUjR5z07JlS/z2229o3759nfsTExMxYsQIZGRk4MCBAxgxYgTy8vL0mVUvOObG+Fwvq8IjX+1DTmEFerdqhu/Hd+YAYyJqMEEQ8NnWNCzccQ4AMPeJdni8o5/IqUjfGvP93egjN3l5eaipqbnt/pqaGt0MxT4+PigpKWnsS5OFcrG3xuJnOsHGSoo9aVfwyZazYkciIhPxz2Lz3tA2LDbU+HLTp08fvPjii0hMTNTdl5iYiJdeegl9+/YFACQnJ6NFixb6S0lmr42PE+Y83g4A8O2eDPxylCuIE1H9BEHA/FuKzfQhrTG+B7976B7KzXfffQdXV1d07NgRCoUCCoUCnTp1gqurK7777jsAgIODA+bNm6f3sGTehrbzwdSYEADAO+tTcOD8VZETEZGxEgQBc/9OxRe3FJvnewWJnIqMxT3Pc3P27FmkpaUBAEJDQxEaGqrXYIbCMTfGTRAETFmdhD9OXILS1grrX+6OoGYOYsciIiMiCALmxKfi613nAQAzHm6DCT15xMbccRK/erDcGL/Kag1GLTmExOwitHC3x/qXu8PZzlrsWERkBARBwOzNZ7F4TwYAYObDbfAci41FMHi5uXjxIv744w9kZ2ejqqrupbvz589v7Ms1KZYb03ClRI3hX+1HblEFugW54ofnusJa3uizqERkRjRaAe+sT8bqozkAgHeHtsGzHGNjMQw6Q/H27dvxyCOPICgoCGfPnkXbtm2RlZUFQRDQoUOHew5NdKtmjgosG98ZIxYdwKGMQry97iTmPdEOEgkvESeyROoaDV77JQmbkvMhlQBxj0Xgqc4BYsciI9Xo/xWOjY3Ff//7XyQnJ8PGxga//fYbcnJy8MADD+CJJ54wREayUKFejvji6SjIpBKsO56LT+NTxY5ERCIoU9fg+RXHsCk5H9YyKb56ugOLDdWr0eXmzJkzGDt2LABALpejoqICDg4O+OCDD/DJJ5/oPSBZtj6hHoh7LAIAsGjXeSzfnylyIiJqSkXlVXjmu8PYm34VdtYyLBvfGYMivMWORUau0eXG3t5eN87G29sb58+f1z129Sov3SX9e7KTP/47oBUA4P2Np/HXSeOb+ZqI9C+nsByPf3MQidlFUNpaYeXzXdEzxF3sWGQCGj3mplu3bti3bx9at26NwYMHY9q0aUhOTsa6devQrVs3Q2QkwqQ+wbisUuPHQxfw2i9JcLW3RnRLN7FjEZGBJOUU4fkVR3G1tApeTjZY8VwXhHo5ih2LTESjr5bKyMhAaWkpIiMjUVZWhmnTpuHAgQMICQnB/Pnz0bx5c0Nl1QteLWW6NFoBk1Yex5ZT+XBUyPHLi9Fo48N/h0TmZktKPqb+kojKai3aeDth2fjO8FLaiB2LRMZ5burBcmPaKqs1GPvdERzJKoS7gzV+eTEaLTnJH5FZEAQB3+3LxKxNZyAIQJ/QZvji6Q5wUDT6JAOZIYMunBkUFIRr167ddn9RURGCgjj1NRmWjZUMS8Z1QhtvJ1wtrcLoJYeRU1gudiwiuk9VNVpM35CCj/6qLTZjujXHkrGdWGzonjS63GRlZUGj0dx2v1qtRm5url5CEdVHaWuFHyd0QbCHA/JVlXh66SHkF1eKHYuI7lFBSSVGLz2ElYezIZHUrhP1wbBwyGWcuJPuTYMr8R9//KH75/j4eCiVSt3PGo0G27dvR2BgoF7DEd2Nm4MCK5/viicXH8SFa+UYvfQQfnkxGu4OCrGjEVEjJOUUYeKPCchXVcJRIceCUe3RN8xT7Fhk4ho85kYqrW3QEokE/3yKlZUVAgMDMW/ePDz88MP6T6lHHHNjXi5eL8eT3xzEpeJKtPZ2ws8vdOU6VEQm4tdjOZi+IQVVNVq0bGaPb8d24hg6uiuDjLnRarXQarUICAhAQUGB7metVgu1Wo3U1FSjLzZkfvxc7PDT813h7qDAmTwVnvnuMIrKq/79iUQkmspqDaZvSMaba0+iqkaL/m08sWFSDxYb0ptGn9DMzMyEuzsnUSLjEdTMASuf7wo3e2uk5KowaslhFJax4BAZo8yrZRix6AB+OpQNAHgtphUWP9MRjjZWIicjc9Kg01ILFy5s8AtOnjy5wdsuWrQIixYtQlZWFgAgPDwcM2fOxKBBg+76nM8//xyLFi1CdnY23N3d8fjjjyMuLg42Ng2bA4GnpcxX2uUSPL3kMK6WqhHm5ag7okNExuH3pFz8b10yyqo0cLW3xrwn26FPqIfYschE6H2emxYtGrakvEQiQUZGRsNSAvjzzz8hk8kQEhICQRCwYsUKzJkzB4mJiQgPD79t+1WrVuG5557DsmXL0L17d6SlpWH8+PEYOXIk5s+f36D3ZLkxb+cKSvH0kkMoKFEjxMMBK1/oCg9HTv5FJKaKKg3e//MUVh/NAQB0aeGKhSOjODEfNYpJT+Ln6uqKOXPmYMKECbc99sorr+DMmTPYvn277r5p06bh8OHD2LdvX4Nen+XG/GVeLcOobw8hX1WJIHd7rHqhG/+IEokkJbcYr/2ShPSCUkgkwKt9QzC5bzAv86ZGM+gkfrcSBOG2K6fulUajwerVq1FWVobo6Og7btO9e3ckJCTgyJEjAGqXgti0aRMGDx5819dVq9VQqVR1bmTeWrjb45cXu8HX2RYZV8vwxOIDyLpaJnYsIotSo9Hii+3pGP7VfqQXlKKZowI/TeiK1/u3YrEhg7un/8J++OEHREREwNbWFra2toiMjMSPP/54TwGSk5Ph4OAAhUKBiRMnYv369WjTps0dt3366afxwQcfoGfPnrCyskLLli3x4IMP4n//+99dXz8uLg5KpVJ38/f3v6ecZFqau9lj9X+6obmbHXIKK/D4NweQklssdiwii3D+SilGfHMQ87amoUYrYHCEF+Kn9kaPYF6MQk2j0ael5s+fjxkzZuCVV15Bjx49AAD79u3DV199hY8++givvfZaowJUVVUhOzsbxcXFWLt2LZYuXYrdu3ffseDs2rULI0eOxEcffYSuXbvi3LlzmDJlCl544QXMmDHjjq+vVquhVqt1P6tUKvj7+/O0lIW4UqLGuGVHcDpPBUeFHEvGdUK3IK4mTmQIGq2AHw5m4ZMtZ1FZrYWjjRwfDmuLYe19IJFIxI5HJs6gY25atGiB999/H2PHjq1z/4oVK/Dee+8hMzOz8YlvERMTg5YtW2Lx4sW3PdarVy9069YNc+bM0d33008/4T//+Q9KS0t1Ew3Wh2NuLI+qshovrDiGw5mFsJZL8cWoKAwM9xI7FpFZSbtcgrd+O4nE7CIAQM9gd3z6eCR8nG3FDUZmw6BjbvLy8tC9e/fb7u/evTvy8vIa+3K3uTkp4J2Ul5ffVmBkMhkA6G3sD5kfJxsrrHiuCwa08URVjRYv/ZSA1UeyxY5FZBbUNRrM/zsVQxbuRWJ2ERwUcnw4LBw/PNeFxYZE0+hyExwcjF9//fW2+3/55ReEhIQ06rViY2OxZ88eZGVlITk5GbGxsdi1axdGjx4NABg7dixiY2N12w8dOhSLFi3C6tWrkZmZia1bt2LGjBkYOnSoruQQ3YmNlQxfj+6Apzr5QysAb69LxuzNZ6HVshQT3asjmYUYvGAvFu44h2qNgJjWntj6em+MiQ6EVMrTUCSeRq8l//777+Opp57Cnj17dGNu9u/fj+3bt9+x9NSnoKAAY8eORV5eHpRKJSIjIxEfH4/+/fsDALKzs+scqZk+fTokEgmmT5+O3NxcNGvWDEOHDsWsWbMa+zHIAsllUsweEQEvpQ0WbE/HN7vP48K1Msx/sj1srVmOiRqqQFWJuM1nsT4xFwDQzFGB9x8Jx6C2XhxbQ0ahwWNuUlJS0LZtWwBAQkICPvvsM5w5cwYA0Lp1a0ybNg1RUVGGS6onHHNDALAhMbd2XRuNFu38lFgyrhMn+yP6F9UaLVYcyMLn29JRqq6BRAKM7OyPtx9qDaUdl08gwzLIgGKpVIrOnTvj+eefx8iRI+Ho6KiXsE2N5YZuOpJZiBd/PIbr5dXwdbbFd+M7IcyL/00Q3cn+c1fx3h+nkF5QCgBo5++MDx4JRzt/Z3GDkcUwyIDi3bt3Izw8HNOmTYO3tzfGjx+PvXv33ndYIrF0aeGK9S/3QJC7PXKLKvDY1wfw18n7HxRPZE7OFZRgwvKjGL30MNILSuFqb41PRkRg/UvdWWzIaDX6UvCysjL8+uuvWL58Ofbu3Yvg4GBMmDAB48aNg5eX8V9eyyM39E9F5VWYtOo49p+7BgCY+EBLvDEwFDIOiCQLdrVUjc+3peHnIznQaAXIpBI80zUAr/VvBWc7a7HjkQVqsrWlzp07h++//x4//vgj8vPz8dBDD+GPP/6415drEiw3dCc1Gi3mxKdi8Z7ahV97hbhj4cgouNjzjzhZllJ1DZbvz8Q3uzNQqq4BAPRv44m3B4WhZTMHkdORJWvShTPLysqwcuVKxMbGoqioCBqN5n5ezuBYbqg+f564hDfXnkRFtQZ+LrZYPKYjwn2UYsciMrhSdQ1WHMjCkr0ZKCqvBgBE+Crxv8GtEd2Ss3qT+Brz/d3oS8Fv2rNnD5YtW4bffvsNUqkUTz755B1X8iYyJUPb+SDYwwEv/piA7MJyPPr1Acx4uA2e6RrAS1zJLJVUVuOHgxfqlJogd3tM7heCR9r5cL4aMkmNOnJz6dIlLF++HMuXL8e5c+fQvXt3TJgwAU8++STs7e0NmVNveOSGGqKovArTfj2B7WcLAACD2nph9ohIKG15uSuZh/pKzdB2PhxzRkbHIKelBg0ahG3btsHd3R1jx47Fc889h9DQUL0EbkosN9RQgiDgu32Z+GTLWVRrBPi52OKLUVGICnAROxrRPSuprL5x+ikTxRUsNWQ6DHJaysrKCmvXrsXDDz/MpQ7IIkgkEjzfKwidA13xys/HkVNYgSe+OYhpA0Lxn95B/BIgk3LHUtPMHlP6heDhSJYaMi/3PaDY1PDIDd0LVWU1Ytcl6+bB6RzognlPtEeAm53IyYjqV1JZjeX7s7B0H0sNmbYmvVrK1LDc0L0SBAG/HsvBB3+eRlmVBnbWMsx4uA1GdvbnYGMyOqrKaqz4R6lp2az29BNLDZkilpt6sNzQ/copLMe0X0/gSFYhAKBPaDN8MiISHk5cm4rEp7p5pGZvBlSVtfPUsNSQOWC5qQfLDemDRitg2b5MzIlPRZVGCycbOaYPaYMnOvnxKA6J4k6lJtjDAZP7hWBIhDdLDZk8lpt6sNyQPqXml2DamiSk5KoAAN1buiHusQg0dzONqRHI9LHUkKVguakHyw3pW41Gi2X7MzF/axoqq7VQyKV4vX8rTOjZAnJZg9emJWoUVWU1vt+Xhe/21S01U/qFYDBLDZkhlpt6sNyQoVy4VobYdck4cL52Ac423k74cHg4OjZ3FTkZmZPiitojNbeWmpAbR2pYasicsdzUg+WGDEkQBKxJuIhZf53RXaHyeEc/vD0oDO4OCpHTkSkrU9fg+/2Z+HZP3VIzJSYEg9t6c5kEMnssN/VguaGmcK1UjU+2nMWvxy4CAJxs5PjvwFCM7tqc/2dNjVJZrcFPhy5g0a7zuFZWBYClhiwTy009WG6oKSVcuI6Zv6fg1KXaAcetvZ0wfUhr9Ah2FzkZGbtqjRZrjl3Ewu3pyFdVAgAC3ezwWv9WGBrJBS3J8rDc1IPlhpqaRitg1eELmBOfqjud0DfMA/8bHIZgD0eR05Gx0WgF/HEiF59vS8eFa+UAAB+lDSb3C8GIjn6w4iB1slAsN/VguSGxFJZVYeH2dPx06AJqtAJkUglGdfHH1JhWHI9DAID9567iw42ncTa/BADg7mCNSX2CMapLAGysuKYfWTaWm3qw3JDYMq6UIm7zWWw9fRkA4KCQ4+U+LfFcjxb8ArNQGVdK8fGmM9h2pgBA7RitiQ+2xPjugbCzbvD6xkRmjeWmHiw3ZCwOnr+GWZtO6yYA9HW2xev9W2F4lC8HHVuI4vJqfL49DT8erD2aJ5dK8Ey35pgaEwJnO2ux4xEZFZaberDckDHRagVsSMrFnPhU5BXXDhoN9nDAfwe0wsBwLy7lYKYEofbf+0cbz+iugKodh9UawR4OIqcjMk4sN/VguSFjVFGlwfIDWfhm93nd/DgRvkr8d2Aoeoe4s+SYkcyrZZi+IRn7z9VO9hji4YCZQ9ugV0gzkZMRGTeWm3qw3JAxU1VWY+meDHy3LxNlVRoAQJcWrnhjYCg6B3KmY1OmrtFg8e4MfLnzHKpqapfpmNwvBC/0CoK1nFdAEf0blpt6sNyQKbhWqsaiXefxw6ELqKrRAgD6hDbDtAGhaOurFDkdNdapS8V47ZckpF0uBQD0btUMHw1riwA3O5GTEZkOlpt6sNyQKckrrsDC7efw67EcaLS1v6pDIrzxWv9WHJthAjRaAUv2ZmDe36mo1ghwd7DGzKHhGBrpzVONRI3EclMPlhsyRVlXy/DZtjT8ceISBAGQSoDHOvhhSr8Q+Lvy//6N0cXr5Xj91xM4klkIABjQxhNxj0XAjXMaEd0Tlpt6sNyQKTubr8K8v9N0c+RYySQY2TkAr/QNhqeTjcjp6Kbfk3IxfX0KStQ1sLeW4d2h4Xiikx+P1hDdB5aberDckDlIyinCvL9TsTf9KgBAIZdiXPdATHygJVztOT+KWKo1Wsz66wyWH8gCAHRs7oLPnmzPsTVEesByUw+WGzInB89fw9y/U5Fw4TqA2tmOn+vZAs/3agEnGyuR01mWq6VqvLzyuO401OS+wZjcLwRyrgVFpBcsN/VguSFzIwgCdqVewdy/U3WrjzvbWeHF3i0xrntzTt/fBE7kFGHiTwnIK66Eg0KOz55qj/5tPMWORWRWWG7qwXJD5kqrFbDlVD7m/Z2K81fKAADuDgq80qclRnUNgELOdasMYW3CRfxvfTKqarRo2cwei8d04pVsRAbAclMPlhsydxqtgA2Jufh8expyCisA1K5b9cbAUDzSzgdSrlulF4IgYOH2c/hsWxoAoH8bT8x/sh0ceTqQyCBYburBckOWoqpGi1+P5eCLHem4rFIDANr5KfG/wa3RNchN5HSmrUajxYzfU/DzkRwAwKQ+LTGtfyiLI5EBsdzUg+WGLE1FlQbL9mfi653ndEs6DGjjibcHhSGoGU+fNFa1Roupq5PwV3IepBLg/WFtMaZbc7FjEZm9xnx/izqMf9GiRYiMjISTkxOcnJwQHR2NzZs333X7Bx98EBKJ5LbbkCFDmjA1kWmxtZZhUp9g7HqjD0Z3DYBMKsHfpy9jwGd78PGmMyhV14gd0WSoazR4eeVx/JWcB2uZFF+P7shiQ2SERD1y8+eff0ImkyEkJASCIGDFihWYM2cOEhMTER4eftv2hYWFqKqq0v187do1tGvXDkuXLsX48eMb9J48ckOWLv1yCeI2n8WOswUAAE8nBf43uDUeaefDSebqUVWjxUs/JWD72QJYy6VYPKYj+oR6iB2LyGKY9GkpV1dXzJkzBxMmTPjXbT///HPMnDkTeXl5sLe3b9Drs9wQ1dpx9jLe//M0LlwrBwB0C3LFB8PaopWno8jJjI9GK2DK6kRsPJkHGysplo7tjJ4h7mLHIrIoJnNa6lYajQarV69GWVkZoqOjG/Sc7777DiNHjqy32KjVaqhUqjo3IgL6hnkifmpvTOvfCjZWUhzKKMTgBXsxNz4V6hqN2PGMhiAImPF7CjaezIOVTILFYzqx2BAZOdHLTXJyMhwcHKBQKDBx4kSsX78ebdq0+dfnHTlyBCkpKXj++efr3S4uLg5KpVJ38/f311d0IpNnYyXDq/1CsPW1BzCgjSdqtAK+3HkODy/ch8Ts62LHMwoLtqdj1eFsSCTA509F4YFWzcSORET/QvTTUlVVVcjOzkZxcTHWrl2LpUuXYvfu3f9acF588UUcPHgQJ0+erHc7tVoNtVqt+1mlUsHf35+npYjuYHNyHmb8noKrpVWQSoAJPVvg9f6hsLW2zAkA/zqZh0mrjgMAZj3aFqO7cvAwkVhMesxNTEwMWrZsicWLF991m7KyMvj4+OCDDz7AlClTGvX6HHNDVL/rZVX4cONprEvMBQAEutnhs6faIyrAReRkTSsltxiPf3MAldVaPN+zBaY//O9HlInIcExyzM1NWq22zpGWO1mzZg3UajWeeeaZJkpFZDlc7K0x/6n2WDa+E7ycbJB1rRxPfHMQi3adh1ZrVP8vZDDXy6rwwg/HUFmtxQOtmiF2cGuxIxFRI4habmJjY7Fnzx5kZWUhOTkZsbGx2LVrF0aPHg0AGDt2LGJjY2973nfffYfhw4fDzY2zrBIZSt8wT8S/1htDIr1RoxXwyZazGPf9ERSUVIodzaAEQcCbv51EXnElgtzt8cXTUZBx5mEikyLqcsEFBQUYO3Ys8vLyoFQqERkZifj4ePTv3x8AkJ2dDam0bv9KTU3Fvn378Pfff4sRmciiKG2t8OWoKPQKdsd7f57C3vSrGLxgL+Y92d5sB9auPJyNracvw1omxcJRUXDiWlFEJsfoxtwYGsfcEN2b9MslePXnRJzNLwEAvBbTCpP7BZvVxH/pl0vw8Bf7oK7RYvqQ1ni+V5DYkYjoBpMec0NExinE0xEbJvXAM90CAACfbUvDK6sSUV5lHss3aLUC3vrtJNQ1WvRu1QzP9WghdiQiukcsN0TUYDZWMnw0PAKfjIiAlUyCv5Lz8MQ3B5FbVCF2tPu29vhFHM8ugp21DJ+MiOAK30QmjOWGiBrtqc4BWPVCN7jZW+PUJRWGfbkPCRcKxY51z4rKqzB781kAwNSYEHgrbUVORET3g+WGiO5J50BX/P5KD4R5OeJqaRVGfXsYf5y4JHasezL371QUllUhxMMBz/J0FJHJY7khonvm52KH317qjoHhnqjSaDH550R8vz9T7FiNcv5KKVYezgYAfDCsLaxk/LNIZOr4W0xE98VeIcei0R0xLrp2aYL3/zyNufGpMJULMb/ZdR6CAMS09kB0S86dRWQOWG6I6L5JpRK890g4/jugFQDgy53n8OHGM0ZfcC4VVWD9jWUmXu4TLHIaItIXlhsi0guJRIJX+obgw+FtAQDL9mdixu8pRr1kw5K9GajRCugW5IoOFrZ2FpE5Y7khIr0a0605PhkRAYkE+OlQNmb+kWKUR3AKy6qw+kgOAODlB3nUhsicsNwQkd491TkA855opys4s/4yvlNUPxzMQkW1Bm19ndArxF3sOESkRyw3RGQQj3XwwyePRQIAlu7LxPytaSIn+n+CIOD3pNrL1if0bGFWS0gQEcsNERnQk5398f4j4QCAL3acw4oDWeIGuiHtcikyr5bBWiZFTGtPseMQkZ6x3BCRQY3rHohp/Wuvonrvz1PYlJwnciJgS0o+AKBXiDscueo3kdlhuSEig3ulbzCe6RYAQQCmrk7CkUxxl2rYnFJbsAa29RI1BxEZBssNERmcRCLB+4+01c1k/OKPx5B9rVyULFlXy3A2vwQyqQT9eUqKyCyx3BBRk5BJJfj8qShE+ilxvbwaE1YcRUlldZPn2HKq9pRUtyBXuNhbN/n7E5HhsdwQUZOxtZZhydhO8HRSIL2gFJN/ToSmiSf5uzne5qG23k36vkTUdFhuiKhJeTrZYOnYzrCxkmJn6hUs3J7eZO99tVSNpJwiSCTAwDY8JUVkrlhuiKjJRfgp8fGjEQCAhTvSsTO1oEneN7+4EgDQzEEBDyebJnlPImp6LDdEJIrHOvjVuYIqp9DwA4xVN8b4KG15+TeROWO5ISLRzHi4Ddr5O6O4ohqv/pyIao3WoO+nqqgBADjayA36PkQkLpYbIhKNQi7DV09HwdFGjqScIny+zbBLNNy8OsuJR26IzBrLDRGJys/FDrNvrEH19a7zOHD+qsHeS1VZe+TGibMSE5k1lhsiEt2QSG881ckfggC8/ssJFJcbZv4bVUXt6/K0FJF5Y7khIqPw7iNt0MLdHvmqSry/8ZRB3qPk5pEbnpYiMmssN0RkFOys5Zj7RCQkEmDd8VxsO31Z7+9x82opnpYiMm8sN0RkNDo2d8ULvYIAALHrk1FUXqXX1+dpKSLLwHJDREbl9f6t0LKZPa6UqPHhxjN6fW2eliKyDCw3RGRUbKxk+PTxdpBIgN+OX8TB89f09to3T0vxyA2ReWO5ISKj07G5C57uEgAAeGdDMtQ1Gr28LsfcEFkGlhsiMkpvPhQGdwcFMq6UYfHuDL285s3TUkpbHrkhMmcsN0RklJS2VpjxcGsAwJc7zyH72v2tPSUIgq7cOPLIDZFZY7khIqP1SDsf9Ah2Q1WNFnGb729wcXmVBhqtAICnpYjMHcsNERktiUSCGQ+3gVQCbE7Jx6GMex9cfHO8jZVMAhsr/ukjMmf8DScioxbm5YSnu9YOLn7/z9O6oy+N9f8rgltBIpHoLR8RGR+WGyIyeq/3D4WjjRxn8lRYcyznnl5DtyI4LwMnMnssN0Rk9FztrTGlXwgA4LNtaaisbvyl4brLwDmBH5HZE7XcLFq0CJGRkXBycoKTkxOio6OxefPmep9TVFSESZMmwdvbGwqFAq1atcKmTZuaKDERiWVMdHP4OtviskqNHw5mNfr5/39aikduiMydqOXGz88Ps2fPRkJCAo4dO4a+ffti2LBhOHXqzisCV1VVoX///sjKysLatWuRmpqKJUuWwNfXt4mTE1FTU8hlmBJTe/Tm613ndaeZGqqEE/gRWQxR/xdm6NChdX6eNWsWFi1ahEOHDiE8PPy27ZctW4bCwkIcOHAAVla1f6ACAwObIioRGYHHonyxePd5nL9ShiV7M/F6/1YNfq6qkkduiCyF0Yy50Wg0WL16NcrKyhAdHX3Hbf744w9ER0dj0qRJ8PT0RNu2bfHxxx9Do7n7+Xe1Wg2VSlXnRkSmSS6T4r8DQgEA3+3NQGFZw1cN59ILRJZD9HKTnJwMBwcHKBQKTJw4EevXr0ebNm3uuG1GRgbWrl0LjUaDTZs2YcaMGZg3bx4++uiju75+XFwclEql7ubv72+oj0JETeChtl4I93FCWZUGyw9kNfh5N8fccEAxkfkTvdyEhoYiKSkJhw8fxksvvYRx48bh9OnTd9xWq9XCw8MD3377LTp27IinnnoK77zzDr755pu7vn5sbCyKi4t1t5yce7uMlIiMg0QiwaQ+wQCAFQeyUKquadDzuCI4keUQ/bfc2toawcG1f6g6duyIo0ePYsGCBVi8ePFt23p7e8PKygoymUx3X+vWrZGfn4+qqipYW1vf9hyFQgGFQmG4D0BETW5guBeC3O2RcbUMPx/Oxgu9g/71OTfXleJpKSLzJ/qRm3/SarVQq9V3fKxHjx44d+4ctFqt7r60tDR4e3vfsdgQkXmSSSV48YHaQrN0XwbUNf8+742qgvPcEFkKUctNbGws9uzZg6ysLCQnJyM2Nha7du3C6NGjAQBjx45FbGysbvuXXnoJhYWFmDJlCtLS0vDXX3/h448/xqRJk8T6CEQkkkej/ODlZIPLKjXWHc/91+15WorIcohabgoKCjB27FiEhoaiX79+OHr0KOLj49G/f38AQHZ2NvLy8nTb+/v7Iz4+HkePHkVkZCQmT56MKVOm4O233xbrIxCRSKzlUjzfqwUA4Pv9mRCE+tec4mkpIsshEf7tL4KZUalUUCqVKC4uhpOTk9hxiOg+qCqr0XXWdlRUa/Dri9Ho0sL1rtuGTt8MdY0W+97qAz8XuyZMSUT60Jjvb6Mbc0NE1FBONlZ4pJ0PAGDl4Qt33U5do4G6pnasniOP3BCZPZYbIjJpz3RrDgDYnJyPa6V3vhjh5ikpiQRwVHDMDZG5Y7khIpMW4adEpJ8SVRot1iRcvOM2N6+UcrCWQyqVNGU8IhIByw0RmbzRXQMAAKsOZ0OrvX0YoW4wMS8DJ7IILDdEZPKGtvOBo40c2YXlOJJVeNvjvAycyLKw3BCRybOzlmNAGy8AwJaU/Nse160rxcHERBaB5YaIzMKgtv9fbv55aqrk5orgtjxyQ2QJWG6IyCz0DHGHvbUM+apKnLhYVOexm6eleOSGyDKw3BCRWbCxkqFPmAcAYMupuqembp6W4pgbIsvAckNEZuOhW05N3Tr5+v+fluKRGyJLwHJDRGajT6gHrOVSXLhWjrP5Jbr7VVxXisiisNwQkdmwV8jRO6QZAGDzLVdNqWs0AACFFf/kEVkC/qYTkVkZGO4JANidduW2xzg3MZFlYLkhIrNyc2XwM5dUuiM2RGRZWG6IyKwEuNrB1d4aVRotTl1SiR2HiETAckNEZkUikSDK3xkAkJhdJGoWIhIHyw0RmZ2oAGcAQGL2dXGDEJEoWG6IyOxEBbgA4JEbIkvFckNEZifSTwmJBMgtqkBBSaXYcYioibHcEJHZcbSxQisPRwBAEo/eEFkclhsiMkvtbw4qzikSNQcRNT2WGyIySxxUTGS5WG6IyCzdHFR88mIxajTCv2xNROaE5YaIzFKwhwMcFHKUV2mQXlAqdhwiakIsN0RklmRSCVp5OgAAsgvLRU5DRE2J5YaIzJafix0AQKPlaSkiS8JyQ0Rmy9/VVuwIRCQClhsiMlv+N47cEJFlYbkhIrPlx3JDZJFYbojIbPG0FJFlYrkhIrPlrbSFVCJ2CiJqaiw3RGS2rOVSeDnZiB2DiJoYyw0RmTU/V467IbI0LDdEZNb8XDjuhsjSsNwQkVnj5eBEloflhojMmj9PSxFZHJYbIjJrPC1FZHlELTeLFi1CZGQknJyc4OTkhOjoaGzevPmu2y9fvhwSiaTOzcaGV0IQ0d3xyA2R5ZGL+eZ+fn6YPXs2QkJCIAgCVqxYgWHDhiExMRHh4eF3fI6TkxNSU1N1P0sknMSCiO7Oy8kGcqkENVw8k8hiiFpuhg4dWufnWbNmYdGiRTh06NBdy41EIoGXl1dTxCMiMyCTSuDjbIvswnKxoxBREzGaMTcajQarV69GWVkZoqOj77pdaWkpmjdvDn9/fwwbNgynTp2q93XVajVUKlWdGxFZFi7DQGRZRC83ycnJcHBwgEKhwMSJE7F+/Xq0adPmjtuGhoZi2bJl+P333/HTTz9Bq9Wie/fuuHjx4l1fPy4uDkqlUnfz9/c31EchIiP1aJQfAt3s0KWFm9hRiKgJSARBEPVEdFVVFbKzs1FcXIy1a9di6dKl2L17910Lzq2qq6vRunVrjBo1Ch9++OEdt1Gr1VCr1bqfVSoV/P39UVxcDCcnJ719DiIiIjIclUoFpVLZoO9vUcfcAIC1tTWCg4MBAB07dsTRo0exYMECLF68+F+fa2VlhaioKJw7d+6u2ygUCigUCr3lJSIiIuMm+mmpf9JqtXWOtNRHo9EgOTkZ3t7eBk5FREREpkLUIzexsbEYNGgQAgICUFJSglWrVmHXrl2Ij48HAIwdOxa+vr6Ii4sDAHzwwQfo1q0bgoODUVRUhDlz5uDChQt4/vnnxfwYREREZERELTcFBQUYO3Ys8vLyoFQqERkZifj4ePTv3x8AkJ2dDan0/w8uXb9+HS+88ALy8/Ph4uKCjh074sCBAw0an0NERESWQfQBxU2tMQOSiIiIyDg05vvb6MbcEBEREd0PlhsiIiIyKyw3REREZFZYboiIiMissNwQERGRWWG5ISIiIrPCckNERERmheWGiIiIzArLDREREZkV0VcFb2o3J2RWqVQiJyEiIqKGuvm93ZCFFSyu3JSUlAAA/P39RU5CREREjVVSUgKlUlnvNha3tpRWq8WlS5fg6OgIiUSi19dWqVTw9/dHTk4O163SA+5P/eL+1C/uT/3i/tQvc9yfgiCgpKQEPj4+dRbVvhOLO3IjlUrh5+dn0PdwcnIym/+YjAH3p35xf+oX96d+cX/ql7ntz387YnMTBxQTERGRWWG5ISIiIrPCcqNHCoUC7777LhQKhdhRzAL3p35xf+oX96d+cX/ql6XvT4sbUExERETmjUduiIiIyKyw3BAREZFZYbkhIiIis8JyQ0RERGaF5UZPvvrqKwQGBsLGxgZdu3bFkSNHxI4kuri4OHTu3BmOjo7w8PDA8OHDkZqaWmebyspKTJo0CW5ubnBwcMCIESNw+fLlOttkZ2djyJAhsLOzg4eHB9544w3U1NTU2WbXrl3o0KEDFAoFgoODsXz5ckN/PNHNnj0bEokEU6dO1d3H/dk4ubm5eOaZZ+Dm5gZbW1tERETg2LFjuscFQcDMmTPh7e0NW1tbxMTEID09vc5rFBYWYvTo0XBycoKzszMmTJiA0tLSOtucPHkSvXr1go2NDfz9/fHpp582yedrShqNBjNmzECLFi1ga2uLli1b4sMPP6yzDhD3Z/327NmDoUOHwsfHBxKJBBs2bKjzeFPuvzVr1iAsLAw2NjaIiIjApk2b9P55DUqg+7Z69WrB2tpaWLZsmXDq1CnhhRdeEJydnYXLly+LHU1UAwcOFL7//nshJSVFSEpKEgYPHiwEBAQIpaWlum0mTpwo+Pv7C9u3bxeOHTsmdOvWTejevbvu8ZqaGqFt27ZCTEyMkJiYKGzatElwd3cXYmNjddtkZGQIdnZ2wuuvvy6cPn1a+OKLLwSZTCZs2bKlST9vUzpy5IgQGBgoREZGClOmTNHdz/3ZcIWFhULz5s2F8ePHC4cPHxYyMjKE+Ph44dy5c7ptZs+eLSiVSmHDhg3CiRMnhEceeURo0aKFUFFRodvmoYceEtq1ayccOnRI2Lt3rxAcHCyMGjVK93hxcbHg6ekpjB49WkhJSRF+/vlnwdbWVli8eHGTfl5DmzVrluDm5iZs3LhRyMzMFNasWSM4ODgICxYs0G3D/Vm/TZs2Ce+8846wbt06AYCwfv36Oo831f7bv3+/IJPJhE8//VQ4ffq0MH36dMHKykpITk42+D7QF5YbPejSpYswadIk3c8ajUbw8fER4uLiRExlfAoKCgQAwu7duwVBEISioiLByspKWLNmjW6bM2fOCACEgwcPCoJQ+8sulUqF/Px83TaLFi0SnJycBLVaLQiCILz55ptCeHh4nfd66qmnhIEDBxr6I4mipKRECAkJEbZu3So88MADunLD/dk4b731ltCzZ8+7Pq7VagUvLy9hzpw5uvuKiooEhUIh/Pzzz4IgCMLp06cFAMLRo0d122zevFmQSCRCbm6uIAiC8PXXXwsuLi66/XvzvUNDQ/X9kUQ1ZMgQ4bnnnqtz32OPPSaMHj1aEATuz8b6Z7lpyv335JNPCkOGDKmTp2vXrsKLL76o189oSDwtdZ+qqqqQkJCAmJgY3X1SqRQxMTE4ePCgiMmMT3FxMQDA1dUVAJCQkIDq6uo6+y4sLAwBAQG6fXfw4EFERETA09NTt83AgQOhUqlw6tQp3Ta3vsbNbcx1/0+aNAlDhgy57TNzfzbOH3/8gU6dOuGJJ56Ah4cHoqKisGTJEt3jmZmZyM/Pr7MvlEolunbtWmd/Ojs7o1OnTrptYmJiIJVKcfjwYd02vXv3hrW1tW6bgQMHIjU1FdevXzf0x2wy3bt3x/bt25GWlgYAOHHiBPbt24dBgwYB4P68X025/8zhbwDLzX26evUqNBpNnS8LAPD09ER+fr5IqYyPVqvF1KlT0aNHD7Rt2xYAkJ+fD2trazg7O9fZ9tZ9l5+ff8d9e/Ox+rZRqVSoqKgwxMcRzerVq3H8+HHExcXd9hj3Z+NkZGRg0aJFCAkJQXx8PF566SVMnjwZK1asAPD/+6O+3+38/Hx4eHjUeVwul8PV1bVR+9wcvP322xg5ciTCwsJgZWWFqKgoTJ06FaNHjwbA/Xm/mnL/3W0bU9q/FrcqOIlj0qRJSElJwb59+8SOYrJycnIwZcoUbN26FTY2NmLHMXlarRadOnXCxx9/DACIiopCSkoKvvnmG4wbN07kdKbn119/xcqVK7Fq1SqEh4cjKSkJU6dOhY+PD/cnNTkeublP7u7ukMlkt12RcvnyZXh5eYmUyri88sor2LhxI3bu3Ak/Pz/d/V5eXqiqqkJRUVGd7W/dd15eXnfctzcfq28bJycn2Nra6vvjiCYhIQEFBQXo0KED5HI55HI5du/ejYULF0Iul8PT05P7sxG8vb3Rpk2bOve1bt0a2dnZAP5/f9T3u+3l5YWCgoI6j9fU1KCwsLBR+9wcvPHGG7qjNxERERgzZgxee+013VFG7s/705T7727bmNL+Zbm5T9bW1ujYsSO2b9+uu0+r1WL79u2Ijo4WMZn4BEHAK6+8gvXr12PHjh1o0aJFncc7duwIKyurOvsuNTUV2dnZun0XHR2N5OTkOr+wW7duhZOTk+6LKTo6us5r3NzG3PZ/v379kJycjKSkJN2tU6dOGD16tO6fuT8brkePHrdNTZCWlobmzZsDAFq0aAEvL686+0KlUuHw4cN19mdRURESEhJ02+zYsQNarRZdu3bVbbNnzx5UV1frttm6dStCQ0Ph4uJisM/X1MrLyyGV1v1Kkclk0Gq1ALg/71dT7j+z+Bsg9ohmc7B69WpBoVAIy5cvF06fPi385z//EZydnetckWKJXnrpJUGpVAq7du0S8vLydLfy8nLdNhMnThQCAgKEHTt2CMeOHROio6OF6Oho3eM3L10eMGCAkJSUJGzZskVo1qzZHS9dfuONN4QzZ84IX331lVleunwnt14tJQjcn41x5MgRQS6XC7NmzRLS09OFlStXCnZ2dsJPP/2k22b27NmCs7Oz8PvvvwsnT54Uhg0bdsdLb6OiooTDhw8L+/btE0JCQupceltUVCR4enoKY8aMEVJSUoTVq1cLdnZ2ZnHp8q3GjRsn+Pr66i4FX7duneDu7i68+eabum24P+tXUlIiJCYmComJiQIAYf78+UJiYqJw4cIFQRCabv/t379fkMvlwty5c4UzZ84I7777Li8Ft1RffPGFEBAQIFhbWwtdunQRDh06JHYk0QG44+3777/XbVNRUSG8/PLLgouLi2BnZyc8+uijQl5eXp3XycrKEgYNGiTY2toK7u7uwrRp04Tq6uo62+zcuVNo3769YG1tLQQFBdV5D3P2z3LD/dk4f/75p9C2bVtBoVAIYWFhwrffflvnca1WK8yYMUPw9PQUFAqF0K9fPyE1NbXONteuXRNGjRolODg4CE5OTsKzzz4rlJSU1NnmxIkTQs+ePQWFQiH4+voKs2fPNvhna2oqlUqYMmWKEBAQINjY2AhBQUHCO++8U+eSY+7P+u3cufOOfzPHjRsnCELT7r9ff/1VaNWqlWBtbS2Eh4cLf/31l8E+tyFIBOGW6SOJiIiITBzH3BAREZFZYbkhIiIis8JyQ0RERGaF5YaIiIjMCssNERERmRWWGyIiIjIrLDdERERkVlhuiIiIyKyw3BCR6MaPH4/hw4c3+fsuX74cEokEEokEU6dObdBzxo8fr3vOhg0bDJqPiO6NXOwARGTeJBJJvY+/++67WLBgAcSaLN3JyQmpqamwt7dv0PYLFizA7Nmz4e3tbeBkRHSvWG6IyKDy8vJ0//zLL79g5syZdVbjdnBwgIODgxjRANSWLy8vrwZvr1QqoVQqDZiIiO4XT0sRkUF5eXnpbkqlUlcmbt4cHBxuOy314IMP4tVXX8XUqVPh4uICT09PLFmyBGVlZXj22Wfh6OiI4OBgbN68uc57paSkYNCgQXBwcICnpyfGjBmDq1evNjrz119/jZCQENjY2MDT0xOPP/74/e4GImpCLDdEZJRWrFgBd3d3HDlyBK+++ipeeuklPPHEE+jevTuOHz+OAQMGYMyYMSgvLwcAFBUVoW/fvoiKisKxY8ewZcsWXL58GU8++WSj3vfYsWOYPHkyPvjgA6SmpmLLli3o3bu3IT4iERkIT0sRkVFq164dpk+fDgCIjY3F7Nmz4e7ujhdeeAEAMHPmTCxatAgnT55Et27d8OWXXyIqKgoff/yx7jWWLVsGf39/pKWloVWrVg163+zsbNjb2+Phhx+Go6MjmjdvjqioKP1/QCIyGB65ISKjFBkZqftnmUwGNzc3RERE6O7z9PQEABQUFAAATpw4gZ07d+rG8Dg4OCAsLAwAcP78+Qa/b//+/dG8eXMEBQVhzJgxWLlype7oEBGZBpYbIjJKVlZWdX6WSCR17rt5FZZWqwUAlJaWYujQoUhKSqpzS09Pb9RpJUdHRxw/fhw///wzvL29MXPmTLRr1w5FRUX3/6GIqEnwtBQRmYUOHTrgt99+Q2BgIOTy+/vTJpfLERMTg5iYGLz77rtwdnbGjh078Nhjj+kpLREZEo/cEJFZmDRpEgoLCzFq1CgcPXoU58+fR3x8PJ599lloNJoGv87GjRuxcOFCJCUl4cKFC/jhhx+g1WoRGhpqwPREpE8sN0RkFnx8fLB//35oNBoMGDAAERERmDp1KpydnSGVNvxPnbOzM9atW4e+ffuidevW+Oabb/Dzzz8jPDzcgOmJSJ8kgljTghIRiWz58uWYOnXqPY2nkUgkWL9+vSjLRhBR/XjkhogsWnFxMRwcHPDWW281aPuJEyeKOqMyEf07HrkhIotVUlKCy5cvA6g9HeXu7v6vzykoKIBKpQIAeHt7N3hNKiJqOiw3REREZFZ4WoqIiIjMCssNERERmRWWGyIiIjIrLDdERERkVlhuiIiIyKyw3BAREZFZYbkhIiIis8JyQ0RERGbl/wCr1kZQy8zu8AAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -156,14 +152,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAApTklEQVR4nO3dd5hc5Xn38e89bfuq7K6EkLRqiGI6rBFgDBhcKAnYDkkA99gmduzEJW9inIKJfeV1TVwSXCDhxXZsiAuOFRuMG8XGtBVFAow6klZI2tWutL3M7NzvH3NWjFZbRtKemdmd3+e69tKZc545c8/RzN77lPM85u6IiEjpihQ6ABERKSwlAhGREqdEICJS4pQIRERKnBKBiEiJixU6gMNVX1/vS5cuLXQYIiLTypo1a/a6e8NYx6ZdIli6dCnNzc2FDkNEZFoxs23jHVPTkIhIiVMiEBEpcUoEIiIlTolARKTEKRGIiJQ4JQIRkRKnRCAiUuKUCESKTNdAkh8/vbPQYUgJUSIQKTKrn36JD931NG3dg4UORUqEEoFIkdnfNwTAcFqLRkl+KBGIFJmugVShQ5ASo0QgUmS6+pOFDkFKjBKBSJHpGlAikPxSIhApMl39ahqS/FIiECkyqhFIvikRiBQZ9RFIvikRiBSZTiUCyTMlApEi4u4aPip5F1oiMLPbzazVzJ6dpNwrzSxlZteEFYvIdNE3NKwbySTvwqwR3AFcNlEBM4sCnwV+HmIcItOGOoqlEEJLBO7+ENAxSbG/BH4ItIYVh8h0oqGjUggF6yMws4XAm4Cv5VD2BjNrNrPmtra28IMTKRDVCKQQCtlZ/CXgY+6enqygu9/q7k3u3tTQ0BB+ZCIFoqGjUgixAr52E3CXmQHUA1eYWcrd/6eAMYkUlGoEUggFSwTuvmxk28zuAH6iJCClrrNPiUDyL7REYGZ3AhcD9WbWAnwCiAO4+9fDel2R6Uz3EEghhJYI3P26wyj7zrDiEJlO1EcghaA7i0WKiPoIpBCUCESKiO4jkEJQIhApIqoRSCEoEYgUESUCKQQlApEioimopRCUCESKSFd/ikRUX0vJL33iRIpEOu10DySprYgXOhQpMUoEIkWidyhF2qG2opAzv0gpUiIQKRIjdxXXlqtGIPmlRCBSJEbuKlbTkOSbEoFIkTiQCMrVNCT5pUQgUiQONA2pRiB5pkQgUiRG7iGYpUQgeaZEIFIkXm4ayiQCxwsZjpQQJQKRIjEyvcTcqkwiSA0rEUh+KBGIFImu/hTVZTHK41EAksOTLuctMiWUCESKRNdAktryGPFgiomkagSSJ0oEIkWiqz8zvcTLiUA1AsmP0BKBmd1uZq1m9uw4x99iZmvNbJ2Z/c7MTg8rFpHpIFMjiBOLGgBDSgSSJ2HWCO4ALpvg+FbgInc/FfgUcGuIsYgUvc7+FLUV8QOzj6qzWPIltETg7g8BHRMc/5277wsePgosCisWkekg0zQUU9OQ5F2x9BG8G7h3vINmdoOZNZtZc1tbWx7DEsmfkaahuJqGJM8KngjM7DVkEsHHxivj7re6e5O7NzU0NOQvOJE8SaednsHUwZ3FKSUCyY+Czm5lZqcB/wFc7u7thYxFpJC6B1O4o+GjUhAFqxGYWSNwN/A2d99QqDhEikH2FNQjTUOptGoEkh+h1QjM7E7gYqDezFqATwBxAHf/OnATUAd81cwAUu7eFFY8IsVsZHqJWVlNQ0NqGpI8CS0RuPt1kxx/D/CesF5fZDrpzJpwLhFT05DkV8E7i0UkM88QZNYrjkUyTUMaPir5okQgUgRGmoZqy+PEY7qPQPJLiUCkCGR3Fic0akjyTIujihSB7mCZyuqyl7+SqhFIvigRiBSBnsHMWgTRoH/ATIlA8kdNQyJFoGcgdVBtIB6NaIoJyRslApEi0DOYorr85USQiEY0+6jkjRKBSBHoHhxdIzA1DUneKBGIFIGegSQ1WTWCWDSiRCB5o0QgUgR6RtUIEtEIQyk1DUl+KBGIFIFDO4tNk85J3igRiBSB7lGdxXE1DUkeKRGIFJi7H9I0FFfTkOSREoFIgfUNDeOORg1JwSgRiBRYz2AwvYSahqRAlAhECmyseYbiuqFM8kiJQKTARmoE2fcRxGOaYkLyJ7REYGa3m1mrmT07znEzs6+Y2SYzW2tmZ4UVi0gx6x1pGiqLH9gXj6iPQPInzBrBHcBlExy/HFgZ/NwAfC3EWESK1nhNQ0oEki+hJQJ3fwjomKDI1cC3PONRYLaZLQgrHpFiNV7TkPoIJF8K2UewENiR9bgl2HcIM7vBzJrNrLmtrS0vwYnkS0+wTOXo4aPqI5B8mRadxe5+q7s3uXtTQ0NDocMRmVIjNYKq7EQQUdOQ5E8hE8FOYHHW40XBPpGS0j2YoiwWIRF7+esYj5nWLJa8KWQiWA28PRg9dC7Q6e67ChiPSEH0DKQO6h8ASESjDCaHCxSRlJrQ1iw2szuBi4F6M2sBPgHEAdz968A9wBXAJqAPeFdYsYgUs9HzDAFUlUXpSw7j7phZgSKTUhFaInD36yY57sAHwnp9kemiZ+DgmUch01/gnpmHqKostK+pCDBNOotFZrLuwRRViUMTAbx8s5lImJQIRApsrD6C6rJo5pgSgeTBuHVOM/tKDs/vcvd/mMJ4RErOmH0EiZEagTqMJXwTNT5eDdw0yfNvBJQIRI5Cz+ChfQQjiUE1AsmHiRLBF939mxM92czmTHE8IiUns15x/KB96iOQfJqoj+DhyZ7s7l+aulBESs9gapih4fQhfQQHEsGQEoGEb6JEcKuZbTSzT5nZK/IWkUgJGekDGN1HoKYhyadxE4G7nwn8AZACfmBmz5jZjWa2NF/Bicx0PQOHzjOUeZwZNaSmIcmHCYePuvt6d/8nd38F8HZgFvArM5u02UhEJrevbwiAOZWj+ggSIzUCjRqS8OV0H4GZRYB5wHygCmgNMyiRUtHeOwjA3KrEQfsjEaMyEVWNQPJiwnvXzezVwHXAG4F1wF3AR9y9M/zQRGa+9p5MjaCuquyQY1VlMSUCyYuJbijbAWwj88v/ZndXLUBkirX3BomgOnHIseqymDqLJS8mqhFc4O7b8haJSAnq6B2iLBahMhE95FhVmZqGJD8m6iOYdFpoM7t56kIRKT17ewapq0qMOdV0VSKmKSYkLyaqEbzHzLomOG7AtcDNUxqRSAnp6B2irvrQ/gHINA3t6hzIc0RSiiZKBLcBNZM8/7YpjEWk5HT0Dh0yYmhEVVlMdxZLXoybCNz9n/IZiEgpau8Z4riG6jGPadSQ5IvWIxApEHenvXdw3BpBdVlUo4YkL0JNBGZ2mZmtN7NNZnbjGMcbzex+M3vKzNaa2RVhxiNSTHoGUwwk0zTUjN1HUFUWYyCZJjWcznNkUmpCSwRmFgVuAS4HXgFcN8bkdf8AfC+Y1+ha4KthxSNSbPZ0Ze4qnl9bPubx6gMzkGrkkIRr0kRgZseb2a/M7Nng8WlmlstiNOcAm9x9i7sPkbkx7epRZRyoDbZnAS/lHrrI9NbalRkRNK92/BoBaOI5CV8uNYLbgI8DSQB3X0vmr/fJLAR2ZD1uCfZluxl4q5m1APcAfznWiczsBjNrNrPmtra2HF5apPi1dmdqBPNqxq4RKBFIvuSSCCrd/fFR+6bqk3kdcIe7LwKuAL4dTHB3EHe/1d2b3L2poaFhil5apLD2BDWC+ePUCLSAveRLLolgr5mtINOMg5ldA+zK4Xk7gcVZjxcF+7K9G/gegLs/ApQD9TmcW2Taa+0epDIRPWRRmhGVWsBe8iSXRPAB4BvAiWa2E/gw8P4cnvcEsNLMlplZgkxz0upRZbYDlwKY2UlkEoHafqQk7OkaYF5N2ZjTS4BWKZP8mXAaagB33wK81syqgIi7d+dyYndPmdkHgfuAKHC7uz9nZp8Emt19NfDXwG1m9hEyNY53ursf6ZsRmU5auwaZN86IIXi5j6BPdxdLyCZNBGb20VGPATqBNe7+9ETPdfd7yHQCZ++7KWv7eeBVuYcrMnPs3N9P09I54x7XcpWSL7k0DTUB7yMz4mch8OfAZWT+kv/bEGMTmbF6BlPs3N/PynljTy8B2U1D6iOQcE1aIyDTyXuWu/cAmNkngJ8CFwJrgM+FF57IzLSptQeAlfPHn9exIh4lYqoRSPhyqRHMAwazHieB+e7eP2q/iORo455MV9tENQIzoyqhVcokfLnUCL4DPGZmPw4e/yHw3aDz+PnQIhOZwTa29pCIRWicWzlhueryGN0DSgQSrlxGDX3KzH4GnB/sep+7NwfbbwktMpEZbHNrD8vrq4hFJ66Uz6qI09mfzFNUUqpyqRHg7k+Y2TYy4/wxs0Z33x5qZCIz2LaOPlY0VE1abk5lgv19Q3mISEpZLpPOXWVmG4GtwIPBv/eGHZjITDWcdra397G0bvJEMLsyzn7VCCRkuXQWfwo4F9jg7suA1wKPhhqVyAy2u2uAoeE0S3JKBKoRSPhySQRJd28HImYWcff7ydxbICJHYFt7LwBL6ibuKIagRtCXRDfcS5hy6SPYb2bVwEPAd8ysFegNNyyRmWtbex+QWyKYUxknlXZ6h4bHnZxO5GjlUiO4GugDPgL8DNgM/EGYQYnMZM+/1EVlIsqCWRWTlp1dkVnPeF+vmockPLkkgpvcPe3uKXf/prt/BfhY2IGJzETuzgMbWjl/RR3RyNizjmabVRkH0BBSCVUuieB1Y+y7fKoDESkFW/f2sqOjn4uOz22BpTmVQY1AHcYSonEbHc3s/cBfAMvNbG3WoRrg4bADE5mJHtyQWW7jouPn5VR+dlAj2N+nGoGEZ6Lep++SuV/g08CNWfu73b0j1KhEZqgHN7SxvL6Kxhw6iiE7EahGIOGZqGkoCnSRWaGsO+sHM5sbfmgiM8tAcphHNrdzYY7NQvByZ3FHr2oEEp6JagRrCNYpBkb3ajmwPJSIRGaox7Z2MJhKc/EJuSeCRCxCbXmMjl5N9CvhGTcRBHcRHxUzuwz4MpnaxX+4+2fGKPMnwM1kkssz7n790b6uSDF6YH0rZbEI5y6vO6zn1VWX0a7hoxKinO5QMbOryCxEA/CAu/8kh+dEgVvIjDpqAZ4ws9XB8pQjZVYCHwde5e77zCy3HjSRaejBDW2sWl5HeTx6WM+rq0rQ3qNEIOHJZdK5zwAfIrP2wPPAh8zs/+Zw7nOATe6+xd2HgLvI3JyW7b3ALe6+D8DdWw8neJHpYkdHH1vaern4MPoHRsytStChGoGEKJf7CK4AXufut7v77WTWK87lzuKFwI6sxy3BvmzHA8eb2cNm9mjQlHQIM7vBzJrNrLmtrS2HlxYpLg+MDBs9jP6BEXXVCTUNSahySQQAs7O2Z03h68eAlcDFwHXAbWY2e3Qhd7/V3Zvcvamh4fC/SCKF9uD6NhbNqWB5/eQzjo5WV1XGvr4h0mlNPCfhyKWP4NPAU2Z2P5nRQxdy8H0F49kJLM56vCjYl60FeMzdk8BWM9tAJjE8kcP5RaaFoVSa323ey5vPWojZ5NNKjDa3KsFw2unsTzKnKhFChFLqxq0RmNktZvYqd7+TzHoEdwM/BM5z9//O4dxPACvNbJmZJYBrgdWjyvwPmdoAZlZPpqloy+G+CZFi1vxiB31DwznfTTxaXXXml3+7hpBKSCZqGtoAfMHMXiQz8+gOd1/t7rtzObG7p4APAvcBvwe+5+7Pmdkng1FIBMfazex54H7gb4K1D0RmjF+90Eo8apy34vCGjY6oqyoDYK9GDklIJrqP4MvAl81sCZm/5m83swrgTuBOd98w2cnd/R7gnlH7bsraduCjwY/IjLO2ZT/feuRFXn/yMUe8nkDj3Mx0FFvaeg/7HgSRXEzaWezu29z9s+5+JpkO3TeS+QtfRCZx60NbqC6L8c9vPOWIz7F4bgWzKuKs27l/6gITyZLLfQQxM/tDM/sOmUno1gNvDj0ykWluIDnMr19o5bJTFjC78sg7ec2M0xbNYm1L5xRGJ/KyiTqLX2dmt5MZ2fNe4KfACne/1t1/nK8ARaarBze00Tc0zBWnHnPU5zp14SzW7+5mIDk8BZGJHGyiGsHHgd8BJ7n7Ve7+XXfXWsUiObp33S7mVManpF3/xAW1pNJ+YL1jkak0UWfxJfkMRGQmGUwN88vft3LlqQuIR3O9b3N8S4IO4+0dfZxwTM1Rn08k29F/QkXkED9/bg89gymuPG3BlJyvMSsRiEw1JQKREPzXo9tYPLeCC46rn5Lzza6MU10WY4cSgYRAiUBkij27s5PHtnbwllVLiEQOf0qJsZgZi+dWKhFIKJQIRKbY1x7cTE1ZjOtXNU7peRvnVqhpSEKhRCAyhV7a38/Pnt3NdasaqS2PT+m5l9ZVsa2jj+RwekrPK6JEIDKFvvPYNtydt527ZMrPfeqiWQyl0rywq3vKzy2lTYlAZIoMJIe58/EdXHrSfBYHo3ym0pmNcwB4ase+KT+3lDYlApEpcs+6XXT0DvGO85aGcv5jZ5XTUFPG09v3h3J+KV1KBCJT5J51u1g4u4JXHRfODKFmxiuXzuG3m/ZqtTKZUkoEIlNgIDnMw5vaufSkeUe0Clmu3nDyMbR2D7Jmu5qHZOooEYhMgV+/0Ep/cpjXnHhkq5Dl6tKT5pOIRbhn3a5QX0dKixKByFHqHkhy8+rnWDmvmletmJo7icdTXRbj4uMbuHfdbjUPyZRRIhA5Sj9Zu4vW7kE+/eZTScTC/0pdceoCdncNaPSQTJlQP7VmdpmZrTezTWZ24wTl/sjM3MyawoxHJAw/emonKxqqOHvJnLy83qUnzSMRi/DTtTktHy4yqdASgZlFgVuAy4FXANeZ2SvGKFcDfAh4LKxYRMKytmU/j2/t4M1nLQq1kzhbTXmcC1c2cO+zu9Q8JFMizBrBOcAmd9/i7kPAXcDVY5T7FPBZYCDEWESmnLvz6XteYG5VgrefN/V3Ek/kytOOYVfnAE/t2J/X15WZKcxEsBDYkfW4Jdh3gJmdBSx2959OdCIzu8HMms2sua2tbeojFTkCD2xo45Et7fzVJcdRM8XzCk3m0pPmk4hq9JBMjYJ1FptZBPhX4K8nK+vut7p7k7s3NTQ0hB+cyCSG085n7nmBJXWVXL8qv7UBgNryOK9eWc+969Q8JEcvzESwE1ic9XhRsG9EDXAK8ICZvQicC6xWh7FMB3c/2cL6Pd38zRtOyMtIobH8wekLeKlzgCde7CjI68vMEeYn+AlgpZktM7MEcC2weuSgu3e6e727L3X3pcCjwFXu3hxiTCJHrW8oxRd+vp7TF8/mylOnZinKI3HZyQuoKY9x1xM7Ji8sMoHQEoG7p4APAvcBvwe+5+7PmdknzeyqsF5XJGy3PbSVPV2D/OOVJ+VtpNBYKhJR3nzmQv73mZd4fKtqBXLkzH16tS82NTV5c7MqDVIYLfv6eP0XH+Ki4xv42lvPLnQ4dPYnufrff0tZLMp9H7mw0OFIETOzNe4+ZtO77iwWydFgapgPfOdJomZ8/PKTCh0OALMq4rz13CWs39Ot9YzliCkRiOTon/73eZ5p6eQLf3I6jXVTv/DMkbokmOju/vWtBY5EpislApEcfL95B999bDt/ftFy3nDyMYUO5yDLG6pZ0VDFD9e0MN2aeqU4KBGITOLXL+zh43ev4/wVdfzN608odDhjevcFy3mmpZPfbW4vdCgyDSkRiIzD3Vn9zEu8/7+e5KQFtXzjbWcTixbnV+bNZy2koaaMrz6wqdChyDRUnJ9qkQIaTjuPbWnnvd9q5q/ufIqTFtRyx7temfdpJA5HeTzKey5YxsOb2nla8w/JYYoVOgCRQkmnnZ37+9nW3seL7b28uLeXTW09PLNjP/v6ktSUxfj45Sfy7guWFW1NINtbzl3C1x7czFd+tZHb3/nKQocj04gSgZSUXZ393P3kTu57bjcb9nQzkEwfOFYej7C8vppLTpzPa05s4DUnzKOqbPp8RarLYrz31cv5/H3reWbHfk5fPLvQIck0MX0+5SJHoXsgyS33b+b2325laDjN2Uvm8NZVS1gxr5qldVUsra9kfk05kUjh7hSeCm8/bwm3/WYLX1atQA6DEoHMaMNp5wdrdvD5+zawt2eQPzprER+6dGVR3QcwlWrK47zz/KV86ZcbadnXx6I5M/N9ytQq/oZPkSP02JZ2rvr33/KxH65jSV0lqz/4Kv6lyG4GC8Obz1wEZNZSFsmFagQy4+zo6OMz977AT9ft4thZ5XzlujP5w9MWFHSCuHxqrKvkjMWzufvJFv78wuUl877lyCkRyIzg7jzT0sldj2/n7qd2EjH4yGuP54YLl1ORiBY6vLy7/pxG/vaHa3lkSzvnr6gvdDhS5JQIZFrr7E/yP0/t5M7Ht/PC7m4q4pmpmf/q0pUcO7ui0OEVzFVnHMtnf/YCX/nVRs5bXqdagUxIiUCmndRwmuZt+/he8w5+unYXg6k0pyys5Z/fdApXnX5sUd/4lS/l8Sgfft3x/OP/PMs963Zz5WmFW0BHip8SgUwLLfv6eGjDXn6zsY2HN+2layBFdVmMa85exHXnNHLKwlmFDrHoXH9OI3c8vJVvPLSZK049RrUCGZcSgRQdd6dlXz/PvdTFo1vaeWhjG1vaegFYMKucy09ZwIXHN/CaExuoTOgjPJ5oxHjn+Uv5xx8/x8Ob2rlgpfoKZGyhfovM7DLgy0AU+A93/8yo4x8F3gOkgDbgz9x9W5gxSfFwd9p7h2jZ10/Lvj62tffxyOZ21u3spLM/CUBZLMKq5XVcf04jFx3fwHHzqvWX7WH4o7MX8f8efpGPfO9pfvnRi5hVoWYzOVRoicDMosAtwOuAFuAJM1vt7s9nFXsKaHL3PjN7P/A54E/DiknCM5x2eodSDCbTpNJpegZStHUPYmbs7xuio2+I/X1J9vYM0tY9yI6OPrbs7aV7IHXQeY6fX80Vpy7g5GNrOfnYWk5aUEt5vPRG/UyVykSML117Blf9+8N8+5EX+eAlKwsdkhShMGsE5wCb3H0LgJndBVwNHEgE7n5/VvlHgbeGGE9Jcne6BlJ09iXp7B/7ZzA1THI4TTLlJIfTDA2nSQ6nSQ37ge3kcHAsFRxLO8lUpmzv4DD9yeGc4qlKRJlXW86xs8t54xkLWVZfxeK5lSyaU8GiORXq6A3BaYtmc/EJDfznb7fyllVLmFOVKHRIUmTCTAQLgR1Zj1uAVROUfzdw71gHzOwG4AaAxsbGqYpvxnJ3mrft40dP7eTB9W3s3N8/btl41CiPR0lEI8SjEeIxy/wbydqORqiIR6ktjwVlIkH5zPHKRJSqshhViRjl8aB8IkpDTRk4zK5MMLcqwezKuP66L5CPXXYif/hvv+WTP3meL/7pGYUOR4pMUfS0mdlbgSbgorGOu/utwK0ATU1NWotvHNvb+/jRUzv58TM72dLWS2UiygXH1fOO85cwt6qMWRXxQ37K4xG1uZeAkxbU8ucXLeeW+zfzjvOXcoZmJpUsYSaCncDirMeLgn0HMbPXAn8PXOTugyHGM+Ok085Lnf08sL6Nnz27m0e2tJN25+zGObzvj1Zw5WkLptU0yhKu9198HP/9xA5u/OFafvQXryrJO65lbGH+lngCWGlmy8gkgGuB67MLmNmZwDeAy9y9NcRYgEyTya7OAfqGholGjKpElMqyGJXx6LSYfrhvKMV9z+1mf1+S5m37+N2mvezry4yuWV5fxQ0XLued5y9lfm15gSOVYlRdFuPzf3w6f3bHE/z9j9bxL39yumqDAoSYCNw9ZWYfBO4jM3z0dnd/zsw+CTS7+2rg80A18P3gA7nd3a8KKR7+7kfPcufj28c8ngjavWPRkTZyIx6LEIu83E5+4FjwbywSIREzYpHIgf0vlwkeRyIkYhGiESPtjnvmL/m0Q9o96yfzeGAo0/E6kEzTNzRMe+8grV2DdPYn6Rl8eYTNMbXlXHLifM5onE3TkjmceEyNvtQyqdecMI8PX3o8X/zlBpbUVfGh12oUkYTcR+Du9wD3jNp3U9b2a8N8/Ww/WNPCnY9v5/pVjaxaNpe0O72Dw/QNpegdHGYgOUxy2EmlXx4hk8oaLTMyUmYolWYgmRkeOTTsQZms5wSjaZLpzKibVHriLg0ziJoRMcMsk5Aq4lHi0Qg15THmViVYtWwuc6oSzKqIs2rZXJbVV9FQU6Zf/HJE/vKS49je0ccXf7mBaAQNKZXi6CzOhytPW0DXQIp3nb80r81A6XQmGQynHTOImBEJ/jVDv8wl7yIR43PXnIa784Wfb6C+uoxrz9FovFJWMomgMhHj3Rcsy/vrRiJGYhr0P0hpiUaMz15zGnt7h7jx7nXs3N/P+y9eoSk7SpS5T6/RmE1NTd7c3FzoMERmhIHkMH/3o3Xc/eROErEIjXMrWTi7gvrqMsrjmWbKebVlHDu7ggWzKlg5v5pa3fQ3LZnZGndvGuuY0r9ICSuPR/nXPzmDt6xaws+f28229j5a9vexqbWHgeQwfUMH3zUeMTh14SyuPG0BbzpzUeamQZn2VCMQkQl1DSR5aX8/L+3v5+kdnTy4oY1nduwnEY3wlnMb+cBrjqO+Wgmh2E1UI1AiEJHDtqm1h9se2sL31+ygIh7l3a9ezntfvUxzRRUxJQIRCcXmth7+9ecb+Om6XcypjPMXFx/H285bojmlipASgYiEal1LJ5+77wV+s3EvDTVlvO3cJVy/qlFNRkVEiUBE8uKRze1846HNPLC+jUQswtWnH8ubzlzIOcvmEotGCh1eSdOoIRHJi/NW1HHeijo2tfZwx++2cveTO/n+mhZqy2O8culczlmW+Tl14SwlhiKiGoGIhKZ/aJj717fy0IY2Ht/awZa9mbWna8tjnLeijrOXzOHsJXM4+dhZ6lcImWoEIlIQFYkoV5y6gCtOXQBAa/cAj23p4Dcb23hsawf3PbcHgEQ0wskLazmrMZMYGudWsqy+StOo54lqBCJSMG3dgzy1fR9rtu/jyW37WNvSyWAqDWQmZFwyt5L5teXMry1nXk0Z82rLmF2ZYE5lZsW7WRVxYhHDzEjEIsyqiFOViDKcdjU9jaIagYgUpYaaMl5/8jG8/uRjABhKpfn9ri52dfbzwu5uNu7pYU/XAE/v2E9r9wADyfSk54wYpD2zPraZ4e4Hze5bWxEnYkbUjGgkM3V8NGKUxSJUJWJUlcWoKY9RV5WgrrqMuuoEDdVlLG+opq4qMS3WLjlcSgQiUjQSsQinL57N6Ytnc9kpCw465u50D6bo7Euyvy/J/v4h9vclGU47jjOYTNPZn6RrIEk8GqGrP8XI5L4erPcxmErTNZDE3UmnCWYGzkwfP5hMBwtXpegeSLGvb4jRs8hHLLMWyHHzazhhfjXHz6/hxGNqWTm/elr3cSgRiMi0YGbUlsepLY+zeG74rzecdvb1DdHeM8TurgG2tPXQ0TtEy75+Nuzp5ltb2g80Y0UMltZVcUbjbBbPqeScZXM5e8mcaZMclAhERMYQjRj11WXUV5dxwjE1XHR8w0HHh9POi+29rN/dzQu7u/n9ri5+s3Ev7T2DpB3K4xHOWDybS06cxxvPXMi8muJdQjbUzmIzuwz4MpmlKv/D3T8z6ngZ8C3gbKAd+FN3f3Gic6qzWESKWc9gise2tPObjXtp3tbBszu7iEaM81fUceHKBi5YWU/j3Mq8j4gqyJ3FZhYFNgCvA1rILGZ/nbs/n1XmL4DT3P19ZnYt8CZ3/9OJzqtEICLTyea2Hn64poVfPL+Hja09B/bXVydonFt54GfhnArMjPm15dRVJZhXU8acqsSBUVFHq1CJ4DzgZnd/Q/D44wDu/umsMvcFZR4xsxiwG2jwCYJSIhCR6erFvb2s29nJ9o4+dnT0sb2jj23tfezq7D+kY3pExKC2IjNU9q2rlvDeC5cf0WsXavjoQmBH1uMWYNV4Zdw9ZWadQB2wN8S4REQKYml9FUvrqw7ZP5RKs6drAHfY3TVAR+8Quzv76R5IMZAapqs/RWd/MrSFgKZFZ7GZ3QDcANDYqEW2RWRmScQiLJ5bCUBjXWXeXz/MW+92AouzHi8K9o1ZJmgamkWm0/gg7n6ruze5e1NDQ8PowyIichTCTARPACvNbJmZJYBrgdWjyqwG3hFsXwP8eqL+ARERmXqhNQ0Fbf4fBO4jM3z0dnd/zsw+CTS7+2rgP4Fvm9kmoINMshARkTwKtY/A3e8B7hm176as7QHgj8OMQUREJqbp+URESpwSgYhIiVMiEBEpcUoEIiIlbtqtUGZmbcC2I3x6PbpreSy6LmPTdTmUrsnYpsN1WeLuY96INe0SwdEws+bx5tooZbouY9N1OZSuydim+3VR05CISIlTIhARKXGllghuLXQARUrXZWy6LofSNRnbtL4uJdVHICIihyq1GoGIiIyiRCAiUuJKJhGY2WVmtt7MNpnZjYWOJ2xm9qKZrTOzp82sOdg318x+YWYbg3/nBPvNzL4SXJu1ZnZW1nneEZTfaGbvGO/1ipWZ3W5mrWb2bNa+KbsOZnZ2cJ03Bc89+sVl82Cc63Kzme0MPjNPm9kVWcc+HrzH9Wb2hqz9Y36vgunnHwv2/3cwFX1RM7PFZna/mT1vZs+Z2YeC/TP/8+LuM/6HzDTYm4HlQAJ4BnhFoeMK+T2/CNSP2vc54MZg+0bgs8H2FcC9gAHnAo8F++cCW4J/5wTbcwr93g7zOlwInAU8G8Z1AB4Pylrw3MsL/Z6P4rrcDPyfMcq+IvjOlAHLgu9SdKLvFfA94Npg++vA+wv9nnO4JguAs4LtGmBD8N5n/OelVGoE5wCb3H2Luw8BdwFXFzimQrga+Gaw/U3gjVn7v+UZjwKzzWwB8AbgF+7e4e77gF8Al+U55qPi7g+RWesi25Rch+BYrbs/6plv+beyzlXUxrku47kauMvdB919K7CJzHdqzO9V8FfuJcAPgudnX+Oi5e673P3JYLsb+D2ZddVn/OelVBLBQmBH1uOWYN9M5sDPzWxNsOYzwHx33xVs7wbmB9vjXZ+Zet2m6josDLZH75/OPhg0c9w+0gTC4V+XOmC/u6dG7Z82zGwpcCbwGCXweSmVRFCKLnD3s4DLgQ+Y2YXZB4O/SEp+7LCuw0G+BqwAzgB2Af9S0GgKxMyqgR8CH3b3ruxjM/XzUiqJYCewOOvxomDfjOXuO4N/W4EfkanG7wmqpwT/tgbFx7s+M/W6TdV12Blsj94/Lbn7Hncfdvc0cBuZzwwc/nVpJ9NMEhu1v+iZWZxMEviOu98d7J7xn5dSSQRPACuDkQwJMmsjry5wTKExsyozqxnZBl4PPEvmPY+MYHgH8ONgezXw9mAUxLlAZ1AVvg94vZnNCZoJXh/sm+6m5DoEx7rM7NygXfztWeeadkZ+2QXeROYzA5nrcq2ZlZnZMmAlmU7PMb9XwV/N9wPXBM/PvsZFK/g//E/g9+7+r1mHZv7npdC91fn6IdPDv4HMKIe/L3Q8Ib/X5WRGcDwDPDfyfsm03f4K2Aj8Epgb7DfgluDarAOass71Z2Q6BzcB7yr0ezuCa3EnmWaOJJk22XdP5XUAmsj8wtwM/DvB3frF/jPOdfl28L7XkvkltyCr/N8H73E9WSNdxvteBZ/Bx4Pr9X2grNDvOYdrcgGZZp+1wNPBzxWl8HnRFBMiIiWuVJqGRERkHEoEIiIlTolARKTEKRGIiJQ4JQIRkRKnRCAiUuKUCKRkmVld1pTLu7OmYO4xs6+G8Hp3mNlWM3vfBGVeHUyD/Ox4ZUSmmu4jECEzFz/Q4+5fCPE17gB+4u4/mKTc0qDcKWHFIpJNNQKRUczsYjP7SbB9s5l908x+Y2bbzOzNZva5YHGRnwVz04wsOPJgMNvrfaOmaxjvdf7YzJ41s2fM7KGw35fIeJQIRCa3gsz8+lcB/wXc7+6nAv3AlUEy+DfgGnc/G7gd+OccznsT8AZ3Pz04t0hBxCYvIlLy7nX3pJmtI7Mq18+C/euApcAJwCnAL4KVB6Nk5vGZzMPAHWb2PeDuyQqLhEWJQGRygwDunjazpL/csZYm8x0y4Dl3P+9wTuru7zOzVcCVwBozO9vd26cycJFcqGlI5OitBxrM7DzIzGlvZidP9iQzW+Huj7n7TUAbB89hL5I3qhGIHCV3HzKza4CvmNksMt+rL5GZAnwinzezlWRqFL8iM224SN5p+KhInmj4qBQrNQ2J5E8n8KnJbigD/hfYm7eopOSpRiAiUuJUIxARKXFKBCIiJU6JQESkxCkRiIiUuP8PFAoSLAbKo+YAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABPT0lEQVR4nO3deXhU5d0+8PvMnn0hewiEsIQ9bBICKiARRAW1tlK1grzVKkWrxraaVqH6eyviigvKK5UitQKuaJVCMYIUjAKBKGvYAgmQfZusM5OZ5/fHZAYCWWayzDmZ3J/rmivJmXNmvnFk5s6zSkIIASIiIiIvoZK7ACIiIqKuxHBDREREXoXhhoiIiLwKww0RERF5FYYbIiIi8ioMN0RERORVGG6IiIjIq2jkLsDTbDYbLly4gICAAEiSJHc5RERE5AIhBKqrqxETEwOVqu22mV4Xbi5cuIC4uDi5yyAiIqIOyM/PR9++fds8p9eFm4CAAAD2/ziBgYEyV0NERESuMBqNiIuLc36Ot6XXhRtHV1RgYCDDDRERUQ/jypASDigmIiIir8JwQ0RERF6F4YaIiIi8CsMNEREReRWGGyIiIvIqDDdERETkVRhuiIiIyKsw3BAREZFXYbghIiIir8JwQ0RERF6F4YaIiIi8CsMNEREReRWGGyKiDrLaBEyNVrnLIKLLMNwQEXXQ9a9+i8nLvoG50SZ3KUR0CYYbIqIOsFhtOF1Si7JaM3JLa+Uuh4guwXBDRNQBNQ2Nzu/99GoZKyGiyzHcEBF1QI3pYrjRqvlWSqQk/BdJRNQB1Ze03BCRsjDcEBF1wKUtN0SkLAw3REQdUGOyyF0CEbWC4YaIqAPYLUWkXAw3REQdwG4pIuViuCEi6oAattwQKRbDDRFRB7Dlhki5GG6IiDqAY26IlIvhhoioAxhuiJSL4YaIqAM4FZxIuRhuiIg6gGNuiJSL4YaIqAM4W4pIuRhuiIg6oJotN0SKxXBDRNQBbLkhUi6GGyKiDuCYGyLlYrghInKT1SZQZ7bKXQYRtULWcLNz507MmTMHMTExkCQJmzZtcvna3bt3Q6PRYMyYMd1WHxFRS9hqQ6Rssoab2tpaJCUlYeXKlW5dV1lZifnz52PGjBndVBkRUesYboiUTSPnk8+ePRuzZ892+7oHH3wQd911F9RqdbutPSaTCSaTyfmz0Wh0+/mIiC7FwcREytbjxtz8/e9/x+nTp7F06VKXzl+2bBmCgoKct7i4uG6ukIi8HVcnJlK2HhVuTpw4gSeffBLvv/8+NBrXGp3S09NRVVXlvOXn53dzlUTk7bivFJGyydot5Q6r1Yq77roLzzzzDIYMGeLydXq9Hnq9vhsrI6LehmNuiJStx4Sb6upq7Nu3DwcOHMBDDz0EALDZbBBCQKPR4D//+Q+uu+46maskot6AY26IlK3HhJvAwEAcPHiw2bG33noL33zzDT7++GMMGDBApsqIqLdhyw2RsskabmpqanDy5Ennz7m5ucjOzkZoaCj69euH9PR0nD9/HuvWrYNKpcLIkSObXR8REQGDwXDFcSKi7sQxN0TKJmu42bdvH6ZPn+78OS0tDQCwYMECrF27FgUFBcjLy5OrPCKiFjHcECmbJIQQchfhSUajEUFBQaiqqkJgYKDc5RBRD/THj3/Eh/vOOX/+4U8zEBlokLEiIu/nzud3j5oKTkSkBBxzQ6RsDDdERG5itxSRsjHcEBG5iS03RMrGcENE5Cauc0OkbAw3RERuYssNkbIx3BARuYktN0TKxnBDROQGm02gxsxwQ6RkDDdERG6os1jRu1YHI+p5GG6IiNzg6JLSqCSoVZLM1RBRSxhuiIjcUGOyAAD8DRow2hApE8MNEZEbHAv4+etl3ZqPiNrAcENE5AbHNHCGGyLlYrghInKDY8xNgIHhhkipGG6IiNxQbXKEG63MlRBRaxhuiIjcUMMxN0SKx3BDROQG55gbdksRKRbDDRGRGxzhJoAtN0SKxXBDROQGTgUnUj6GGyIiN7Bbikj5GG6IiNxQ09C0QjFbbogUi+GGiMgNzjE3bLkhUiyGGyIiN1wcc8N1boiUiuGGiMgNHHNDpHwMN0REbuBsKSLlY7ghInKREKLFMTdCyFUREbWE4YaIyEUNFhusNnuS8ddroFJJAAAr0w2RojDcEBG5qNpknwYuSYCvTg1tU7hptNrkLIuILsNwQ0Tkoks3zZQkCRq1/S3UYmXLDZGSMNwQEbno8n2ltOqmlhsbW26IlIThhojIRc6Wm6bBxBqV/S20kS03RIrCcENE5KJqU/Np4JqmlhsLx9wQKQrDDRGRiy623NhXJ9Y2jblptLHlhkhJGG6IiFx0+ZgbjYotN0RKxHBDROSimiu6pThbikiJZA03O3fuxJw5cxATEwNJkrBp06Y2z//0009x/fXXIzw8HIGBgUhJScHWrVs9UywR9XrVlw0ods6WYssNkaLIGm5qa2uRlJSElStXunT+zp07cf3112Pz5s3IysrC9OnTMWfOHBw4cKCbKyUiAmqaFvHzd04FZ8sNkRLJuvPb7NmzMXv2bJfPX7FiRbOfn3vuOXz++ef417/+hbFjx7Z4jclkgslkcv5sNBo7VCsRkWNAcYCh+ZgbrnNDpCw9esyNzWZDdXU1QkNDWz1n2bJlCAoKct7i4uI8WCEReZPLN810zpZiyw2RovTocPPSSy+hpqYGd9xxR6vnpKeno6qqynnLz8/3YIVE5E2cY2709qngXOeGSJlk7ZbqjA8++ADPPPMMPv/8c0RERLR6nl6vh16v92BlROStnLOlLl+hmOvcEClKjww3GzZswH333YePPvoIqampcpdDRL3E5VPBOVuKSJl6XLfU+vXrsXDhQqxfvx433XST3OUQUS9yxYBizpYiUiRZW25qampw8uRJ58+5ubnIzs5GaGgo+vXrh/T0dJw/fx7r1q0DYO+KWrBgAV577TUkJyejsLAQAODj44OgoCBZfgci6j0u31tKy9lSRIoka8vNvn37MHbsWOc07rS0NIwdOxZLliwBABQUFCAvL895/jvvvIPGxkYsXrwY0dHRztsjjzwiS/1E1HuYGq0wN9pDjHPMjXNAMVtuiJRE1pabadOmQYjW3xTWrl3b7OcdO3Z0b0FERK2oNVmd3/vpmndLcSo4kbL0uDE3RERycIy38dOpoW7qjmK3FJEyMdwQEbmg2rH1guFigzcHFBMpE8MNEZELahqaDyYGLo654VRwImVhuCEicsHFHcG1zmNaLuJHpEgMN0RELnDuK9VCyw23XyBSFoYbIiIXXL7GDXBx40yGGyJlYbghInKBc8zNpQOKHbOlOKCYSFEYboiIXFDjmC2lb2G2FMfcECkKww0RkQsci/hdGm50nC1FpEgMN0RELqhtGnPj11LLDbuliBSF4YaIyAW1Zke4UTuPabhCMZEiMdwQEbnA0S3lq7tythQHFBMpC8MNEZEL6swX95Zy4Do3RMrEcENE5AJHy02zMTdcoZhIkRhuiIhcUNfCmBstZ0sRKRLDDRGRC2rNV4654WwpImViuCEicoFzKvilA4o5W4pIkRhuiIjaYbMJ1Dlabi6dCs7ZUkSKxHBDRNSOeovV+b2froVdwdlyQ6QoDDdERO1wLOCnkgCD9uLbplbFlhsiJWK4ISJqR51jGrhOA0mSnMcvrnPDcEOkJAw3RETtcLTcXDreBrhkKji7pYgUheGGiKgdtZe03FxKw24pIkViuCEiakdrLTeObikzF/EjUhSGGyKidtS1sGkmcOnGmQw3RErCcENE1I7aFjbNBABN0yJ+NmFfC4eIlIHhhoioHXUmR7fUZWNu1BffQrnWDZFyMNwQEbXDsa+U/2XdUrpLwg0HFRMpB8MNEVE7ak1tDygGGG6IlIThhoioHY59pa6cCn4x3LBbikg5GG6IiNrRWsuNJEnOgMOWGyLlYLghImpHay03wKVbMLDlhkgpGG6IiNrhXMTvsqngwCWbZ3IqOJFiMNwQEbXD0S3lp2+95YYL+REph6zhZufOnZgzZw5iYmIgSRI2bdrU7jU7duzAuHHjoNfrMWjQIKxdu7bb6ySi3s25t1SL4cb+NsqdwYmUQ9ZwU1tbi6SkJKxcudKl83Nzc3HTTTdh+vTpyM7OxqOPPor77rsPW7du7eZKiag3q2tlhWIA0Kq4MziR0lz5Z4gHzZ49G7Nnz3b5/FWrVmHAgAF4+eWXAQDDhg3Drl278Oqrr2LWrFktXmMymWAymZw/G43GzhVNRL2OYxG/y/eWAthyQ6REPWrMTWZmJlJTU5sdmzVrFjIzM1u9ZtmyZQgKCnLe4uLiurtMIvIydc4xN1e23HDMDZHy9KhwU1hYiMjIyGbHIiMjYTQaUV9f3+I16enpqKqqct7y8/M9USoReQmbTaDO0nrLDWdLESmPrN1SnqDX66HX6+Uug4h6qHqLFaIpt7TVcsN1boiUo0e13ERFRaGoqKjZsaKiIgQGBsLHx0emqojImznWuJEkwEfbUrhparnhmBsixehR4SYlJQUZGRnNjm3btg0pKSkyVURE3q7OdHF1YkmSrrjfMVuKLTdEyiFruKmpqUF2djays7MB2Kd6Z2dnIy8vD4B9vMz8+fOd5z/44IM4ffo0/vjHP+LYsWN466238OGHH+Kxxx6To3wi6gXaWp0YAHQa+9uomeGGSDFkDTf79u3D2LFjMXbsWABAWloaxo4diyVLlgAACgoKnEEHAAYMGICvvvoK27ZtQ1JSEl5++WX87W9/a3UaOBFRZzn3lWphAT/gYldVfdN5RCQ/WQcUT5s2DUK03k/d0urD06ZNw4EDB7qxKiKii5w7grfScuPTdLyO4YZIMXrUmBsiIk+rNbW+I/ilx+stDDdESsFwQ0TUBueYmxamgQOXttw0eqwmImobww0RURvq2tgRHLjYXeVo4SEi+THcEBG1wbGvVEubZgIXww0HFBMpB8MNEVEb6pxTwVtrubEfr+OYGyLFYLghImqDc0BxK2NuHC03ju4rIpIfww0RURsuTgVvZZ0bTgUnUhyGGyKiNtS1M+bGj91SRIrDcENE1IaLU8Hbni1Vz6ngRIrBcENE1AbHxpn+rW2/wKngRIrDcENE1Ib2Ns705QrFRIrDcENE1Ib2Ns705QrFRIrj0saZoaGhbj2oJEnYv38/+vfv36GiiIiUoqadjTMdxxssNlhtAmqV5LHaiKhlLoWbyspKrFixAkFBQe2eK4TAb3/7W1itbKIlop7Puf1CO4v4AfauqdbG5hCR57j8r/CXv/wlIiIiXDr34Ycf7nBBRERKYbMJ5xTv1jbONGhVkCRACHvXFMMNkfxc+ldos9ncetDq6uoOFUNEpCR1FiuEsH/fWmiRJAm+WjVqzVbuL0WkEC4PKP7yyy/dDjlERD1ZZZ0ZAKBTq+CjbbnlBgB8mrqmOB2cSBlcDje33nor4uLi8Oc//xknT57szpqIiBShss4CAAj21UKSWh8o7FzIz8IZU0RK4HK4yc3NxQMPPIANGzYgMTERU6dOxT/+8Q/U19d3Z31ERLKpaGq5CfHVtXmeL/eXIlIUl8NNXFwclixZglOnTuHrr79GfHw8Fi1ahOjoaDz44IPYu3dvd9ZJRORxjpabIF9tm+f5cpViIkXp0CJ+06dPx3vvvYeCggK8+OKLOHjwICZNmoSkpKSuro+ISDaVzpab9sKNY5VidksRKUGn5iwGBARgxowZOHv2LI4dO4YjR450VV1ERLJztNywW4qoZ+lQy019fT3WrVuHadOmYfDgwdiwYQPS0tJw5syZLi6PiEg+FW52S9WxW4pIEdxqufn++++xZs0afPjhhzCbzfjZz36Gr7/+GtOnT++u+oiIZFPp4oBix1RwttwQKYPL4Wb48OHIycnB2LFjsWzZMtx1110ubcdARNRTVdY3TQX3cbHlhmNuiBTB5XCTmpqK9evXc9AwEfUajqngwe203Pg51rlhyw2RIrgcbl5//fXurIOISHGqnAOK22654QrFRMri0oDicePGoaKiwuUHvfrqq3H+/PkOF0VEpASuttxwhWIiZXGp5SY7Oxs//vgjQkNDXXrQ7OxsmEymThVGRCQnm02gqt61lhtOBSdSFpe7pWbMmAHh2B63HW3twUJE1BNUNzTC1vSW1/5U8KbZUuyWIlIEl8JNbm6u2w/ct29ft68hIlIKR5eUr04Nvab1HcEd5wCcLUWkFC6Fm/79+3d3HUREilJZ79rqxADgw24pIkXp0ArFRETerqLW3nIT1M4aNwDg59hbiuGGSBEYboiIWlBaY58UERagb/dcH+eu4OyWIlIC2cPNypUrER8fD4PBgOTkZOzZs6fN81esWIHExET4+PggLi4Ojz32GBoaGjxULRH1FmVNLTdhfu13S12cCs6WGyIlkDXcbNy4EWlpaVi6dCn279+PpKQkzJo1C8XFxS2e/8EHH+DJJ5/E0qVLcfToUbz77rvYuHEj/vSnP3m4ciLydqXVrrfcOMKNxSpgbrR1a11E1L4OhZvKykr87W9/Q3p6OsrLywEA+/fvd3vhvldeeQX3338/Fi5ciOHDh2PVqlXw9fXFmjVrWjz/u+++w5QpU3DXXXchPj4eM2fOxJ133tlma4/JZILRaGx2IyJqj6Plpo9LLTcX52Zw3A2R/NwONz/99BOGDBmC5cuX46WXXkJlZSUA4NNPP0V6errLj2M2m5GVlYXU1NSLxahUSE1NRWZmZovXTJ48GVlZWc4wc/r0aWzevBk33nhjq8+zbNkyBAUFOW9xcXEu10hEvZdzzI1/+y03Oo0KGpV9fS9OByeSn9vhJi0tDffeey9OnDgBg8HgPH7jjTdi586dLj9OaWkprFYrIiMjmx2PjIxEYWFhi9fcddddePbZZ3H11VdDq9Vi4MCBmDZtWpvdUunp6aiqqnLe8vPzXa6RiHqv0pqmlhv/9ltuAE4HJ1ISt8PN3r178cADD1xxPDY2ttVQ0lV27NiB5557Dm+99Rb279+PTz/9FF999RX+3//7f61eo9frERgY2OxGRNSeMjdabgBOBydSEpe3X3DQ6/Utjls5fvw4wsPDXX6csLAwqNVqFBUVNTteVFSEqKioFq95+umncc899+C+++4DAIwaNQq1tbX4zW9+gz//+c9QqWSf/EVEXsBmEyh3zJZyMdz4cjo4kWK4nQbmzp2LZ599FhaLffVOSZKQl5eHJ554ArfffrvLj6PT6TB+/HhkZGQ4j9lsNmRkZCAlJaXFa+rq6q4IMGq1/Q3F1X2viIjaU1VvQWPTxlKhLgwoBi7pluJ0cCLZuR1uXn75ZdTU1CAiIgL19fWYOnUqBg0ahICAAPz1r39167HS0tKwevVqvPfeezh69CgWLVqE2tpaLFy4EAAwf/78ZoOU58yZg7fffhsbNmxAbm4utm3bhqeffhpz5sxxhhwios4qq7V3SQUaNNBpXHubdK51w24pItm53S0VFBSEbdu2YdeuXfjpp59QU1ODcePGNZv15Kp58+ahpKQES5YsQWFhIcaMGYMtW7Y4Bxnn5eU1a6l56qmnIEkSnnrqKZw/fx7h4eGYM2eO26GKiKgtjsHErqxx4+CYDs5uKSL5SaKX9ecYjUYEBQWhqqqKg4uJqEVf/nQBD31wABPjQ/Hhgy13k19u0ftZ+PehQjx7ywjMT4nv3gKJeiF3Pr/dbrl5/fXXWzwuSRIMBgMGDRqEa6+9lt1ERNRjlbk5DRzgVHAiJXE73Lz66qsoKSlBXV0dQkJCAAAVFRXw9fWFv78/iouLkZCQgO3bt3PBPCLqkYqr7fvVuTpTCrg4FZzhhkh+bg8ofu6553DVVVfhxIkTKCsrQ1lZGY4fP47k5GS89tpryMvLQ1RUFB577LHuqJeIqNudKasDAPQL9XX5GseA4jqOuSGSndstN0899RQ++eQTDBw40Hls0KBBeOmll3D77bfj9OnTeOGFF9yaFk5EpCRnSmsBAPFhfi5fw6ngRMrhdstNQUEBGhuv/MuksbHRuUJxTEwMqqurO18dEZGHCSGc4WZAmPstN5wKTiQ/t8PN9OnT8cADD+DAgQPOYwcOHMCiRYtw3XXXAQAOHjyIAQMGdF2VREQeUlJjQq3ZCpUExLnVLcWp4ERK4Xa4effddxEaGorx48dDr9dDr9djwoQJCA0NxbvvvgsA8Pf3x8svv9zlxRIRdbczpfbxNjHBPtBrXJ/16Wy5YbcUkezcHnMTFRWFbdu24dixYzh+/DgAIDExEYmJic5zpk+f3nUVEhF50MUuKdfH2wCXDChmtxSR7NwONw5Dhw7F0KFDu7IWIiLZ5ZY1DSbu4264YbcUkVJ0KNycO3cOX3zxBfLy8mA2m5vd98orr3RJYUREcujITCkACPTRAgCqGxhuiOTmdrjJyMjA3LlzkZCQgGPHjmHkyJE4c+YMhBAYN25cd9RIROQxeeX2MTf93RhMDNg32QQAY72ly2siIve4PaA4PT0dv//973Hw4EEYDAZ88sknyM/Px9SpU/GLX/yiO2okIvKY85X1AIDYEB+3rnO23JgaYbX1qi37iBTH7XBz9OhRzJ8/HwCg0WhQX18Pf39/PPvss1i+fHmXF0hE5Cm1pkZU1tlbXtwNNwGGiw3hNeyaIpKV2+HGz8/POc4mOjoap06dct5XWlradZUREXmYo9UmwKBBoEHr1rV6jRoGrf0t1djArikiObk95mbSpEnYtWsXhg0bhhtvvBGPP/44Dh48iE8//RSTJk3qjhqJiDzifEVTl1Swe602DoEGLRosJlTVW8Btg4nk43a4eeWVV1BTUwMAeOaZZ1BTU4ONGzdi8ODBnClFRD3auaaWm75udkk5BPpoUVxtYssNkczcDjcJCQnO7/38/LBq1aouLYiISC6db7lxzJjimBsiObk95iYhIQFlZWVXHK+srGwWfIiIepqOzpRycMyYYssNkbzcDjdnzpyB1Xrl8uImkwnnz5/vkqKIiORwvsK+xk1ssHtr3Dg4BiFzrRsiebncLfXFF184v9+6dSuCgoKcP1utVmRkZCA+Pr5LiyMi8qTOt9w0dUtxKjiRrFwON7feeisAQJIkLFiwoNl9Wq0W8fHx3AmciHqs6gYLiqtNAIB+bq5O7MCWGyJlcDnc2Gw2AMCAAQOwd+9ehIWFdVtRRESe9tO5KghhnykV6qfr0GM4x9ww3BDJyu3ZUrm5ud1RBxGRrLLzKwEAY+KCO/wYQRxQTKQILoWb119/3eUH/N3vftfhYoiI5HIgrxJA58LNxW4pjrkhkpNL4ebVV1916cEkSWK4IaIeRwjhbLkZ2y+4w49zcUAxW26I5ORSuGFXFBF5s3MV9SitMUGjkjAiJqj9C1rBAcVEyuD2OjeXEkJACNFVtRARyWLvmXIAwIiYQBi06g4/zsVF/NgtRSSnDoWbdevWYdSoUfDx8YGPjw9Gjx6Nf/zjH11dGxGRR3x3yr7q+qSBfTr1OI7tF2pMjWi02jpdFxF1TIc2znz66afx0EMPYcqUKQCAXbt24cEHH0RpaSkee+yxLi+SiKi7CCGQ2RRuUhI6GW6aWm4Ae+tNR6eUE1HnuB1u3njjDbz99tuYP3++89jcuXMxYsQI/OUvf2G4IaIeJb+8Hucr66FRSbgqPrRTj6VVq+Cv16DG1IjKOjPDDZFM3O6WKigowOTJk684PnnyZBQUFHRJUUREnpJ5uhQAkBQXDD+923/vXcGx1k1FHQcVE8nF7XAzaNAgfPjhh1cc37hxIwYPHtwlRREReYqjS2pyJ8fbOIT42cNNVb25Sx6PiNzn9p8pzzzzDObNm4edO3c6x9zs3r0bGRkZLYYeIiKlEkI4BxN3dryNQ4ivvSuqopYtN0Rycbnl5tChQwCA22+/HT/88APCwsKwadMmbNq0CWFhYdizZw9uu+22biuUiKirnS6tRXG1CTqNCuP6h3TJYzq6pSq51g2RbFwON6NHj0ZycjJWr16NIUOG4P3330dWVhaysrLw/vvvY+zYsR0qYOXKlYiPj4fBYEBycjL27NnT5vmVlZVYvHgxoqOjodfrMWTIEGzevLlDz01EvZuj1WZcv+BOrW9zKUfLTWUdu6WI5OJyuPn2228xYsQIPP7444iOjsa9996L//73v5168o0bNyItLQ1Lly7F/v37kZSUhFmzZqG4uLjF881mM66//nqcOXMGH3/8MXJycrB69WrExsZ2qg4i6p2+d463Ceuyxwz2bWq54YBiItm4HG6uueYarFmzBgUFBXjjjTeQm5uLqVOnYsiQIVi+fDkKCwvdfvJXXnkF999/PxYuXIjhw4dj1apV8PX1xZo1a1o8f82aNSgvL8emTZswZcoUxMfHY+rUqUhKSmr1OUwmE4xGY7MbEZHNJpB5umm8TRcNJgaAYMeYG7bcEMnG7dlSfn5+WLhwIb799lscP34cv/jFL7By5Ur069cPc+fOdflxzGYzsrKykJqaerEYlQqpqanIzMxs8ZovvvgCKSkpWLx4MSIjIzFy5Eg899xzsFqtrT7PsmXLEBQU5LzFxcW5/ssSkdc6XlyN8lozfLRqJPUN7rLHDfF1zJZiyw2RXDq1t9SgQYPwpz/9CU899RQCAgLw1VdfuXxtaWkprFYrIiMjmx2PjIxstRXo9OnT+Pjjj2G1WrF582Y8/fTTePnll/G///u/rT5Peno6qqqqnLf8/HyXayQi7/XdSXurzYT4EOg0nXorbMbRLcWWGyL5dHjFqp07d2LNmjX45JNPoFKpcMcdd+DXv/51V9Z2BZvNhoiICLzzzjtQq9UYP348zp8/jxdffBFLly5t8Rq9Xg+9Xt+tdRFRz9MdXVLAJd1SnApOJBu3ws2FCxewdu1arF27FidPnsTkyZPx+uuv44477oCfn59bTxwWFga1Wo2ioqJmx4uKihAVFdXiNdHR0dBqtVCrL85qGDZsGAoLC2E2m6HTcalzImqf1Sbw/emuH0wMAME+7JYikpvLbbGzZ89G//798cYbb+C2227D0aNHsWvXLixcuNDtYAMAOp0O48ePR0ZGhvOYzWZDRkYGUlJSWrxmypQpOHnyJGy2i7vtHj9+HNHR0Qw2ROSyIxeMqG5ohL9eg5ExgV362I6p4DWmRpgbuTM4kRxcDjdarRYff/wxzp07h+XLlyMxMbHTT56WlobVq1fjvffew9GjR7Fo0SLU1tZi4cKFAID58+cjPT3def6iRYtQXl6ORx55BMePH8dXX32F5557DosXL+50LUTUezj2k0oeEAqNuuvG2wD2ncElyf49W2+I5OFyt9QXX3zR5U8+b948lJSUYMmSJSgsLMSYMWOwZcsW5yDjvLw8qFQX33ji4uKwdetWPPbYYxg9ejRiY2PxyCOP4Iknnujy2ojIezm3XOji8TYAoFZJCDRoUVVvQWWdGeEBHPNH5Gmd3wK3kx566CE89NBDLd63Y8eOK46lpKTg+++/7+aqiMhbWaw27M0tB9A94QawTwevqrdwCwYimXRteywRkcK9//1Z1JqtCPXTYVhU1463cXC01lyorO+WxyeitjHcEFGvkV9eh+VbjgEAHksdDJVK6pbnGRIZAAA4VljdLY9PRG1juCGiXuOjrHNosNgwMT4Udyf377bnGRplDzc5DDdEsmC4IaJeY9eJEgDA7eNju63VBgASm7q7GG6I5MFwQ0S9QlW9Bdn5lQCAqweHd+tzJTZ1S52vrIexgYOKiTyN4YaIeoXMU6WwCWBguB9ig3269bmCfLWIDjIAAI6z9YbI4xhuiKhX2HnCvnDfNd3cauOQ2DTu5ijDDZHHMdwQkdcTQuCbo8UAgKmJngk3jhlTp0tqPPJ8RHQRww0Reb3DF4woNDbAV6dGSkL3LNx3OUfXV0Flg0eej4guYrghIq+37UgRAOCawWEwaNUeeU7HmJuCKi7kR+RpDDdE5PUc4WbGsEiPPWdMU8vNebbcEHkcww0RebUjF4w4UmCEVi0hVYZwU1pjgqnR6rHnJSKGGyLych/uywcAXD88EqF+Oo89b4ivFgat/S22sIqtN0SexHBDRF6rwWLFZwfOAwDumBDn0eeWJAkxQfbWmwvsmiLyKIYbIvJa244Uoaregpggg8fWt7mUo2uKu4MTeRbDDRF5LUeX1M/H94W6G/eSag1nTBHJg+GGiLzSuYo67DppX5X4Fx7uknLgjCkieTDcEJFX+jjrHIQApgzqg7hQX1lqiGW3FJEsGG6IyOvYbAIf7TsHwPMDiS/Vv489VJ0s5hYMRJ7EcENEXmf3qVKcr6xHoEGDWSOiZKtjWEwgAOB8ZT0q68yy1UHU2zDcEJHX+STL3mpz69hYj2230JJAgxb9mrrEjhQYZauDqLdhuCEir1JvtuI/Tdst3DY2VuZqgOHR9tabIxcYbog8heGGiLxKxrEi1JmtiAv1wZi4YLnLwfAYhhsiT2O4ISKv8q8fLwAA5oyOgSR5fm2byzlabg4z3BB5DMMNEXkNi9WGXSfsa9vcOCpa5mrsRsTaw83JkhpUN1hkroaod2C4ISKv8dO5KtSarQj21TpbTOQWHeSDhDA/WG0Cu5sWFSSi7sVwQ0Re4/vTZQCASQP6QCXDdgutmZYYAQDYfqxE5kqIegeGGyLyGt+dsreMTB7UR+ZKmps+1L5p5/acYgghZK6GyPsx3BCRV6iqsyDrbAUAICVBWeFm4oBQ+GjVKK42cb0bIg9guCEir/DSf3LQYLFhSKQ/BkX4y11OM3qNGlMGhQEAduSwa4qouzHcEFGPd7yoGu//cBYA8MzckYqYAn45Z9fUsWKZKyHyfgw3RNTjfZF9AUIAqcMikDJQWV1SDo5BxfvzKrjPFFE3Y7ghoh5v6+FCAMDNo2NkrqR1scE+SIwMgE0AO09wSjhRd2K4IaIe7XRJDU4U10CjkjC9qXVEqaY1dU3tYNcUUbdSRLhZuXIl4uPjYTAYkJycjD179rh03YYNGyBJEm699dbuLZCIFGvzwQIAQMrAPgjy1cpcTdsc4WvH8RLYbJwSTtRdZA83GzduRFpaGpYuXYr9+/cjKSkJs2bNQnFx23/ZnDlzBr///e9xzTXXeKhSIlKaBosV72XaBxLPTVJul5TD+P4hCNBrUF5rxk/nq+Quh8hryR5uXnnlFdx///1YuHAhhg8fjlWrVsHX1xdr1qxp9Rqr1Yq7774bzzzzDBISEtp8fJPJBKPR2OxGRN7h0/3nUVJtQnSQAbeMiZW7nHZp1SpcM8Q+JZyzpoi6j6zhxmw2IysrC6mpqc5jKpUKqampyMzMbPW6Z599FhEREfj1r3/d7nMsW7YMQUFBzltcXFyX1E5E8rLaBP5v5ykAwH3XJECnkf1vNZc4Zk3tyGG4Ieousr4blJaWwmq1IjIystnxyMhIFBYWtnjNrl278O6772L16tUuPUd6ejqqqqqct/z8/E7XTUTy23ywAGfL6hDsq8Uvr+o5f7RMG2IfVPzjuSqUVJtkrobIO/WMP3WaVFdX45577sHq1asRFhbm0jV6vR6BgYHNbkTUswkh8PYOe6vNvZPj4afXyFyR6yICDRgZa38f2nmcqxUTdQdZ3xHCwsKgVqtRVFTU7HhRURGioqKuOP/UqVM4c+YM5syZ4zxms9kAABqNBjk5ORg4cGD3Fk1Esvv2eAmOFBjhq1NjQUq83OW4bXpiBA6dN2J7TjFuH99X7nKIvI6sLTc6nQ7jx49HRkaG85jNZkNGRgZSUlKuOH/o0KE4ePAgsrOznbe5c+di+vTpyM7O5ngaol7C0Wpz58R+CPHTyVyN+xzjbr49XgJzo03maoi8j+xtuWlpaViwYAEmTJiAiRMnYsWKFaitrcXChQsBAPPnz0dsbCyWLVsGg8GAkSNHNrs+ODgYAK44TkTeKetsBX7ILYdWLeG+awbIXU6HjIkLRmSgHkVGE3YeL0Hq8Mj2LyIil8kebubNm4eSkhIsWbIEhYWFGDNmDLZs2eIcZJyXlweVqkcNDSKibuRotbltbCyig3xkrqZj1CoJN42KwZrdufjXTxcYboi6mCSE6FXLZBqNRgQFBaGqqoqDi4l6mONF1Zj56k5IEvB12lQMDPeXu6QOO5BXgdve+g6+OjX2/DkV/j1oUDSRHNz5/GaTCBH1GK9nnAAAzBoe1aODDWDvmhoQ5oc6sxV//eqo3OUQeRWGGyLqEY5cMOLLn+z7SD2SOljmajpPkiT89daRkCRg/Z48fHeSO4UTdRWGGyJSPCEEnt9yDABw8+hoDIv2ji7lyYPC8IumqeCbDxXIXA2R92C4ISLF+/ehQuw8XgKdWoXHZybKXU6XmjHMPpg481SZzJUQeQ+GGyJStJJqE5Z+cRgA8OC0gRgQ5idzRV1r0oA+kCTgVEktio0NcpdD5BUYbohIsaw2gUc3HkBJtQmDI/zx22netwJ5kK8WI2Ls3WyZp9l6Q9QVGG6ISLH+vjsXu0+WwVenxtu/GgeDVi13Sd0iJaEPAGDncQ4qJuoKDDdEpEgni2vw4tYcAMDTNw/HoIgAmSvqPjNH2PfS23ywAFX1FpmrIer5GG6ISHGMDRb85h/7YGq04ZrBYfjlVd69b9yE/iFIjAxAvcWKT/efk7scoh6P4YaIFMVqE3hk/QGcLqlFTJABr9wxBpIkyV1Wt5IkCb+a1A8A8P73Z9HLFo4n6nIMN0SkGEII/PWro9ieUwK9RoV35k9AeIBe7rI84taxsfDVqXGqpJYDi4k6ieGGiBShqt6CxR/sx5rduQCAF34+GiNjg2SuynMCDFrcNjYWAPDP7/NkroaoZ2O4ISJZmRqt+HBvPma9uhObDxZCq5aw/PZRuGVMrNyledyvJvUHAGw9XIjCKq55Q9RR3IaWiDxKCIFzFfU4fMGIr48WYevhQlQ3NAIA4vv44pV5YzCuX4jMVcpjWHQgJg4IxZ7ccvx9dy7Sbxwmd0lEPRLDDRF1C3OjDfkVdThTWovc0lqcLK7B8aJqHC+qQY2psdm5UYEG/M/V8bhnUjx8dN65lo2rHpyagD255fjnD3lYfN0gBBq0cpdE1OMw3BBRlzlZXIOthwuRcbQIP56rgtXW8qwfrVrC4IgATIgPwc2jYzChfwhUKu+eEeWqaUMiMCTSH8eLavDh3nzcd02C3CUR9TgMN0TUaSeLa/DKthxsPljY7LiPVo34MD8khPkhIdwPgyMDMCTSHwPD/aFVc8hfS1QqCfdOHoA/fXYQ//whD/8zZQCDH5GbGG6IqMMaLFa8sCUHa7/LhU0AkgRMHRKO1GGRmDokHH1DfLx+jZrucMuYGDy3+ShyS2ux+1QprhkcLndJRD0Kww0RdcjRAiMe2XAAx4tqAADXD4/E4zOHYGhUoMyV9Xx+eg1+Ni4W6zLP4uOscww3RG5iuCEit9hsAmt25+KFLTkwW20I89fhxZ8nYfrQCLlL8ypzk2KwLvMsduSUoNFqg4bdeEQuY7ghIpedLK7Bk5/8hH1nKwAAqcMi8fztoxDm3ztWEfaksf1CEOqnQ3mtGfvOVmBS087hRNQ+/ilARO2yWG1Yuf0kbnztv9h3tgJ+OjWeu20UVs8fz2DTTdQqCdMT7a1hXx8pkrkaop6F4YaI2nTofBXmvrkbL261d0NNSwzHf9Km4q7kfhws3M1Sh9nDzZbDhbC1Mq2eiK7EbikialGDxYoVX5/A6v+ehtUmEOyrxdI5w3HrmFiGGg+ZlhiBAL0G5yrq8UNuOVIGsmuKyBUMN0TUTKPVhk/2n8Or206g0Gjf3+jm0dH4y9wR7ILyMB+dGjcnRWP9nnx8lJXPcEPkIoYbIgJgb6nZdOA83vnvaZwuqQUAxAb7YOmc4Zg5Ikrm6nqvn4+Pw/o9+fj3wUI8fZMZIX46uUsiUjyGG6Je7lxFHTbsyceGvXkorTEDAIJ9tXho+iD8alJ/GLS9e68nuY3rF4zh0YE4UmDEqm9PcTNNIhcw3BD1QlabwM7jJfjH92exPacYommsamywDxZOice8q+IQwA0bFUGSJPx+1hD8z9p9WPvdGfzP1QMQGWiQuywiRWO4IepFThZX4+Os8/jq4AXkl9c7j08Z1Ad3TeyPmSMiueeTAk1PjMC4fsHYn1eJjXvz8bsZg+UuiUjRGG6IvNyFynpkHC3Cf44UYdfJUmcrTaBBg19MiMPdyf2QEO4vb5HUJkmScHdyf+zPq8THWefw8HWDOGONqA0MN0RexmK1Yf/ZCuw8UYLtx0pwpMDY7P7UYZGYkxSNmcOj4KPjeJqeYvaoKCz5/BDyyuuw90wFJg4IlbskIsViuCHq4erNVhzIr8De3ArsPVOO/XkVqDNbnferJGBcvxDMGBaJG0ZGYUCYn4zVUkf56jS4aXQ0Ptx3Dq9uO45/3pcMlYqtN0QtYbgh6mEq68zYd8YeZPacKceh81WwWJuvXhvqp8M1g8Nw7eBwTEsMRx+uT+MVFk8fhH/9WIDM02X4YE8efjWpv9wlESmSIsLNypUr8eKLL6KwsBBJSUl44403MHHixBbPXb16NdatW4dDhw4BAMaPH4/nnnuu1fOJeiqL1Yacwmrsz6tAQVUDiowNOHzeiJyi6ivOjQo04KoBoZgYH4IJ8aFIjAzgX/VeqH8fP/xhViKe/fIIXss4gXlXxXEAOFELZA83GzduRFpaGlatWoXk5GSsWLECs2bNQk5ODiIiIq44f8eOHbjzzjsxefJkGAwGLF++HDNnzsThw4cRGxsrw29A5Bpzow2AfUPEsloTSqov3spqzaioM6O8xoxzFfXIr6jDhcp6tLadUEK4HybGh+Kq+FBMHBCKviE+HGDaS/xqUn+8/e0plFSb8J/DRbhpdLTcJREpjiSEkHU3tuTkZFx11VV48803AQA2mw1xcXF4+OGH8eSTT7Z7vdVqRUhICN58803Mnz+/3fONRiOCgoJQVVWFwMDATtdPPZ/VJmButNlv1qZb088NFisaLFaYmr5v6avJYkWD46vFBlOj/WtDoxWmpq+1pkacLqlFo01AJaHV0HI5f70GE+JDEN/HDxGBeiSE+WF8/1CEB7CbqTd7+T85eOObk0hJ6IP1v5kkdzlEHuHO57esLTdmsxlZWVlIT093HlOpVEhNTUVmZqZLj1FXVweLxYLQ0JZnDphMJphMJufPRqOxxfOo57HZBIwNFpTWmFFWY2/9uPjVjLJaE+rNVjTaBGpMjahpaES9xQpzow2mpvBiarS6HDS6rG4BSBLQx0+PiAA9wgP06OOvQ4ivDiG+WsSG+CAuxBf9Qn0R5q9n9xJd4c6J/fDWjlPIPF2GzFNl3HOK6DKyhpvS0lJYrVZERkY2Ox4ZGYljx4659BhPPPEEYmJikJqa2uL9y5YtwzPPPNPpWkkZCqsasOVQAbYeLsK+s+VXDKTtCjq1Clq1BL1WDYNGBYNWDV3TV33TV4NWBb3G/rX5cfv3jmsvfYwBYX4IMGhgttoQ6quDhmMlqINign1w58Q4vP99Hp7512F89btroGYIJnKSfcxNZzz//PPYsGEDduzYAYOh5eXI09PTkZaW5vzZaDQiLi7OUyVSFzmQV4G/7crFlkOFsF7W1BJo0KCPvx59/HTo469DH389wvzsX310amhUEvz1GvjrNfDR2YOKXmMPITqNCjq1/au2KdRw7Ar1BGnXJ+KL7As4VliNz7PP42fj+spdEpFiyBpuwsLCoFarUVRU1Ox4UVERoqLa3oX4pZdewvPPP4+vv/4ao0ePbvU8vV4PvZ7jE3qiqjoLvj5ahA/25CHrbIXz+Pj+IZg9MgrXDY1AbIgP9BouREe9T6ifDg9MHYgXt+bg7R2ncOuYWHZhEjWRNdzodDqMHz8eGRkZuPXWWwHYBxRnZGTgoYceavW6F154AX/961+xdetWTJgwwUPVkqcUVzfgo33n8Nb2k6htWoxOq5Zwy5hY/M+UARgew4HgRABwT0p/rPr2FE4U12DzoQLcPDpG7pKIFEH2bqm0tDQsWLAAEyZMwMSJE7FixQrU1tZi4cKFAID58+cjNjYWy5YtAwAsX74cS5YswQcffID4+HgUFhYCAPz9/eHvz/1xeipToxWbDpzHx1nnsO9shXP/o8ER/rh5dAzunBiHCO6ETNRMoEGLhVMG4PWME/jLF0cweWAYQv10cpdFJDvZw828efNQUlKCJUuWoLCwEGPGjMGWLVucg4zz8vKgUl0cePn222/DbDbj5z//ebPHWbp0Kf7yl794snTqBJtN4EB+Jb4+WoTtx4pxqqSm2eDgpLhgzJ/UH7eNZVM7UVt+O20g/n2wACeKa/D0pkN4866xHDdGvZ7s69x4Wnevc1NRa8beM+XOKccBBi0c/4l99Rr46dTw1Wngp7/41Uer9to3IyEE8svrcba8Fg0WG9ZlnkF1QyPOVdShtMbc7NzoIAPunRyPOUkxiAn2kaliop7n4Lkq3PbWbjTaBF6/cyzmJrF7irxPj1nnxtucq6jDnDd2oaLO4va1eo3KOYXYMa3YEYR8dGro1CrotapLvqov+/nitY6bY1aQTqOCRiU1recioJIkaNUqaNQSNCoJgARJAiQAGpUKBp0KerUaNeZGSLAvcldvsUKtktBgsaLObL+ZLFbUW6w4X1mPQIMWlXVmlFSbYLYKnCiqRlF1A0qqTWiw2Fr8nQP0GkwbGoHUYREY3z8EMUE+bKUh6oBRfYPw0HWDsOLrE/jzpweREOaHkbFBcpdFJBuGmy7SaLXh0Q3ZqKizICrQgIRwP2jUKlQ3WJoCBFBrsqLO3IhasxV1pkbnYFkA9pVuG21AQ6Ncv0K30aol9Av1RYPFhuuHR2JSQh8E+mgwoX8odBqu9ULUFRZPH4TMU2X4Ibcc89fsweeLpyAu1FfusohkwXDTRT5qGggboNfgowdTXHpTsdlE09L8VpgaHUv521fNrbdYUW+2osbU6Aw+jhV1HSvsmiw2mK3Wpq8Xr3V8f+mxRptoap2RYLUJWG0CjTYbGm0CQti7jwTsmzU6Wlp0ahVEU0uPn16DRqvN3qKk18BHa2850qpViA32gbHeAj+9Bv1CfSFJwKAIf/QN8UG4vwERgXoYtJyuTdSdtGoV/rZgAn75zvc4fMGI3/5zPz56MIX/9qhXYrjpIndMiEORsQEDw/1d/mtJpZLgq9PAV6esl0EIAYtVcEE7oh4mwKDFO/Mn4ObX/4uD56vw7JdH8Nxto+Qui8jj2CfQRdQqCY+mDsEcLxjIJ0kSdBoVgw1RDxQb7IMVvxwLSQI++CEPG/bkyV0Skccx3BAReZmpQ8LxyIzBAID0zw7iw335MldE5FkMN0REXuh31w3GXcn9IATwx49/wsPrD2DvmXLUmLxv0gLR5bjODRGRl7LZBFZ8fRxvbj+JS/ebDfPXoX8fP4T523enD/LRIthHi2BfbdM4QDXiw/wwMiaIMxpJMbjODRERQaWSkDYzEdcNi8R7353Bt8dLUF5rRmmN+YpFNFvip1NjyqAwTEuMwPSh4YgO4uKa1DOw5YaIqBepqrcgr6wOZ8pqUVVvgcVqQ1W9BZV1FlTWmVFvscJY34icomqU114MQJIEzBgaif+ZEo+UgX044YA8zp3Pb4YbIiK6gs0mcPiCETtyirE9pxj78yqd902MD8X/3jYSQyID5CuQeh2GmzYw3BARue9kcQ3e++4MPsrKR4PFBo1Kwq+vGYBHZgxW3Fpd5J0YbtrAcENE1HHnK+vxzBeH8Z8jRQCAmCADls4dgZnDI9lVRd3Knc9vDoMnIiKXxQb74J35E/DuggmIDfbBhaoGPPCPLNz33j7kl9fJXR4RAIYbIiLqgBnDIvF12lT8dtpAaNUSMo4V4/pXv8Wb35xAg8Xa/gMQdSN2SxERUaecLK7GU5sO4fvT5QCA6CADHrt+CG4f1xdqFbuqqGtwzE0bGG6IiLqeEAKfZ1/AC1uO4UJVAwAgvo8vHpw6ELeNi4Vew93JqXMYbtrAcENE1H0aLFasyzyDt3acQmWdBQAQFWjA/dcm4M6JcZxZRR3GcNMGhhsiou5Xa2rE+j15WP3f0ygymgAAIb5a3Do2FrNHRmNcv2Bo1Bz2Sa5juGkDww0RkeeYGq34bP95rPr2FM6UXZxNFeSjxbVDwjE9MRxTh4Sjj79exiqpJ2C4aQPDDRGR51ltAjtyivGvHy9gx/ESZ5cVYN/aYXTfYEwbEo5pieEYFRvEVh26AsNNGxhuiIjkZbUJHMirwPacYuzIKcHhC8Zm9wfoNUhOCMXkgWGYPKgPhkQEQMVZV70ew00bGG6IiJSlyNiAb3NKsD2nGLtPlsLY0Njs/j5+Okwa2AeTB/bB5IFhiO/jy9WQeyGGmzYw3BARKZfVJnDkghHfnSrFd6fKsCe3HPWXLQoYHWTAqNggRAYakDKwD4ZHByI2xAdadmV5NYabNjDcEBH1HOZGG346V4nvTpXhu1Ol2H+2Emar7Yrz1CoJfUN80C/UF/37+CLc34BQfx36+OkQ6qdDmL8OoX56BPto2cXVQzHctIHhhoio52qwWLHvTAVyy2pxuqQGmafKkFtaC1PjlYGnJSoJCPHVIcCggSRJkCRAAhBg0CLQRwuNSkJMsAF1ZisC9Br4GzSoNVkhSYBakqBWS9CoJGhUKui1KkQEGGATAjabgI9ODb1GDZ1Gglatct70GhUCDBoEGrTwN2jYwtRB7nx+czUlIiLqMQxaNa4eHIarB4c5j9lsAsXVJpwpq8XZslrkl9ejrNaEshozymrNKK81o6zGBGNDI2wCKKu1H5eLTqNCoEGDQB8tACAiQI9BEf4YHBGAwRH+GBTpj3B/PccVdQJbboiIqFewWG2oaAo2taZGCNiDkQBQWWdBjakR5kYbLlTWw1evhrG+EQ0WK/z0aggBWIWA1SrQaBNotNlQb7ahuLoBapUEtSShodGKerMVjTYBc6MNFqsNFquAqdGK6oZG1Jld31BUp1YhzF+HiEAD4kJ9MSo2EGPiQjAiJhB++t7ZLsFuqTYw3BARkRwsVhtqTY2obrDfjA0WCAEUVNXjRHENThTV4GRxNc6W16GtT+bYYB8MjvTH4Ah/XDskHJMHhvWKDUoZbtrAcENERErWYLGitMaEkmoTiowNOF1aix/zK5GdX+ncyuJSBq0Kw6MDcfWgMEQH+2DKwDD06+MrQ+Xdi2NuiIiIeiiDVo2+Ib7oG3JlQKmoNeNkib2V5+D5Svz7UCEq6yzYn1eJ/XmVzvMm9A/BTaOjMa5fCIZFB0Kn6V2DmNlyQ0RE1ENZbQJny2rxQ2459p+tQH5FHX7ILW/WraXTqDB7ZBQWThmAMXHBstXaWeyWagPDDRERebPCqgZ8nn0e350qw4/nKpvt4zUmLhj3TOqPqYnhCOthm5Uy3LSB4YaIiHoLIQQOnq/Ce9+dxb9+vNBsAcRpieGYMTQCA8P9MSQqQPFhp8eFm5UrV+LFF19EYWEhkpKS8MYbb2DixImtnv/RRx/h6aefxpkzZzB48GAsX74cN954o0vPxXBDRES9UWmNCR/8kIfNBwtwrLD6ivuT+gYhMSoA/UJ90a+PHyIC9PDRqpEQ7gcBwFerlnW39h4VbjZu3Ij58+dj1apVSE5OxooVK/DRRx8hJycHERERV5z/3Xff4dprr8WyZctw880344MPPsDy5cuxf/9+jBw5st3nY7ghIqLe7kxpLT7OOodjhUacLK7BmbK6dq8xaFVICPNHiJ8WQT5aBPnoEOyrRbCP42ctDDo1YoJ8EB/mC71G3aU196hwk5ycjKuuugpvvvkmAMBmsyEuLg4PP/wwnnzyySvOnzdvHmpra/Hll186j02aNAljxozBqlWr2n0+hhsiIqLmiowN+P50Gc6W1SGvvA55ZXUorTWhpqERxdVXTj9vT0K4H755fFqX1thjpoKbzWZkZWUhPT3deUylUiE1NRWZmZktXpOZmYm0tLRmx2bNmoVNmza1eL7JZILJdPGFMRqNnS+ciIjIi0QGGnDLmNgW7zM2WKBVqXC+sh755XWoqregqt6CyjoLKuvNqKqzOI/Vma3Ir6hDQpifh3+D5mQNN6WlpbBarYiMjGx2PDIyEseOHWvxmsLCwhbPLywsbPH8ZcuW4ZlnnumagomIiHqZQIN9D6xBEf4YFOHf7vlCCNRbXN9qojt4/ao+6enpqKqqct7y8/PlLomIiMhrSZIEX528awTL+uxhYWFQq9UoKipqdryoqAhRUVEtXhMVFeXW+Xq9Hnq9sqe3ERERUdeRteVGp9Nh/PjxyMjIcB6z2WzIyMhASkpKi9ekpKQ0Ox8Atm3b1ur5RERE1LvIvrdUWloaFixYgAkTJmDixIlYsWIFamtrsXDhQgDA/PnzERsbi2XLlgEAHnnkEUydOhUvv/wybrrpJmzYsAH79u3DO++8I+evQURERAohe7iZN28eSkpKsGTJEhQWFmLMmDHYsmWLc9BwXl4eVKqLDUyTJ0/GBx98gKeeegp/+tOfMHjwYGzatMmlNW6IiIjI+8m+zo2ncZ0bIiKinsedz2+vny1FREREvQvDDREREXkVhhsiIiLyKgw3RERE5FUYboiIiMirMNwQERGRV2G4ISIiIq/CcENEREReRfYVij3NsWah0WiUuRIiIiJyleNz25W1h3tduKmurgYAxMXFyVwJERERuau6uhpBQUFtntPrtl+w2Wy4cOECAgICIElSlz620WhEXFwc8vPzubWDwvC1US6+NsrF10a5euNrI4RAdXU1YmJimu052ZJe13KjUqnQt2/fbn2OwMDAXvM/W0/D10a5+NooF18b5eptr017LTYOHFBMREREXoXhhoiIiLwKw00X0uv1WLp0KfR6vdyl0GX42igXXxvl4mujXHxt2tbrBhQTERGRd2PLDREREXkVhhsiIiLyKgw3RERE5FUYboiIiMirMNx0kZUrVyI+Ph4GgwHJycnYs2eP3CV5lb/85S+QJKnZbejQoc77GxoasHjxYvTp0wf+/v64/fbbUVRU1Owx8vLycNNNN8HX1xcRERH4wx/+gMbGxmbn7NixA+PGjYNer8egQYOwdu1aT/x6Pc7OnTsxZ84cxMTEQJIkbNq0qdn9QggsWbIE0dHR8PHxQWpqKk6cONHsnPLyctx9990IDAxEcHAwfv3rX6OmpqbZOT/99BOuueYaGAwGxMXF4YUXXriilo8++ghDhw6FwWDAqFGjsHnz5i7/fXuS9l6be++994p/SzfccEOzc/jadL1ly5bhqquuQkBAACIiInDrrbciJyen2TmefB/z+s8sQZ22YcMGodPpxJo1a8Thw4fF/fffL4KDg0VRUZHcpXmNpUuXihEjRoiCggLnraSkxHn/gw8+KOLi4kRGRobYt2+fmDRpkpg8ebLz/sbGRjFy5EiRmpoqDhw4IDZv3izCwsJEenq685zTp08LX19fkZaWJo4cOSLeeOMNoVarxZYtWzz6u/YEmzdvFn/+85/Fp59+KgCIzz77rNn9zz//vAgKChKbNm0SP/74o5g7d64YMGCAqK+vd55zww03iKSkJPH999+L//73v2LQoEHizjvvdN5fVVUlIiMjxd133y0OHTok1q9fL3x8fMT//d//Oc/ZvXu3UKvV4oUXXhBHjhwRTz31lNBqteLgwYPd/t9Aqdp7bRYsWCBuuOGGZv+WysvLm53D16brzZo1S/z9738Xhw4dEtnZ2eLGG28U/fr1EzU1Nc5zPPU+1hs+sxhuusDEiRPF4sWLnT9brVYRExMjli1bJmNV3mXp0qUiKSmpxfsqKyuFVqsVH330kfPY0aNHBQCRmZkphLC/4atUKlFYWOg85+233xaBgYHCZDIJIYT44x//KEaMGNHssefNmydmzZrVxb+Nd7n8A9Rms4moqCjx4osvOo9VVlYKvV4v1q9fL4QQ4siRIwKA2Lt3r/Ocf//730KSJHH+/HkhhBBvvfWWCAkJcb4+QgjxxBNPiMTEROfPd9xxh7jpppua1ZOcnCweeOCBLv0de6rWws0tt9zS6jV8bTyjuLhYABDffvutEMKz72O94TOL3VKdZDabkZWVhdTUVOcxlUqF1NRUZGZmyliZ9zlx4gRiYmKQkJCAu+++G3l5eQCArKwsWCyWZq/B0KFD0a9fP+drkJmZiVGjRiEyMtJ5zqxZs2A0GnH48GHnOZc+huMcvo7uyc3NRWFhYbP/lkFBQUhOTm72egQHB2PChAnOc1JTU6FSqfDDDz84z7n22muh0+mc58yaNQs5OTmoqKhwnsPXzH07duxAREQEEhMTsWjRIpSVlTnv42vjGVVVVQCA0NBQAJ57H+stn1kMN51UWloKq9Xa7H82AIiMjERhYaFMVXmf5ORkrF27Flu2bMHbb7+N3NxcXHPNNaiurkZhYSF0Oh2Cg4ObXXPpa1BYWNjia+S4r61zjEYj6uvru+k38z6O/55t/ZsoLCxEREREs/s1Gg1CQ0O75DXjv73W3XDDDVi3bh0yMjKwfPlyfPvtt5g9ezasVisAvjaeYLPZ8Oijj2LKlCkYOXIkAHjsfay3fGb1ul3BqWeaPXu28/vRo0cjOTkZ/fv3x4cffggfHx8ZKyPqWX75y186vx81ahRGjx6NgQMHYseOHZgxY4aMlfUeixcvxqFDh7Br1y65S/FabLnppLCwMKjV6itGtBcVFSEqKkqmqrxfcHAwhgwZgpMnTyIqKgpmsxmVlZXNzrn0NYiKimrxNXLc19Y5gYGBDFBucPz3bOvfRFRUFIqLi5vd39jYiPLy8i55zfhvz3UJCQkICwvDyZMnAfC16W4PPfQQvvzyS2zfvh19+/Z1HvfU+1hv+cxiuOkknU6H8ePHIyMjw3nMZrMhIyMDKSkpMlbm3WpqanDq1ClER0dj/Pjx0Gq1zV6DnJwc5OXlOV+DlJQUHDx4sNmb9rZt2xAYGIjhw4c7z7n0MRzn8HV0z4ABAxAVFdXsv6XRaMQPP/zQ7PWorKxEVlaW85xvvvkGNpsNycnJznN27twJi8XiPGfbtm1ITExESEiI8xy+Zp1z7tw5lJWVITo6GgBfm+4ihMBDDz2Ezz77DN988w0GDBjQ7H5PvY/1ms8suUc0e4MNGzYIvV4v1q5dK44cOSJ+85vfiODg4GYj2qlzHn/8cbFjxw6Rm5srdu/eLVJTU0VYWJgoLi4WQtinUPbr10988803Yt++fSIlJUWkpKQ4r3dMoZw5c6bIzs4WW7ZsEeHh4S1OofzDH/4gjh49KlauXMmp4K2orq4WBw4cEAcOHBAAxCuvvCIOHDggzp49K4SwTwUPDg4Wn3/+ufjpp5/ELbfc0uJU8LFjx4offvhB7Nq1SwwePLjZdOPKykoRGRkp7rnnHnHo0CGxYcMG4evre8V0Y41GI1566SVx9OhRsXTp0l493ViItl+b6upq8fvf/15kZmaK3Nxc8fXXX4tx48aJwYMHi4aGBudj8LXpeosWLRJBQUFix44dzabh19XVOc/x1PtYb/jMYrjpIm+88Ybo16+f0Ol0YuLEieL777+XuySvMm/ePBEdHS10Op2IjY0V8+bNEydPnnTeX19fL37729+KkJAQ4evrK2677TZRUFDQ7DHOnDkjZs+eLXx8fERYWJh4/PHHhcViaXbO9u3bxZgxY4ROpxMJCQni73//uyd+vR5n+/btAsAVtwULFggh7NPBn376aREZGSn0er2YMWOGyMnJafYYZWVl4s477xT+/v4iMDBQLFy4UFRXVzc758cffxRXX3210Ov1IjY2Vjz//PNX1PLhhx+KIUOGCJ1OJ0aMGCG++uqrbvu9e4K2Xpu6ujoxc+ZMER4eLrRarejfv7+4//77r/hQ42vT9Vp6TQA0e4/x5PuYt39mSUII4enWIiIiIqLuwjE3RERE5FUYboiIiMirMNwQERGRV2G4ISIiIq/CcENEREReheGGiIiIvArDDREREXkVhhsiIiLyKgw3RCS7e++9F7feeqvHn3ft2rWQJAmSJOHRRx916Zp7773Xec2mTZu6tT4i6hiN3AUQkXeTJKnN+5cuXYrXXnsNci2WHhgYiJycHPj5+bl0/muvvYbnn3/eudEkESkPww0RdauCggLn9xs3bsSSJUuQk5PjPObv7w9/f385SgNgD19RUVEunx8UFISgoKBurIiIOovdUkTUraKiopy3oKAgZ5hw3Pz9/a/olpo2bRoefvhhPProowgJCUFkZCRWr16N2tpaLFy4EAEBARg0aBD+/e9/N3uuQ4cOYfbs2fD390dkZCTuuecelJaWul3zW2+9hcGDB8NgMCAyMhI///nPO/ufgYg8iOGGiBTpvffeQ1hYGPbs2YOHH34YixYtwi9+8QtMnjwZ+/fvx8yZM3HPPfegrq4OAFBZWYnrrrsOY8eOxb59+7BlyxYUFRXhjjvucOt59+3bh9/97nd49tlnkZOTgy1btuDaa6/tjl+RiLoJu6WISJGSkpLw1FNPAQDS09Px/PPPIywsDPfffz8AYMmSJXj77bfx008/YdKkSXjzzTcxduxYPPfcc87HWLNmDeLi4nD8+HEMGTLEpefNy8uDn58fbr75ZgQEBKB///4YO3Zs1/+CRNRt2HJDRIo0evRo5/dqtRp9+vTBqFGjnMciIyMBAMXFxQCAH3/8Edu3b3eO4fH398fQoUMBAKdOnXL5ea+//nr0798fCQkJuOeee/DPf/7T2TpERD0Dww0RKZJWq232syRJzY45ZmHZbDYAQE1NDebMmYPs7OxmtxMnTrjVrRQQEID9+/dj/fr1iI6OxpIlS5CUlITKysrO/1JE5BHsliIirzBu3Dh88skniI+Ph0bTubc2jUaD1NRUpKamYunSpQgODsY333yDn/3sZ11ULRF1J7bcEJFXWLx4McrLy3HnnXdi7969OHXqFLZu3YqFCxfCarW6/DhffvklXn/9dWRnZ+Ps2bNYt24dbDYbEhMTu7F6IupKDDdE5BViYmKwe/duWK1WzJw5E6NGjcKjjz6K4OBgqFSuv9UFBwfj008/xXXXXYdhw4Zh1apVWL9+PUaMGNGN1RNRV5KEXMuCEhHJbO3atXj00Uc7NJ5GkiR89tlnsmwbQURtY8sNEfVqVVVV8Pf3xxNPPOHS+Q8++KCsKyoTUfvYckNEvVZ1dTWKiooA2LujwsLC2r2muLgYRqMRABAdHe3ynlRE5DkMN0RERORV2C1FREREXoXhhoiIiLwKww0RERF5FYYbIiIi8ioMN0RERORVGG6IiIjIqzDcEBERkVdhuCEiIiKv8v8BVUAX+HRM6a8AAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -180,7 +174,6 @@ " }\n", ")\n", "param_GrSi = pybamm.ParameterValues(\"OKane2022_graphite_SiOx_halfcell\")\n", - "param_GrSi.update({\"SEI reaction exchange current density [A.m-2]\": 1.5e-07})\n", "var_pts = {\"x_n\": 1, \"x_s\": 5, \"x_p\": 7, \"r_n\": 1, \"r_p\": 30}\n", "exp_degradation = pybamm.Experiment(\n", " [\"Charge at 0.3C until 1.5 V\", \"Discharge at 0.3C until 0.005 V\"]\n", @@ -217,14 +210,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEGCAYAAABy53LJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABI/UlEQVR4nO3deXwUVbbA8d/p7qSzkQAJIJtsIgoSdjdccAWXAZ8bqM/d4bkw6OioqDOK2zx9Mjqijo6KGzqjjujIOCrKCA4qLsDgAoJsUXaQJXu6k+7z/qhK6OwdSKcTcr4f6tNVt25VnS6Suqm6t+4VVcUYY4yJlifeARhjjGlZrOAwxhjTIFZwGGOMaRArOIwxxjSIFRzGGGMaxBfvAJpCVlaW9uzZM95hGGNMi7J48eKfVbVD1fRWUXD07NmTRYsWxTsMY4xpUUTkx5rS7VGVMcaYBrGCwxhjTINYwWGMMaZBWkUdR01KS0vZsGEDJSUl8Q7FNEBSUhLdunUjISEh3qEY02q12oJjw4YNtGnThp49eyIi8Q7HREFV2bFjBxs2bKBXr17xDseYVqvVPqoqKSkhMzPTCo0WRETIzMy0u0Rj4qzVFhyAFRotkP2fGRN/MS04RGSMiKwUkdUiMqWG9X4Rec1d/4WI9HTTM0VknogUiMjjVbZJFJGnReQHEVkhIufE8jsYY0xLVLRkCT8/9RThwsJG33fMCg4R8QJPAKcB/YELRKR/lWxXArtU9SDgEeBBN70E+B3wmxp2fQewTVUPdvf7cQzCbxIiwk033VSxPG3aNKZOndrox/n9739fafnoo49ulP3ef//9DBgwgOzsbAYPHswXX3wBwKhRo+jXrx+DBw9m8ODBnHvuuQBMnTqVadOmNcqxjTF1K5g3n+1P/AmJQUOSWN5xHA6sVtW1qhoEXgXGVckzDnjRnX8DOElERFULVfUTnAKkqiuA/wVQ1bCq/hyb8GPP7/fz5ptv8vPPsf0KVQuOzz77bJ/3uXDhQt555x2WLFnCN998w9y5c+nevXvF+ldeeYWlS5eydOlS3njjjX0+njGmYUpWrsDfpw+SmNjo+45lwdEVWB+xvMFNqzGPqpYBuUBmbTsUkbbu7L0iskRE/iYinRot4ibm8/mYOHEijzzySLV127dv55xzzmHEiBGMGDGCTz/9tCL9lFNOYcCAAVx11VX06NGjouA566yzGDZsGAMGDODpp58GYMqUKRQXFzN48GAuuugiANLS0gCYMGEC//znPyuOedlll/HGG28QCoW4+eabGTFiBNnZ2fz5z3+uFt/mzZvJysrC7/cDkJWVRZcuXRrx7Bhj9kVg5Q8k9Ts4Jvtuac1xfUA34DNVvVFEbgSmARdXzSgiE4GJAAceeGCdO737H8tYvimvUQPt3yWdu34xoN581113HdnZ2dxyyy2V0q+//np+/etfc8wxx/DTTz8xevRovv/+e+6++25OPPFEbrvtNt5//31mzJhRsc1zzz1H+/btKS4uZsSIEZxzzjk88MADPP744yxdurTascePH8/rr7/OGWecQTAY5F//+hdPPvkkM2bMICMjg6+++opAIMDIkSM59dRTKzWBPfXUU7nnnns4+OCDOfnkkxk/fjzHH398xfqLLrqI5ORkAE455RQeeuihhp5CY8xeKtu1i7KtW/Ef3C8m+49lwbER6B6x3M1NqynPBhHxARnAjjr2uQMoAt50l/+GU09Sjao+DTwNMHz48GY7sHp6ejqXXHIJ06dPr7jQAsydO5fly5dXLOfl5VFQUMAnn3zCW2+9BcCYMWNo165dRZ7p06dXrFu/fj2rVq0iM7PWGzhOO+00rr/+egKBAO+//z7HHXccycnJfPDBB3zzzTcVj5hyc3NZtWpVpYIjLS2NxYsXs2DBAubNm8f48eN54IEHuOyyywDnUdXw4cP3/QQZYxossPIHAPyHtLyC4yugr4j0wikgJgAXVskzG7gUWAicC3ykqrVe5FVVReQfwCjgI+AkYHlt+aMVzZ1BLN1www0MHTqUyy+/vCItHA7z+eefk5SUFNU+5s+fz9y5c1m4cCEpKSmMGjWq3vcdkpKSGDVqFHPmzOG1115jwoQJgPOi3WOPPcbo0aPr3N7r9TJq1ChGjRrFwIEDefHFFysKDmNM/ARWrgAgqV9sCo6Y1XG4dRaTgDnA98DrqrpMRO4RkbFuthlApoisBm4EKprsikgO8DBwmYhsiGiRdSswVUS+wXlEtadZUgvVvn17zj///EqPnU499VQee+yxiuXyR00jR47k9ddfB+CDDz5g165dgHNX0K5dO1JSUlixYgWff/55xbYJCQmUlpbWeOzx48fz/PPPs2DBAsaMGQPA6NGjefLJJyu2+eGHHyis0qRv5cqVrFq1qlJ8PXr02NtTYIxpRCUrf8CblYUvKysm+49pHYeqvgu8WyXtzoj5EuC8WrbtWUv6j8BxjRdl83DTTTfx+ON7XlmZPn16Rf1HWVkZxx13HE899RR33XUXF1xwATNnzuSoo47igAMOoE2bNowZM4annnqKQw89lH79+nHkkUdW7GvixIlkZ2czdOhQXnnllUrHPfXUU7n44osZN24ciW7ri6uuuoqcnByGDh2KqtKhQwf+/ve/V9quoKCAX/3qV+zevRufz8dBBx1UUSEPles4srKymDt3bmOfMmNMLQIrVpB0cGwqxgGkjidD+43hw4dr1YGcvv/+ew499NA4RbT3AoEAXq8Xn8/HwoULueaaa2qs+N6ftdT/O2OagoZCrBw6jHYXXkinW2+pf4M6iMhiVa1WWdnSWlW1ej/99BPnn38+4XCYxMREnnnmmXiHZIxpRkrXr0cDAfwHHRSzY1jB0cL07duX//znP/EOwxjTTAXWrAHA3zd2BUer7uTQGGP2N4HVTsGR2LtPzI5hBYcxxuxHAmtW4+vcGW9aasyOYQWHMcbsRwKrV+PvE7u7DbCCwxhj9hsaChFcszamFeNgBUdceb1eBg8ezGGHHcZ5551HUVFRg7bftGlTRZflS5cu5d1397wyM3v2bB544IF9jnHr1q2ceeaZDBo0iP79+3P66acDkJOTQ3JyckXX6YMHD+all14CoGfPnjHv8dcYU13ppk1ui6rY3nFYq6o4Sk5OrngH46KLLuKpp57ixhtvjHr7Ll26VPQntXTpUhYtWlRxYR87dixjx46ta/Oo3HnnnZxyyilcf/31AHzzzTcV6/r06dPq3iExpjkLrFoNQKI9qmodjj32WFavXs3OnTs566yzyM7O5sgjj6y4UH/88ccVf9kPGTKE/Px8cnJyOOywwwgGg9x555289tprDB48mNdee40XXniBSZMmkZubS48ePQiHwwAUFhbSvXt3SktLWbNmDWPGjGHYsGEce+yxrFixolpcmzdvplu3bhXL2dnZTXNCjDENFljjFByxflRldxwA702BLd827j4PGAinRfeoqKysjPfee48xY8Zw1113MWTIEP7+97/z0Ucfcckll7B06VKmTZvGE088wciRIykoKKjU+WFiYiL33HMPixYtqui25IUXXgAgIyODwYMH8/HHH3PCCSfwzjvvMHr0aBISEpg4cSJPPfUUffv25YsvvuDaa6/lo48+qhTbddddx/jx43n88cc5+eSTufzyyyvG3VizZg2DBw+uyPvYY49x7LHH7sNJM8bsi+DqNfg6dcLbpk1Mj2MFRxyVD7AEzh3HlVdeyRFHHMGsWbMAOPHEE9mxYwd5eXmMHDmSG2+8kYsuuoizzz670l1AfcaPH89rr73GCSecwKuvvsq1115LQUEBn332Geedt6ersEAgUG3b0aNHs3btWt5//33ee+89hgwZwnfffQfYoypjmpvAmjUxb1EFVnA4orwzaGyRdRz1mTJlCmeccQbvvvsuI0eOZM6cOVF3uT527Fhuv/12du7cyeLFiznxxBMpLCykbdu2UR2/ffv2XHjhhVx44YWceeaZ/Pvf/2bYsGFRHdsY0zQ0HCawZg3tzq+x39hGZXUczcyxxx5b0YPt/PnzycrKIj09nTVr1jBw4EBuvfVWRowYUa0+ok2bNuTn59e4z7S0NEaMGMH111/PmWeeidfrJT09nV69evG3v/0NcMbg+Prrr6tt+9FHH1W09srPz2fNmjX1jqhojGl6pZs2o8XFMa8YBys4mp2pU6eyePFisrOzmTJlCi+++CIAf/zjHznssMPIzs4mISGB0047rdJ2J5xwAsuXL6+oHK9q/PjxvPzyy4wfP74i7ZVXXmHGjBkMGjSIAQMG8Pbbb1fbbvHixQwfPpzs7GyOOuoorrrqKkaMGAHsqeMon6ZPn96Yp8IY0wDBJqoYB+tWPU4RmX1h/3fGVLdjxgy2PTSNg7/4HG9GRqPss7Zu1WN6xyEiY0RkpYisFpEpNaz3i8hr7vovRKSnm54pIvNEpEBEHq+2YyfPbBH5LpbxG2NMSxFYvQZfhw6NVmjUJWYFh4h4gSeA04D+wAURw7+WuxLYpaoHAY8AD7rpJcDvgN/Usu+zgYJYxG2MMS1RYM0aEmP8xni5WltVuWN612e7qp5Uy7rDgdWqutbd36vAOGB5RJ5xwFR3/g3gcRERVS0EPhGRag/rRCQNZ3zyicDrUcRojDH7NVUluHo1GWef3STHq6s5rhc4vY71AsyuY31XYH3E8gbgiNryqGqZiOQCmUBdHR3dC/wBqLNjJxGZiFO4WCsgY8x+rWzzZsJFRU1SMQ51Fxz/o6o/1rWxiFzbyPHUSUQGA31U9dfl9SG1UdWngafBqRyPfXTGGBMfFaP+NdGjqlrrOFT1k/o2rifPRqB7xHI3N63GPCLiAzKAHXXs8yhguIjkAJ8AB4vI/PriNMaY/VnFqH9N8A4HRFE5LiIjReRDEflBRNaKyDoRWRvFvr8C+opILxFJBCZQ/dHWbOBSd/5c4COto32wqj6pql1UtSdwDPCDqo6KIpZm6f7772fAgAFkZ2czePBgvvjiCwBGjRpFv379Kt6PKO86ferUqUybNi2eIUfNulY3pukEVq/Cm5mJr127JjleNF2OzAB+DSwGQtHu2K2zmATMwakveU5Vl4nIPcAiVZ3t7numiKwGduIULgC4dxXpQKKInAWcqqrL2U8sXLiQd955hyVLluD3+/n5558JBoMV61955RWGD6/WfDouysrK8Pmsdxpjmqvg6jVNVr8B0TXHzVXV91R1m6ruKJ+i2bmqvquqB6tqH1W930270y00UNUSVT1PVQ9S1cPLW2C563qqantVTVPVblULDVXNUdXDGvBdm5XNmzeTlZWF3+8HICsrq6LX2YbKycnhxBNPJDs7m5NOOomffvoJgMsuu4zJkydz9NFH07t374qxO6p66aWXyM7OZtCgQVx88cUV21599dUcccQR3HLLLXz55ZccddRRDBkyhKOPPpqVK1cCEAqF+M1vflPxVvtjjz1Wad/FxcWcdtppPPPMMxQWFnLGGWcwaNAgDjvssBrfcDfGNIyqNlnnhuXqao471J2dJyIPAW8CFd2nquqSGMfWZB788kFW7Kw+FsW+OKT9Idx6+K21rj/11FO55557OPjggzn55JMZP348xx9/fMX6iy66iOTkZABOOeUUHnrooVr39atf/YpLL72USy+9lOeee47Jkyfz97//HXAKqE8++YQVK1YwduzYisde5ZYtW8Z9993HZ599RlZWFjt37qxYt2HDBj777DO8Xi95eXksWLAAn8/H3Llzuf3225k1axZPP/00OTk5LF26FJ/PV2n7goICJkyYwCWXXMIll1zCrFmz6NKlC//85z8ByM3Njf6EGmNqVLZtG+GCgiZ7hwPqflT1hyrLkc9NFDix8cNpPdLS0li8eDELFixg3rx5jB8/ngceeIDLLrsMaNijqoULF/Lmm28CcPHFF3PLLbdUrDvrrLPweDz079+frVu3Vtv2o48+4rzzziMrKwtwesItd9555+H1egHnIn/ppZeyatUqRITS0lIA5s6dy9VXX13xKCty+3HjxnHLLbdw0UUXATBw4EBuuukmbr31Vs4880wbu8OYRlA+6l9TPqqqteBQ1ROaLIo4q+vOIJa8Xi+jRo1i1KhRDBw4kBdffLGi4Ggs5Y/CwLmlbYjU1NSK+d/97neccMIJvPXWW+Tk5DBq1Kh6tx85ciTvv/8+F154ISLCwQcfzJIlS3j33Xf57W9/y0knncSdd97ZoJiMMZU1ZeeG5faqy5GIx1hmL61cuZJVq1ZVLC9dupQePXrs1b6OPvpoXn31VcC5U2nIX/Innngif/vb39ixw6m2inzUFCk3N5euXbsCe0YXBOcx2p///GfKysqqbX/PPffQrl07rrvuOgA2bdpESkoK//3f/83NN9/MkiX7zdNOY+ImsHoN3nbt8EXc7cfa3vZVdU2jRtEKFRQUcOmll9K/f3+ys7NZvnw5U6dOrVh/0UUXVTTHPfnkk+vc12OPPcbzzz9PdnY2M2fO5NFHH406jgEDBnDHHXdw/PHHM2jQIG688cYa891yyy3cdtttDBkypKKQALjqqqs48MADKyrX//KXv1Ta7tFHH6W4uJhbbrmFb7/9lsMPP5zBgwdz991389vf/jbqOI0xNQusXt2kFeOwl92qi0iCqpbGIJ6YsG7V9y/2f2eMQ1X54YgjST/jdDrfdVej73+fu1UXx0kiMgOn3yljjDFxVLZ9O+G8PPx9mq5+A6J7c/xIEZkO/Ai8DfwbOCTWgRljjKlbsIn7qCpXa8EhIr8XkVXA/cA3wBCcbtRfVNVdTRWgMcaYmsWjKS7U/R7HVcAPwJPAP1Q1ICLWy6wxxjQTgTVr8GZk4M3MbNLj1vWoqjNwH/ALYI2IzASS3V5sjTHGxFlgzWoS+/RBRJr0uHV1qx5S1fdV9VKgD/B34FNgo4j8pbbtjDHGNI3guhz8fXo3+XGjalWlqgFVnaWq5wJ9gfdjG1brkJaWVi3tqaee4qWXXgKcF+02bdpUsa62rspnz57NAw88ELtAq8jJyeGww+ruXzInJ6fSOx2LFi1i8uTJsQ7NmFYjlJdHaMcOEnv2avJj19XJ4Zmq+k7VdFXNA16qK4/Ze1dffXXF/AsvvMBhhx1Wb6+5Y8eOZezYsbEOrUHKC44LL7wQgOHDhzebbuKN2R8Ec3IASOzVs8mPXdcdx0MiMkREhtY2Ab9vqkBbi/LBmt544w0WLVpU8QZ5cXEx4LwlPnToUAYOHMiKFU6Pvi+88AKTJk0CnO7QI7tPL7+rmT9/Pscffzzjxo2jd+/eTJkyhVdeeYXDDz+cgQMHssZt1lc1losvvpijjjqKvn378swzz1TLk5OTw7HHHsvQoUMZOnQon332GQBTpkxhwYIFDB48mEceeYT58+dz5plnVuz3iiuuYNSoUfTu3Zvp06dX7O/ee++lX79+HHPMMVxwwQUtZuAqY5pacN06ABJ79mzyY9dV0b0VeLie7VfVtVJExgCP4gzk9KyqPlBlvR/n7mUYzpCx41U1R0QygTeAEcALqjrJzZ8C/A2nziWE09prSj0x1mvL739P4PvG7Vbdf+ghHHD77Xu9/bnnnsvjjz/OtGnTKv2lnpWVxZIlS/jTn/7EtGnTePbZZ6Pe59dff833339P+/bt6d27N1dddRVffvkljz76KI899hh//OMfq23zzTff8Pnnn1NYWMiQIUM444wzKq3v2LEjH374IUlJSaxatYoLLriARYsW8cADDzBt2jTeece5IZ0/f36l7VasWMG8efPIz8+nX79+XHPNNSxdupRZs2bx9ddfU1paytChQxk2bFj0J82YViSQkwNeL4ndujX5sevqHXfUvuxYRLzAE8ApOG+afyUis6sMyHQlsEtVDxKRCcCDwHigBPgdcJg7RZqmqvPc4Wj/JSKnqep7+xJrS3L22WcDMGzYsIqu1KM1YsQIOnfuDECfPn049dRTAae783nz5tW4zbhx40hOTiY5OZkTTjiBL7/8ksGDB1esLy0tZdKkSSxduhSv18sPP/wQVSxnnHEGfr8fv99Px44d2bp1K59++injxo0jKSmJpKQkfvGLXzTo+xnTmgRzckjo1hVJTGzyY8eyae3hwOryUf1E5FVgHBBZcIwDprrzbwCPi4ioaiHwiYhUeqtFVYuAee58UESWAPtc3O7LnUFTK+8m3ev1VupssJzP5yMcDgMQDocrDUcb2cW6x+OpWPZ4PDXuC6jWzK/q8iOPPEKnTp34+uuvCYfDJCUlNeh71PVdjDG1C67LictjKtj73nGj0RVYH7G8wU2rMY+qlgG5QFRvsohIW5x3TP5Vy/qJIrJIRBZt3769YZE3E23atCE/P79B2/Ts2ZPFixcDTmur8gGX9tbbb79NSUkJO3bsYP78+YwYMaLS+tzcXDp37ozH42HmzJmEQqG9jn3kyJH84x//oKSkhIKCgorHXMaYyjQcJvjjj/jj0KIKYltwxIz7EuJfgemR45RHUtWnVXW4qg7v0KFD0wYYpaKiIrp161YxPfxw5Sql8nG/IyvH6/PLX/6Sjz/+mEGDBrFw4cJKgzHtjezsbE444QSOPPJIfve731Vr4XXttdfy4osvMmjQIFasWFFxvOzsbLxeL4MGDeKRRx6J6lgjRoxg7NixZGdnc9pppzFw4EAyMjL2KX5j9kdl27ahxcVxaVEFON3y1jUBi4HrgHb15a2y3VHAnIjl24DbquSZAxzlzvuAn3G7enfTLgMer2Hfz+EUGlHFMmzYMK1q+fLl1dJMZXfddZc+9NBDTXrM/Px8VVUtLCzUYcOG6eLFi6vlsf8709oVfPaZLu93iBYsXBjT4wCLtIZrajR3HOOBLjiV26+KyGiJ7v32r4C+ItLLrcieAMyukmc2cKk7fy7wkRtsrUTkPiADuCGKGEwLM3HiRAYPHszQoUM555xzGDrUBps0pqqKdzjiVMdRb+W4qq4G7hCR3wFn4vy1HxKR54FHVbXGsUZVtUxEJuHcVXiB51R1mYjcg1OKzQZmADNFZDWwE6dwAUBEcoB0IFFEzgJOBfKAO4AVwBK3/HpcVaNvk2qiFjkiYVOpOoKgMaa6YE4OkpyMr1OnuBw/qlZVIpINXA6cDswCXgGOAT4CBte2naq+C7xbJe3OiPkS4Lxatu1ZWzjRxBwNVW3yzsHMvqnnhtSYViGwbh2JPXvG7fpVb8EhIouB3Th3B1NUNeCu+kJERsYwtphKSkpix44dZGZmWuHRQqgqO3bsiLrJrzH7q2DOjyQN6B+349dZcIiIB5ilqjV2LaKqZ8ckqibQrVs3NmzYQEttqttaJSUl0S0Ob8oa01xoMEjphg1knHlG/ZljpM6CQ1XDInI2+2GfVAkJCfTqFZ820MYYs7eC69dDOBy3inGI7j2OuSLyGxHpLiLty6eYR2aMMaaaeLeogugqx8e7n9dFpCnQ9KOHGGNMK9ciCg5Vtec5xhjTTATWrcObmYk3PT1uMUTTqioBuAY4zk2aD/xZVfetEyRjjDENFsyJX+eG5aKp43gSZ7yMP7nTMDfNGGNMEwvm/Bi/Pqpc0dRxjFDVQRHLH4nI17EKyBhjTM1C+fmEfv4Zfwu44wiJSJ/yBRHpjTP6njHGmCbUHCrGIbo7jpuBeSKyFqe7jx7AFTGNyhhjTDUVBUec30GLpuD4BOgL9HOXV8YuHGOMMbUJrlsHHg8J3bvHNY5oHlUtVNWAqn7jTgFgYawDM8YYU1kwJ4eErl3xxGGc8Ui13nGIyAE4Q7smi8gQ9vRKmw6kNEFsxhhjIgRycuLeogrqflQ1GmcEvm5A5Jim+cDtMYzJGGNMFapKMOdHUoYNj3cotRccqvoi8KKInKOqs5owJmOMMVWUbduGFhU1izuOaOo43hGRC0XkdhG5s3yKZuciMkZEVorIahGZUsN6v4i85q7/QkR6uumZIjJPRApE5PEq2wwTkW/dbaZHOYytMca0aMF1OQBxf4cDois43gbGAWVAYcRUJxHxAk8ApwH9gQtEpOrII1cCu1T1IOAR4EE3vQT4HfCbGnb9JPBLnJZefYExUXwHY4xp0ZpLU1yIrjluN1Xdm4vz4cBqVV0LICKv4hRAyyPyjAOmuvNvAI+LiKhqIfCJiBwUuUMR6Qykq+rn7vJLwFnAe3sRnzHGtBjBdeuQpKS4jTMeKZo7js9EZOBe7LsrsD5ieYObVmMeVS0DcoHMeva5oZ59AiAiE0VkkYgsslH+jDEtXTAnh8QePRBPNJft2IomgmOAxW5dxTdu/cI3sQ5sX6nq06o6XFWHd+jQId7hGGPMPgnm5DSLx1QQ3aOq0/Zy3xuByNcbu7lpNeXZICI+IAPYUc8+IwecrmmfxhizX9HSUoIbNtDmtOZRpVvvHYeq/ohzcT/RnS+KZjvgK6CviPQSkURgAjC7Sp7ZwKXu/LnAR6qqdcSyGcgTkSPd1lSX4FTeG2PMfiu4YQOEQnHv3LBcNAM53QUMx+mr6nkgAXgZGFnXdqpaJiKTgDmAF3hOVZeJyD3AIlWdDcwAZorIamAnTuFSftwcnLfUE0XkLOBUVV0OXAu8ACTjVIpbxbgxZr/WnJriQnSPqv4LGAIsAVDVTSLSJpqdq+q7wLtV0u6MmC8Bzqtl2561pC8CDovm+MYYsz9oLt2pl4vmkVPQfXykACKSGtuQjDHGRArm5OBt1w5v27bxDgWIruB4XUT+DLQVkV8Cc4FnYhuWMcaYcs1hnPFI9T6qUtVpInIKkIdTz3Gnqn4Y88iMMcYAzst/qcccE+8wKkRTOX4j8JoVFsYY0/RCBYWUbd/ebN7hgOgeVbUBPhCRBSIySUTi/767Mca0EsEfcwBI7NkjvoFEiOY9jrtVdQBwHdAZ+FhE5sY8MmOMMc2uRRVEd8dRbhuwBefN7o6xCccYY0yk4LocECHxwAPjHUqFegsOEblWROYD/8LpgPCXqpod68CMMcZAcO0aErp1w5OUFO9QKkTzAmB34AZVXRrjWIwxxlQRWLMWf+/e8Q6jkmia494mIl4R6RKZX1V/imlkxhjTymko5DTFHVlnD09NLprmuJNwBlvaCoTdZAXscZUxxsRQ6caNaDCIv08Lu+MAbgD6qWpd3Z0bY4xpZIE1awBIbGaPqqJpVbUeZ2Q+Y4wxTSi4di0A/j594hxJZdHccawF5ovIP4FAeaKqPhyzqIwxxhBYsxZvhyy86enxDqWSaAqOn9wp0Z2MMcY0geCaNfh7N6+7DYiuVdXde7tzERkDPIozkNOzqvpAlfV+4CVgGM6LheNVNcdddxtwJRACJqvqHDf918BVOBX03wKXu+N6GGPMfkNVCaxZQ8bYX8Q7lGpqLThE5I+qeoOI/AN3LI5Iqjq2rh2LiBd4AjgF2AB8JSKz3VH8yl0J7FLVg0RkAvAgMF5E+uOMBjgA6ALMFZGDgQOAyUB/VS0WkdfdfC9E/Y2NMaYFKNu2nXBBAYkt7I5jpvs5bS/3fTiwWlXXAojIq8A4ILLgGIfT1BfgDeBxdyzxccCrqhoA1rlDyx6O88jMBySLSCmQAmzay/iMMabZCvzwAwD+vn3jHEl1tRYcqrrY/fx4L/fdFadFVrkNwBG15XHHKM/F6dakK/B5lW27qupCEZmGU4AUAx+o6gc1HVxEJgITAQ5sRn28GGNMNEpWfA9A0iH94hxJdQ3p5DDuRKQdzt1IL5xHWKki8t815VXVp1V1uKoO79ChQ1OGaYwx+yywYiUJXbrgzciIdyjVxLLg2IjTz1W5bm5ajXlExAdk4FSS17btycA6Vd2uqqXAm8DRMYneGGPiqGTFCvyHHhrvMGoUy4LjK6CviPQSkUScSuzZVfLMBi51588FPlJVddMniIhfRHoBfYEvcR5RHSkiKW5dyEnA9zH8DsYY0+TCJSUE160jqV/ze0wF0fVVNRy4A+jh5hdA6+ta3a2zmATMwWmO+5yqLhORe4BFqjobmAHMdCu/d+IULrj5XsepSC8DrlPVEPCFiLwBLHHT/wM8vRff2xhjmq3AqlUQDuM/9JB4h1KjaF4AfAW4GeediXA9eStR1XeBd6uk3RkxXwKcV8u29wP315B+F3BXQ+IwxpiWpOT78orxlltwbHfvDowxxjSBwIoVeNLSSOjaNd6h1CiaguMuEXkWZwTAyL6q3oxZVMYY04qVrFiJ/5B+iKd5NnyNpuC4HDgESKDyeBxWcBhjTCPT0lJKli+n7fk1PsVvFqIpOEaoavOs2jfGmP1MyQ8/oCUlpAweHO9QahXNfdBnbt9RxhhjYqz4668BSB40KM6R1C6aO44jgaUisg6njiOq5rjGGGMarvg/S/F2yMLXpUu8Q6lVNAXHmJhHYYwxBg2HKVy4kNQjjsB5x7l5iqbgqNalujHGmMYXWLmS0M8/kzpyZLxDqVM0Bcc/cQoPAZJwOhhciTNWhjHGmEZS+OmnAC2/4FDVgZHLIjIUuDZmERljTCtV8Mmn+A8+mIROHeMdSp0a/HaJqi6h+rgaxhhj9kG4qIjixYub/d0GRNfJ4Y0Rix5gKDbqnjHGNKrCL79ES0tJPWY/KDiANhHzZTh1HrNiE44xxrROBf/6F57UVFJGjIh3KPWKpo7j7qYIxBhjWisNhcif+y/SRo3Ck5gY73DqVWvBISJ/VNUbROQf1NAkV1XHxjQyY4xpJYoWLya0axdtTjkl3qFEpa47jpnu57S93bmIjAEexRnI6VlVfaDKej/wEjAMZ8jY8aqa4667DbgSCAGTVXWOm94WeBY4DKdAu0JVF+5tjMYYE2/5H85FEhNJO/aYeIcSlVoLDlVd7H5+vDc7FhEv8ARwCrAB+EpEZqvq8ohsVwK7VPUgEZkAPAiMd/vGmoDzrkgXYK6IHOyOAvgo8L6qnusOSZuyN/EZY0xzoOEw+R9+SOoxx+BJTY13OFGptzmuiIwUkQ9F5AcRWSsi60RkbRT7PhxYraprVTUIvAqMq5JnHPCiO/8GcJI7lvg44FVVDajqOmA1cLiIZADH4Qw5i6oGVXV3FLEYY0yzVLhgAWVbtpB+xunxDiVq0bSqmgH8GliM89goWl2B9RHLG6j+/kdFHneM8lwg003/vMq2XYFiYDvwvIgMcmO6XlULGxCXMcY0Gzv/8he8HbJIbyH1GxDdC4C5qvqeqm5T1R3lU8wjq5kP5z2SJ1V1CFAITKkpo4hMFJFFIrJo+/btTRmjMcZEJfjTTxT+ewHtzh+PtIDWVOVqLThEZKjbvcg8EXlIRI4qT3PT67MR6B6x3M1NqzGPiPiADJxK8tq23QBsUNUv3PQ3cAqSalT1aVUdrqrDO3ToEEW4xhjTtHb99VXweml7/vnxDqVB6npU9Ycqy8Mj5hU4sZ59fwX0FZFeOBf9CcCFVfLMBi4FFgLnAh+pqorIbOAvIvIwTuV4X+BLVQ2JyHoR6aeqK4GTgOUYY0wLEy4uZvesWbQ55eRm3zdVVXW1qjoBQER6q2qlynAR6V3fjt06i0nAHJzmuM+p6jIRuQdYpKqzcepPZorIamAnTuGCm+91nEKhDLjObVEF8CvgFbdF1VqcMdGNMaZFyZ39D8J5ebS/6KJ4h9Jgolr3cBsiskRVh1ZJW6yqw2IaWSMaPny4Llq0KN5hGGMMABoMsmbMaXjbt6fn315vtoM2udf64VXT63pz/BCc9ygyROTsiFXpOONyGGOM2Qu7Z82idNMmDrj77mZbaNSlrjqOfsCZQFvgFxHp+cAvYxiTMcbst8LFxfz85FMkDxvWInrCrUlddRxvA2+LyFHWpYcxxjSO7Y89Ttm2bXR9+A8t8m4D6n5UdYuq/h9woYhcUHW9qk6OaWTGGLOfKf72W3a+8AJtzz+flOHVqg5ajLoeVX3vflqtsjHG7KNwURGbbrsNX8eOdLz5N/EOZ5/U9ajqH+7ni7XlMcYYE50t991PcM1aDpzxLN42berfoBmr61FVjeNwlLPxOIwxJjq7Xn+d3DffJPOaq0k9+uh4h7PP6npUtdfjcBhjjHHk/uMfbLlrKqnHHEOH666LdziNoq5HVXs1DocxxhjHrr/+lS333kfK4YfT7bHpiC+aDsmbv/3jWxhjTDOioRDb/u//2PniS6QdfzxdH3kYT3JyvMNqNFZwGGNMIwqsXceWu++m6IsvaH/pJXS85RbE6413WI2qrsrxmap6sYhcr6qPNmVQxhjTkmgoROHnn5P71t/JmzMHT1ISne+/j7bnnBPv0GKirjuOYSLSBbhCRF4CKr3iqKo7YxqZMcY0c4F168j9+9vkvv02ZVu24ElPp93555N1zdX4srLiHV7M1FVwPAX8C+iNM0RrZMGhbroxxrQqofx88t57j9y3/k7xf/4DHg+pxx5Dpym3knbCCXj8/niHGHN1taqaDkwXkSdV9ZomjMkYY5oVVaV40SJ2vfY6+R9+iAYCJB7Uh44330z6L84koWPLGohpX9VbOa6q14jIIOBYN+nfqvpNbMMyxpj402CQvDlz2Pn8C5QsX44nI4O255xDxn/9F0mHDWixnRTuq3oLDhGZDEwE3nSTXhGRp1X1sSi2HQM8ijMC4LOq+kCV9X7gJWAYzljj41U1x113G3AlEAImq+qciO28OH1obVTVM+uLwxhjGiKUl8euV19j18svU7ZtG4m9e3PA3XeTMW4sniQbjiia5rhXAUeoaiGAiDyIM0Z4nQWHe3F/AjgF2AB8JSKzVTVyjPArgV2qepCITAAeBMaLSH+cYWQH4Iw5PldEDo4YPvZ6nE4Y06P8nsYYUy8NBtk582V+fvppwrm5pB59NJ3vu5fUY45BPJ54h9dsRFNwCM5f/eVCVGlhVYvDgdXl45WLyKvAOJxxxMuNA6a6828Aj4tz7zcOeFVVA8A6d0zyw4GFItINOAO4H7gxijiMMaZegbVr2XTzLZQsW0bqccfS8YYbSOrfP95hNUvRFBzPA1+IyFvu8lnAjCi26wqsj1jeABxRWx5VLRORXCDTTf+8yrZd3fk/ArcAdXYvKSITcR6xceCBB0YRrjGmtdo9axZb7r0Pj99P1+mPkn7qqfEOqVmr995LVR8GLgd2utPlqvrHGMdVIxE5E9imqovry6uqT6vqcFUd3qFDhyaIzhjT0mg4zLY//IHNd/yW5CGD6TV7thUaUYiqyxFVXQIsaeC+NwLdI5a7uWk15dkgIj4gA6eSvLZtxwJjReR0IAlIF5GXVfW/GxibMaaVCwcCbL7tNvLefY+248dzwO9+u990Qhhrsazt+QroKyK9RCQRp7J7dpU8s4FL3flzgY9UVd30CSLiF5FeQF/gS1W9TVW7qWpPd38fWaFhjGmoUH4+P11xJXnvvkfH39zEAVPvskKjAWJ2ptw6i0nAHJzmuM+p6jIRuQdYpKqzcepKZrqV3ztxCgPcfK/jVKSXAddFtKgyxpi9FsrPZ/1Vv6R42TK6PvwH0k8/Pd4htTji/IFfRwaRVKBYVcMicjBwCPCeqpY2RYCNYfjw4bpokQ2dbkxrp8EgP11xJUVLl9Ltj4/Q5uST4x1SsyYii1V1eNX0aB5V/RtIEpGuwAfAxcALjRueMcbE3pbf/56iRYvo8r//a4XGPoim4BBVLQLOBv6kqufhvJhnjDEtxq5XX2P3q6+R+curyPiFdTixL6IqOETkKOAi4J9u2v41KokxZr9WvHQpW+6/n9TjjqXDDTfEO5wWL5qC4wbgNuAtt9K6NzAvplEZY0wjCeXns/Gm35DQsSNdp03b70bji4doesf9GPgYQEQ8wM+qOjnWgRljzL5SVbbcdRelW7bQ4+WZeNOte7vGUO8dh4j8RUTS3dZV3wHLReTm2IdmjDH7JvfNt8h79z06TJ5MypAh8Q5nvxHNo6r+qpqH00fVe0AvnJZVxhjTbAXWrmPLffeRcuSRZF51ZbzD2a9EU3AkiEgCTsEx231/o+6XP4wxJo40FGLTlCl4/H66PPig1Ws0smgKjj8DOUAq8G8R6QHkxTIoY4zZFztnzqTkm2/o9NvfktCpdQ3r2hSiqRyfDkyPSPpRRE6IXUjGGLP3guvXs/3R6aQdfzzpZ1h3IrEQTeV4hog8LCKL3OkPOHcfxhjTrJS3ohKPx+m4sJWOCR5r0Tyqeg7IB853pzycwZ2MMaZZyX3zLQo/W0iHm24koXPneIez34qmd9w+qnpOxPLdIrI0RvEYY8xeKd22ja0PPkjy8GG0mzAh3uHs16K54ygWkWPKF0RkJFAcu5CMMabhtt53P1pSQud77kU8sRxqyERzx3E18JKIZLjLu9gz+JIxxsRd3gcfkP/BB3T49a/x9+4V73D2e9GMOf61qg4CsoFsVR0CnBjNzkVkjIisFJHVIjKlhvV+EXnNXf+FiPSMWHebm75SREa7ad1FZJ6ILBeRZSJyfbRf1Bizfwrl5rLl3nvxH3oomVdcHu9wWoWo7+dUNc99gxzgxvryi4gXeAI4DegPXCAi/atkuxLYpaoHAY8AD7rb9scZDXAAMAb4k7u/MuAmVe0PHAlcV8M+jTGtyNaHHiK0cxed77sXSUiIdzitwt4+CIymjdvhwGpVXauqQeBVYFyVPOOAF935N4CTxGk/Nw54VVUDqroOWA0crqqbVXUJgKrmA98DXffyOxhjWrjChQvJfWMWmVdcTvIAGyaoqextwRFNlyNdgfURyxuofpGvyKOqZUAukBnNtu5jrSHAFzUdXEQmlr97sn379ijCNca0JOGiIjbfeReJPXqQdd118Q6nVam1clxE8qm5gBAgOWYRRUFE0oBZwA0Rj88qUdWngafBGXO8CcMzxjSB7dMfo3T9enrMfAlPUlK8w2lVai04VLXNPu57I9A9Yrmbm1ZTng0i4gMygB11bet2uDgLeEVV39zHGI0xLVDRokXsfPFF2k4YT8qIEfEOp9WJpjnu3voK6CsivXAu+hOAC6vkmY3TtHchcC7wkaqqiMwG/iIiDwNdgL7Al279xwzge1V9OIaxNzvhwkICOTkEc3Io276d0M5dhAsLQRVQVBXx+vBlZeLr0IHE3r1JOvRQ+0vM7HdCBQVsuuVWErp3p9PNNjRQPMSs4FDVMhGZBMzBGaP8OXfo2XuARao6G6cQmCkiq4GdOIULbr7XgeU4LamuU9WQ+yLixcC3EW+v366q78bqezQlVaVs2zaC69YRWLuW4Np1BNeuJbBuHWWbN1fO7PXiSUtzWimIgAhaVkY4P39PHp+P5MGDaDNqFBlnn42vffum/DrGxMTW++53RvR75WU8qdZtXjyI6v7/+H/48OG6aNGieIdRTenWbRT/ZwlFS5ZQvPRrgqtXEy4qqljvSUkhsXdvEnv3wt+7N4m9epPYsycJnTriSU+v8e3YcEkJZdu3E/jhB4qXLqXw088oWb4cSUwk/RdnknX11SR2715tO2Nagrz33mPjr28k69pr6DDZRrCONRFZrKrDq6VbwdF0wsEgRV99ReG/F1CwYAHBtWsBkKQkkgcOxN+vX6VCwtexQ6P07hlYvZqdL79M7tuzIRwm838mknnVVXgSE/d538Y0lcDq1aw7fzxJBx9Mj5kv2TsbTcAKjjgVHKGCAgrmf0z+nDkUfPopWlSEJCSQMmIEqcccQ8rwYSQdemiT/BKUbt3K1gceIP+990ns3Ztuj/4Rf9++MT+uMfsqVFBAzrnnEcrPp9ebs0jo1CneIbUKVnA0YcGhpaXkf/ghue/8k8JPPkGDQXwdO5J20omkHXccqUccgSclpcniqapgwQI23XY74cJCuvzv/5I+ZnTcYjGmPhoOs2HyZArmzefA558j9fDD4x1Sq1FbwRHLVlWtTtmuXex+/W/s+stfKNu6Fd8BB9Duggm0GT2G5MGDmk2PnWnHHkuvN2excfL1bLzxRsIl99P2rLPiHZYxNdr2hz9QMPdfdJxyqxUazYQVHI0glJvLjmdnsPPll9HiYlKPPooD7p5K2nHHNZvCoqqEjh058LkZrL/2OjbfdjuUldH23HPjHZYxlez661/ZOeM52l4wgfaXWqfczYUVHPsob84HbLn7bkK7dpF++ulk/s9Ekg4+ON5hRcWTkkL3p55kw68ms/m3v0NVaXfeefEOyxgA8ufPZ8u995F2/PEccMcdNgxslELhED/l/8SqXatYn7+eKwde2ejHsIJjL2lpKVvuu5/dr71GUv/+HPjsMyT1b3kd9XqSkuj2xONsuG4SW+68C/El0Pa/zop3WKaVK162jI033kTSIYfQ9eE/ID67VFWlqvxc/DOrdq1i1e5V/LDrB1btWsXa3LUEQgEAPOLh3IPPJcOfUc/eGsb+N/ZCuKiIDb+aTOGnn5L5y6voMHlyi24a6ElMpNtj09lw7bVsvv12xOcj4xdnxjss00oFN2xgw9XX4M3IoNtTT7b6l/xC4RCbCjexLncda3evZV2e87k2dy15wT1d9WUlZ9G3bV/G9xtP33Z96duuL30y+pDka/zeI6zgaKBwMOgUGgsX0vm+e/ebegHnzuMJ1k/8HzbdeisaDNL2nLPjHZZpZUq3buOny68gHAzSY8azJHTsGO+QYk5VyQ3ksqlwE5sK3Mmd31iwkR/zfqy4gwBon9SeXhm9GN1zNH3a9qFvW6eQaJfUrslitoKjAVSVzVNuo/DTT+l8/320PeeceIfUqDzJyXR/6knWT5rE5jvuoGTZMjre/Bs8yXHtDNm0EmW7drH+qisJ7djBgS8832LqCmtTGiplR8kOfi7+udq0o3hP+o6SHRSXFVfaNsWXQpe0LnRN68pRnY+iV0YverftTe+M3o3+2GlvWMHRALtmvkzeu+/S4cYb97tCo5wnNZUDn3mGbQ9NY+eLL5I/bx4drp9MxumnI/amuYmR0i1bWD/xfwj++BPdn36a5OzseIdUiapSXFbMrsAudpfsZldgF7tK3Mmd3x3YXbG8s2QnuYHcGvfV1t+WrOQsMpMzGdRxEJlJmXRK6UTXtK50SetCl7QupCemN+vGAPYCYJSKv/2WnAsvIu244+j2+GPN+j+1sRQtWsSW3/+ewPLv8XbIIv2002gzahRJ2dl409LiHZ7ZTxR/t4wNkyYRzs+n22PTST366JgfsyxcRm4gt9YLf3mhsDuwp5CIfFwUySc+2ia1pa2/Le2T2tPW35Z2Se3okNyBrOSsiikzOZPMpEwSvDGqDw2HoGgnFG6Dgq1QsB2KfoYjr3U6Qt0L9ub4PhQcGgqx7rzzCO3YSe/Zb+PNiP+tYlPRcJjCTz9j11//WvEWPCIk9uyJ/6CDSOjShYQunfFkZOBNz8Cb3gZPm3Q8SX4kMRHxO5+exERISGgVBa6JjobD7Hr5FbY99BDerCy6/+kJkg49tEH7CGuYgtIC8gJ55AZzyQ3kkhfMc5bd+dxAbkWhsDuwm50lOytVKleVlpBGu6R2tPO3o11Suz0FQlLbGtPaJLSJzc91OAwlu6FoBxT+7HxGToU/u4XEduezcDtouPp+btsA/r0bXsneHN8HuW+9RWD593T5w7RWVWgAiMdD2rHHkHbsMYSLiihatIji776jZNlyAmvXUrBgAVpSEv3+/H7E78fjfladF38iHn8SnuQkpzBq2xZvRgbejLYV876OHRutA0gTG6FwiNJwKWXhMkrDpXumkJv2zXeEH52BZ/lqSo/IJv/Wy/kpdRNFa1ZTVFpEUVkRhaWFFJUVOctV0gqCBU4BEcwjXNPF0pXkTSI9Mb3ion9I+0Mq7ghqLBz8bfftjkAVSovdqRCChRDI3zMFC9z5AgjkVVnOh6A7X7IbinfVXBAAJKRAShakdYCMbtB1KKR1hNSOTlpapz3ziY3/dMDuOOoRKihkzejRJPboQY9XXraLVRWqSmj3bsJ5eYTy8gnl5RLOz0cDAcLBIBoIosEgGgygwSDhEvczUEKopJhQSQnhQAnhkhLCgYCTLxBEi4ohLx+Kims8btifQFmn9gQPaE+wU1tKOrWlqGM6hZ0zKOyQRqmEKAuX7Zm0jFA4hKKENUxYw5XmgT3pqoSJmNcwYZz58m3K0yudiyojLVddrmkg5vq2qfr7WW2fNeQpz1cer6I4/yqnlW9Xa3p9ed1zUF4oRBYSVc+NJ6xk5sHAHOXYZWEG/AS7U2DmiR4WHCa1PkpJ8aWQmpBKSkIKKb4UUhKc5VRfKun+dDL8GWQkZjjzEZ8Zfmfe7/VX3mE4DGXFECxyLuyl5fPuFHTTKpZryxcxX3U5Wr4k56LubwP+NPCn71lOSncKhpRMZ0rN3DOf3B4Sm6avO7vj2Eu5b71FaMcOOrbweo3SUClFZUUUlxXXOJWUlVT8RVjpL8RwKcFQsOZ1tSwHw25+Tyml/lLKEsooTS6tdCGv6QJYE2/IS1oJpBXjfjoXoE67y+i4exudcrbSaSm0D+7ZpswDW9rBxkxhS5aHrVkJbOuQwLYOPoLJCQiCRzyIuJ9U/qxYx5485evL0z3iAQGh8s9EtWWpe31N6tqmPIYqGWqOw00v36a2tFrT3ePUldcrHhI8iSSXhGi7tYj0ncWk7iomeVcRSTsLSdpZQOLOQhJ2FSJu4VPWsS15lw6n7OShXJySxBV4SBBIwEOq+Ej1+EgRH0kqeMKlUBZAS4vRsgDh0hK0tARKS9DiErQ0F8pK3CngTiVIWQBKCyktK0ZKi5yprBhPWfR3x+VC3iTCvmRC3mRCviRC3hRCvmTKvKmEErMoS06mzJtEyJtMmTeZUm8SZZ5kSj1+Sr2pBL0pBH2pBNz5gCeVgCeFkPhQhbAq4fLP8J55LVPCuRDe7aQ5BXUeYc0jFC4vuPds7yxHbO9+TjtvEAnexu36KKYFh4iMAR7FGQHwWVV9oMp6P/ASMAxnrPHxqprjrrsNuBIIAZNVdU40+2xMzjPYl0keNIiUIUNidRjnWKqUhEr2XMxLa77A13rxr5K/JFRSKa1My/Y6tgSPjwTxkeh+Jni8JIiXBPG4n14S8JAkHtogJCAkSAKJHj8+DyQg+CpN4ENIcD+dZfCpM58A+BR3XvGlq5MvrPhQfKpufiVBw3jDirewFHYG0R0Bwj8HyNgRpPeOIMHVpU6lIc4Fw5fqIbG9l8S2HvztPCS2FRLbgi9NERTULdIq/sIun9/zV3jEf9qe4i8ifU8ejfioOS8Rf8lXXldTHtwYqZwnIj5QxI1LcNPdVRKRp3yfEnEcidhfZN49RZLicdODBV4Kt/op2ppI0XY/ZcVeInl8YXwpIRKSQ/gywiR0DuFLDpGcFcSfsQkJLId/vkS0xJ0iL38lmkCABAIkEqiYdydNpAg/xbSnWDtTjJ8i/JSQSJH6KSKpYr4Yd9JEikiKmHfyK4110Q260+7ovrOARwSP4P4BU74sFeu8nrrXewRCYSXBW//xGiJmBYeIeIEngFOADcBXIjJbVZdHZLsS2KWqB4nIBOBBYLyI9McZRnYAzpjjc0WkvFF3fftsNIULFhD88Ue6TP4VUMvFvbSA4qAzFQXzKS4tdCb32WxxaZEzX1ZCUVkxxWUlFIdKKA4FnCkcpCRcSnE4GOXf4A4BkvCQjIckFZIQklVIUshSSFIlWZXksDupkBwOkRIKkawhUkJlznK4jJRQGSnhEImqJKAkqJKgkOBeoGNxnxVGUIQwXlQExUMYD2GEsHgqLStCCCfN+RTCbloZHgJuvhAewmniTD29hDSFcFjQAoW8MJIXxpMfwpsXwrcliKd0zxkPe4VgmwRnSvUR8nsp83sJ+b2EEj2EvR7UA+oR1ONB3ZOi4qn4DwmX706cmBHne1KRN+JyXH7XIFLl/z3yMh05T6X08nVaQ1r5snMI5zFQ+Z0Cle4mxC0g3HlRRD2Ix82n4CstI6EkREJRgKS8EpJ2F5G6eTf+AqcgLk1OpLBLOwJZbQi0TaU0PYVQm2TK/H4QLype1ONFxed+elGPz/kUH3ic9bjr8fic7bw+EB9hbyLqTSLk8aM+P+r1E/b5wZOI1+OpdIH0eKTKBbT8giq08UCG1L6+PE0E92IcefGt+eLs8dS9XtyYPALeascWxEO1Y3tE3LzV7zybk1jecRwOrFbVtQAi8iowDmcc8XLjgKnu/BvA4+KcrXHAq6oaANa5Y5KX96dc3z4bzce/v472aXDNplsoev5WSiTiFz4KnsiLt4ZJCTvLaRqmQ7h8XZhkVXdd2M2rbtqedd6wB58KCWEPPvXiUS8hvJSqlzJ8lOKjFC9l7rQnfU9aEB9l6qMQL7sr0t086qUUL6X4nO3dz8h9OenOuhBeQuIjJD7CEVOZeAlLgrPsSSBcfoEQD3i8zi+DePF4PZV+icr/cvJ4Kv8il6+L/IWOXF/bOm/ERaTGdUByUS5ttm2izbaNpG3bSNrWjaRu3UCbjduQcO0Vro1NpcrF3eNxn/kL7hXJWe8+HitfRrX6BNXStIa0Snc9DeDNzCT5iJGkHnUUqUcfRWKvXs36AmdiI5YFR1dgfcTyBuCI2vKoapmI5AKZbvrnVbbt6s7Xt08ARGQiMBHgwAMPbHDwGg6T3yGFH3uWcVg4lYSgl0R8JOIjQRNIFB8J+J1HMuLHJ4kkiN99PJNEIsl4vX7Ul+j8FeVJQD0+wh4f4klAPQngTUC9CYjXWRZPAnidvCXeBEq8PjzeBPD48Ho81S+s7ry3yrLPAwkilf56Kb94ej3OXzLeiL+KKi6sHiL2F7HsaVl/De0rDYcJ5+dTtnMnoV27CeXuRoOlbiV/EC0tBbeC3H247E5umuJUwpY/+qoxT8S2KBoOO9vVtq+KfBH78rj1LOWFjERObnq1dbiFUPV0iSyw3HRvejre9u1I6NiRxF69Wl2rQlOz/bZyXFWfBp4Gp1VVQ7cXj4cJL3/Z6HGZ5k88HrcJcAb0inc0xjQ/sRxlaCPQPWK5m5tWYx4R8QEZOJXktW0bzT6NMcbEUCwLjq+AviLSS0QScSq7Z1fJMxsoH9brXOAjdZqkzAYmiIhfRHoBfYEvo9ynMcaYGIrZoyq3zmISMAen6exzqrpMRO4BFqnqbGAGMNOt/N6JUxDg5nsdp9K7DLhOVUMANe0zVt/BGGNMdfbmuDHGmBrV9uZ4LB9VGWOM2Q9ZwWGMMaZBrOAwxhjTIFZwGGOMaZBWUTkuItuBH/dy8yzg50YMZ39h56U6Oyc1s/NSXUs5Jz1UtUPVxFZRcOwLEVlUU6uC1s7OS3V2Tmpm56W6ln5O7FGVMcaYBrGCwxhjTINYwVG/p+MdQDNl56U6Oyc1s/NSXYs+J1bHYYwxpkHsjsMYY0yDWMFhjDGmQazgqIWIjBGRlSKyWkSmxDuepiAiOSLyrYgsFZFFblp7EflQRFa5n+3cdBGR6e75+UZEhkbs51I3/yoRubS24zVXIvKciGwTke8i0hrtPIjIMPc8r3a3bfbDKdZyTqaKyEb352WpiJwese429/utFJHREek1/l65QyV84aa/5g6b0KyJSHcRmSciy0VkmYhc76bv/z8rqmpTlQmny/Y1QG8gEfga6B/vuJrge+cAWVXS/g+Y4s5PAR50508H3sMZjPRI4As3vT2w1v1s5863i/d3a+B5OA4YCnwXi/OAM7bMke427wGnxfs77+U5mQr8poa8/d3fGT/OGIpr3N+pWn+vgNeBCe78U8A18f7OUZyTzsBQd74N8IP73ff7nxW746jZ4cBqVV2rqkHgVWBcnGOKl3HAi+78i8BZEekvqeNzoK2IdAZGAx+q6k5V3QV8CIxp4pj3iar+G2d8mEiNch7cdemq+rk6V4aXIvbVbNVyTmozDnhVVQOqug5YjfM7VePvlftX9InAG+72kee32VLVzaq6xJ3PB74HutIKflas4KhZV2B9xPIGN21/p8AHIrJYRCa6aZ1UdbM7vwXo5M7Xdo7213PXWOehqztfNb2lmuQ+dnmu/JEMDT8nmcBuVS2rkt5iiEhPYAjwBa3gZ8UKDhPpGFUdCpwGXCcix0WudP/qafXtt+08VHgS6AMMBjYDf4hrNHEiImnALOAGVc2LXLe//qxYwVGzjUD3iOVubtp+TVU3up/bgLdwHi1sdW+ZcT+3udlrO0f767lrrPOw0Z2vmt7iqOpWVQ2pahh4BufnBRp+TnbgPLbxVUlv9kQkAafQeEVV33ST9/ufFSs4avYV0Ndt6ZGIMxb67DjHFFMikioibcrngVOB73C+d3krj0uBt9352cAlbkuRI4Fc9/Z8DnCqiLRzH12c6qa1dI1yHtx1eSJypPts/5KIfbUo5RdH13/h/LyAc04miIhfRHoBfXEqeWv8vXL/Kp8HnOtuH3l+my33/28G8L2qPhyxav//WYl37XxznXBaQPyA0wrkjnjH0wTftzdOK5evgWXl3xnn+fO/gFXAXKC9my7AE+75+RYYHrGvK3AqRFcDl8f7u+3FufgrzqOXUpznylc25nkAhuNcZNcAj+P24NCcp1rOyUz3O3+Dc1HsHJH/Dvf7rSSiJVBtv1fuz9+X7rn6G+CP93eO4pwcg/MY6htgqTud3hp+VqzLEWOMMQ1ij6qMMcY0iBUcxhhjGsQKDmOMMQ1iBYcxxpgGsYLDGGNMg1jBYYwxpkGs4DCmAUQkM6Ib8S0R3YoXiMifYnC8F0RknYhcXUeeY92uvb+rLY8xjcne4zBmL4nIVKBAVafF8BgvAO+o6hv15Ovp5jssVrEYU87uOIxpBCIySkTeceenisiLIrJARH4UkbNF5P/cAXned/s3Kh+k52O3N+I5VbrwqO0454nIdyLytYj8O9bfy5iaWMFhTGz0wRljYizwMjBPVQcCxcAZbuHxGHCuqg4DngPuj2K/dwKjVXWQu29jmpyv/izGmL3wnqqWisi3OCPfve+mfwv0BPoBhwEfuqOBenH6gqrPp8ALIvI68GZ9mY2JBSs4jImNAICqhkWkVPdUJoZxfu8EWKaqRzVkp6p6tYgcAZwBLBaRYaq6ozEDN6Y+9qjKmPhYCXQQkaPAGddBRAbUt5GI9FHVL1T1TmA7lcdxMKZJ2B2HMXGgqkEROReYLiIZOL+Lf8Tp0r4uD4lIX5w7ln/hdINvTJOy5rjGNGPWHNc0R/aoypjmLRe4t74XAIF/AD83WVSmVbM7DmOMMQ1idxzGGGMaxAoOY4wxDWIFhzHGmAaxgsMYY0yD/D9kjfd31YgVvwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAGwCAYAAABSN5pGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACGs0lEQVR4nOzdd3gU1frA8e/sZkt6gEAKBBIlEJpUCU2wRINiQf3RL00EC6AIFlAkeEWDBUWKol4F9cIF8SpyBfEizSsiUlWkIxBaEgIkIXU3u+f3R5I1SwJkQ8Juwvt5nnl298yZmXd2gXk558wZTSmlEEIIIYQQDjp3ByCEEEII4WkkQRJCCCGEuIAkSEIIIYQQF5AESQghhBDiApIgCSGEEEJcQBIkIYQQQogLSIIkhBBCCHEBL3cHUF3Z7XZOnjyJv78/mqa5OxwhhBBClINSivPnzxMeHo5Od/F2IkmQKujkyZNERES4OwwhhBBCVMCxY8do0KDBRddLglRB/v7+QOEXHBAQ4OZohBBCCFEemZmZREREOK7jFyMJUgUVd6sFBARIgiSEEEJUM5cbHiODtIUQQgghLiAJkhBCCCHEBSRBEkIIIYS4gIxBqmI2mw2r1eruMEQNZDAY0Ov17g5DCCFqJEmQqohSiuTkZNLT090diqjBgoKCCA0Nlbm4hBCikkmCVEWKk6N69erh4+MjFzBRqZRS5OTkkJqaCkBYWJibIxJCiJpFEqQqYLPZHMlRnTp13B2OqKG8vb0BSE1NpV69etLdJoQQlUgGaVeB4jFHPj4+bo5E1HTFf8ZknJsQQlQuSZCqkHSriaomf8aEEKJqSIIkhBBCCHEBSZCEEEIIIS4gCZKodiIjI5k5c6a7wxBCCFGDSYIkHIYNG4amaUyfPt2pfNmyZW4Z67JgwQKCgoJKlW/ZsoVRo0ZV6bEPHz7MwIEDCQ8Px2w206BBA+677z727t3rqKNpWpnL4sWLAVi/fj2apslcWEII4SLL8RNYk5NRSrktBkmQhBOz2cxrr73GuXPn3B3KRdWtW7dK7xC0Wq3cfvvtZGRk8OWXX7Jv3z6WLFlCq1atSiU78+fP59SpU05L7969qyw2IYS4FqTNnsXBm2/hzIf/cFsMbk+Q5s6dS2RkJGazmdjYWH755ZdL1l+6dCkxMTGYzWZatWrFypUrndZ/+eWX3HHHHdSpUwdN09i5c2eZ+9m0aRO33norvr6+BAQE0L17d3JzcyvrtJwopcixFLhlcTX7jouLIzQ0lMTExEvW+/HHH7npppvw9vYmIiKCJ554guzsbMf6U6dO0atXL7y9vYmKimLRokWlusbeeustWrVqha+vLxERETz++ONkZWUBha0vw4cPJyMjw9EyM3XqVMC5i23gwIH069fPKTar1UpwcDCffvopAHa7ncTERKKiovD29qZ169Z88cUXFz23P/74g0OHDvHuu+/SqVMnGjVqRNeuXZk2bRqdOnVyqls8k3XJxWw2X/K7E0IIcWn5fx4GwBjZyG0xuHWiyCVLljB+/HjmzZtHbGwsM2fOJD4+nn379lGvXr1S9X/66ScGDBhAYmIid999N4sWLaJ3795s376dli1bApCdnU23bt3o27cvI0eOLPO4mzZtomfPnkyaNInZs2fj5eXFr7/+ik5XNflirtVG8ynfVcm+L2f33+PxMZb/Z9br9bz66qsMHDiQJ554ggYNGpSqc+jQIXr27Mm0adP4+OOPOX36NGPGjGHMmDHMnz8fgCFDhpCWlsb69esxGAyMHz/eMetzMZ1Ox6xZs4iKiuLPP//k8ccf59lnn+Xdd9+lS5cuzJw5kylTprBv3z4A/Pz8SsUyaNAg+vTpQ1ZWlmP9d999R05ODvfffz8AiYmJ/POf/2TevHlER0fzww8/8Le//Y26devSo0ePUvusW7cuOp2OL774gnHjxskEjEIIcRUppbD8+ScApuuuc1scmnJjB19sbCw33ngjc+bMAQr/px8REcHYsWOZOHFiqfr9+vUjOzubb775xlHWqVMn2rRpw7x585zqHjlyhKioKHbs2EGbNm2c1nXq1Inbb7+dl19+ucKxZ2ZmEhgYSEZGBgEBAU7r8vLyOHz4MFFRUZjNZnIsBdUiQRo2bBjp6eksW7aMzp0707x5cz766COWLVvG/fff72iNevjhh9Hr9bz//vuObX/88Ud69OhBdnY2R44coVmzZmzZsoUOHToAcPDgQaKjo3n77bcZN25cmcf/4osvePTRR0lLSwMKxyCNGzeuVLdWZGQk48aNY9y4cRQUFBAWFsZbb73F4MGDgcJWJbvdzuLFi8nPz6d27dp8//33dO7c2bGPhx9+mJycHBYtWlRmLHPnzuXZZ59Fr9fToUMHbrnlFgYNGsR1Jf6yapqG2WwulUDt3r2bhg0bsn79em655RbOnTtX5liqynDhnzUhhKjurKmpHOzeA3Q6mu7cgc5orNT9X+r6XZLbWpAsFgvbtm1j0qRJjjKdTkdcXBybNm0qc5tNmzYxfvx4p7L4+HiWLVtW7uOmpqayefNmBg0aRJcuXTh06BAxMTG88sordOvW7aLb5efnk5+f7/icmZlZ7mN6G/Ts/nt8uetXJm9DxVo/XnvtNW699VaefvrpUut+/fVXfvvtNxYuXOgoU0pht9s5fPgw+/fvx8vLi3bt2jnWN27cmFq1ajnt5/vvvycxMZG9e/eSmZlJQUEBeXl55OTklHuMkZeXF3379mXhwoUMHjyY7Oxsvv76a8dA6YMHD5KTk8Ptt9/utJ3FYqFt27YX3e/o0aMZMmQI69ev5+eff2bp0qW8+uqrLF++3Glfb7/9NnFxcU7bhoeHlyt2IYQQpVmKutcMEQ0qPTlyhdsSpLS0NGw2GyEhIU7lISEhTncKlZScnFxm/eTk5HIf98+iZrupU6fy5ptv0qZNGz799FNuu+02du3aRXR0dJnbJSYm8tJLL5X7OCVpmuZSN5cn6N69O/Hx8UyaNIlhw4Y5rcvKyuKRRx7hiSeeKLVdw4YN2b9//2X3f+TIEe6++24ee+wxXnnlFWrXrs2PP/7IiBEjsFgsLg3CHjRoED169CA1NZXVq1fj7e1Nz549HbECrFixgvr16zttZzKZLrlff39/7rnnHu655x6mTZtGfHw806ZNc0qQQkNDady4cbljFUIIcWmWw0Xda1Hu616Da/BhtXa7HYBHHnmE4cOHA9C2bVvWrFnDxx9/fNHByZMmTXJqvcrMzCQiIqLqA3aj6dOn06ZNG5o2bepU3q5dO3bv3n3RxKBp06YUFBSwY8cO2rdvDxS25JS8M27btm3Y7XZmzJjhGPv1+eefO+3HaDRis9kuG2eXLl2IiIhgyZIlfPvtt/Tp0weDwQBA8+bNMZlMJCUllTneqLw0TSMmJoaffvqpwvsQQghxeY4B2m4cfwRuTJCCg4PR6/WkpKQ4laekpBAaGlrmNqGhoS7VL0tYWBhQeOEsqVmzZiQlJV10O5PJdNkWh5qmVatWDBo0iFmzZjmVP/fcc3Tq1IkxY8bw8MMP4+vry+7du1m9ejVz5swhJiaGuLg4Ro0axXvvvYfBYGDChAl4e3s75lNq3LgxVquV2bNnc88997Bx48ZS48giIyPJyspizZo1tG7dGh8fn4u2LA0cOJB58+axf/9+1q1b5yj39/fn6aef5qmnnsJut9OtWzcyMjLYuHEjAQEBDB06tNS+du7cSUJCAoMHD6Z58+YYjUY2bNjAxx9/zHPPPedUNz09vVQLpr+/P76+vuX/ooUQQjj8NUA7yq1xuO02f6PRSPv27VmzZo2jzG63s2bNGqfBtCV17tzZqT7A6tWrL1q/LJGRkYSHhzvujCq2f/9+GjVy3+2Enurvf/+7o9Wt2A033MCGDRvYv38/N910E23btmXKlClOY28+/fRTQkJC6N69O/fffz8jR47E39/fMZC4devWvPXWW7z22mu0bNmShQsXlmq969KlC48++ij9+vWjbt26vP766xeNc9CgQezevZv69evTtWtXp3Uvv/wyL774IomJiTRr1oyePXuyYsUKoqLK/svXoEEDIiMjeemll4iNjaVdu3a88847vPTSS7zwwgtOdYcPH05YWJjTMnv27Mt/sUIIIcqUX9TFZrzIv9FXjXKjxYsXK5PJpBYsWKB2796tRo0apYKCglRycrJSSqnBgweriRMnOupv3LhReXl5qTfffFPt2bNHJSQkKIPBoH7//XdHnTNnzqgdO3aoFStWKEAtXrxY7dixQ506dcpR5+2331YBAQFq6dKl6sCBA2ry5MnKbDargwcPljv2jIwMBaiMjIxS63Jzc9Xu3btVbm5uRb6WGunYsWMKUN9//727Q6lR5M+aEKImseXkqN1NY9TupjHKevZslRzjUtfvktw6Bqlfv36cPn2aKVOmkJycTJs2bVi1apVjIHZSUpLT3ERdunRh0aJFTJ48meeff57o6GiWLVvmmAMJYPny5Y6xRQD9+/cHICEhwTHR4Lhx48jLy+Opp57i7NmztG7dmtWrV3P99ddfhbO+Nqxdu5asrCxatWrFqVOnePbZZ4mMjKR79+7uDk0IIYSHshw5AoA+KAivC+58vtrcOg9SdebKPEjXou+++44JEybw559/4u/v75j4UboxK5f8WRNC1CQZK1ZwcsLTeLdrR+SihZffoAI8fh4kUbPFx8cTH++euZ+EEEJUTxbHHWxuHn+EBzyLTQghhBACSs6BJAmSEEIIIQQA+YePAGB08ySRIAmSEEIIITyAstuxHC7sYnP3HEggCZIQQgghPEDBqVOovDwwGDA0aODucCRBEkIIIYT7OR4x0qghmpf77yGTBElcFevXr0fTNNLT0y9ZLzIykpkzZ16VmIQQQngOTxqgDZIgiRKGDRuGpmlomobRaKRx48b8/e9/p6Cg4Ir33aVLF06dOkVgYCAACxYsICgoqFS9LVu2MGrUqCs+3qUcPnyYgQMHEh4ejtlspkGDBtx3333s3bvXUaf4e7hwWbx4MVD+hE8IIUT55BeNP/KEAdog8yCJC/Ts2ZP58+eTn5/PypUrGT16NAaDgUmTJl3Rfo1GY7keKly3bt0rOs7lWK1Wbr/9dpo2bcqXX35JWFgYx48f59tvvy2V7MyfP5+ePXs6lZWV1AkhhLhynjQHEkgLkriAyWQiNDSURo0a8dhjjxEXF8fy5csBOHfuHEOGDKFWrVr4+Phw5513cuDAAce2R48e5Z577qFWrVr4+vrSokULVq5cCTi3uKxfv57hw4eTkZHhaJkpfgxMyS62gQMH0q9fP6f4rFYrwcHBfPrpp0DhA44TExOJiorC29ub1q1b88UXX1z0/P744w8OHTrEu+++S6dOnWjUqBFdu3Zl2rRpdOrUyaluUFAQoaGhTovMVi2EEFXD8mdRF9t10oJ07VAKrDnuObbBBzStwpt7e3tz5swZoLAL7sCBAyxfvpyAgACee+457rrrLnbv3o3BYGD06NFYLBZ++OEHfH192b17N35+fqX2WfzYkSlTprBv3z6AMusNGjSIPn36kJWV5Vj/3XffkZOTw/333w9AYmIi//znP5k3bx7R0dH88MMP/O1vf6Nu3br06NGj1D7r1q2LTqfjiy++YNy4cej1+gp/N0IIISqH7fx5Ck6fBsDoIWOQJEG6Gqw58Gq4e479/Ekw+rq8mVKKNWvW8N133zF27FhHYrRx40a6dOkCwMKFC4mIiGDZsmX06dOHpKQkHnzwQVq1agXAdRf5X4DRaCQwMBBN0y7Z7RYfH4+vry9fffUVgwcPBmDRokXce++9+Pv7k5+fz6uvvsr3339P586dHcf88ccfef/998tMkOrXr8+sWbN49tlneemll+jQoQO33HILgwYNKhXvgAEDSiVQu3fvpmHDhuX8FoUQQpSH5chRAPTBwej9/d0cTSHpYhNOvvnmG/z8/DCbzdx5553069ePqVOnsmfPHry8vIiNjXXUrVOnDk2bNmXPnj0APPHEE0ybNo2uXbuSkJDAb7/9dkWxeHl50bdvXxYuLHxgYXZ2Nl9//TWDBg0C4ODBg+Tk5HD77bfj5+fnWD799FMOHTp00f2OHj2a5ORkFi5cSOfOnVm6dCktWrRg9erVTvXefvttdu7c6bSEh7sp0RVCiBrMklSYIBk96IHm0oJ0NRh8Clty3HVsF9xyyy289957GI1GwsPD8XJhLoqHH36Y+Ph4VqxYwX//+18SExOZMWMGY8eOdTVqh0GDBtGjRw9SU1NZvXo13t7ejoHTWVlZAKxYsYL69es7bWcymS65X39/f+655x7uuecepk2bRnx8PNOmTeP222931AkNDaVx48YVjl0IIUT5WI4WJUge1EIvCdLVoGkV6uZyB19f3zKTgmbNmlFQUMDmzZsdXWxnzpxh3759NG/e3FEvIiKCRx99lEcffZRJkybx4YcflpkgGY1GbDbbZePp0qULERERLFmyhG+//ZY+ffpgMBgAaN68OSaTiaSkpDK708pL0zRiYmL46aefKrwPIYQQFWc9Ki1IopqKjo7mvvvuY+TIkbz//vv4+/szceJE6tevz3333QfAuHHjuPPOO2nSpAnnzp1j3bp1NGvWrMz9RUZGkpWVxZo1a2jdujU+Pj74+JTd2jVw4EDmzZvH/v37WbdunaPc39+fp59+mqeeegq73U63bt3IyMhg48aNBAQEMHTo0FL72rlzJwkJCQwePJjmzZtjNBrZsGEDH3/8Mc8995xT3fT0dJKTk53K/P398fWtHsmuEEJUF5ajSQAYIz0nQZIxSKLc5s+fT/v27bn77rvp3LkzSilWrlzpaNGx2WyMHj2aZs2a0bNnT5o0acK7775b5r66dOnCo48+Sr9+/ahbty6vv/76RY87aNAgdu/eTf369enatavTupdffpkXX3yRxMREx3FXrFhB1EXugmjQoAGRkZG89NJLxMbG0q5dO9555x1eeuklXnjhBae6w4cPJywszGmZPXu2K1+ZEEKIcvDELjZNKaXcHUR1lJmZSWBgIBkZGQQEBDity8vL4/Dhw0RFRcm8OaJKyZ81IUR1Z8vMZH/HwhuAmmzdit6valvpL3X9LklakIQQQgjhNsXda/rg4CpPjlwhCZIQQggh3MYTb/EHSZCEEEII4UaeOP4IJEESQgghhBt54i3+IAmSEEIIIdzIE2/xB0mQhBBCCOFG0sUmhBBCCFGCLTMT27lzABgaSguSEEIIIYTH3uIPkiAJIYQQwk089RZ/kARJiCsybNgwevfu7e4whBCiWrJ46B1sIAmSKOH06dM89thjNGzYEJPJRGhoKPHx8WzcuNFRJzIyEk3TSi3Tp08H4MiRI2iaxs6dO910FkIIIaoLq4cO0AbwcncAwnM8+OCDWCwWPvnkE6677jpSUlJYs2YNZ86ccar397//nZEjRzqV+fv7X81Qr5jFYsFoNLo7DCGEuKZ56i3+IC1Iokh6ejr/+9//eO2117jlllto1KgRHTt2ZNKkSdx7771Odf39/QkNDXVafH3LP7ju3LlzDBkyhFq1auHj48Odd97JgQMHHOsXLFhAUFAQ3333Hc2aNcPPz4+ePXty6tSpS+73jz/+4O677yYgIAB/f39uuukmDh06BPzVFfbKK68QHh5O06ZNAfjss8/o0KGD45wGDhxIampqufd7oS1btlC3bl1ee+01AH799VduueUW/P39CQgIoH379mzdurXc35UQQtRknnqLP3hIgjR37lwiIyMxm83Exsbyyy+/XLL+0qVLiYmJwWw206pVK1auXOm0/ssvv+SOO+6gTp06l+3uUUpx5513omkay5Ytq4SzKfsYOdYctyxKqXLF6Ofnh5+fH8uWLSM/P79Kvodiw4YNY+vWrSxfvpxNmzahlOKuu+7CarU66uTk5PDmm2/y2Wef8cMPP5CUlMTTTz990X2eOHGC7t27YzKZWLt2Ldu2beOhhx6ioKDAUWfNmjXs27eP1atX88033wBgtVp5+eWX+fXXX1m2bBlHjhxh2LBhLu232Nq1a7n99tt55ZVXeO655wAYNGgQDRo0YMuWLWzbto2JEydiMBiu9CsUQohqz5Nv8QcP6GJbsmQJ48ePZ968ecTGxjJz5kzi4+PZt28f9erVK1X/p59+YsCAASQmJnL33XezaNEievfuzfbt22nZsiUA2dnZdOvWjb59+5bqCrrQzJkz0TStSs6tWG5BLrGLYqv0GBezeeBmfAw+l63n5eXFggULGDlyJPPmzaNdu3b06NGD/v37c8MNNzjVfe6555g8ebJT2bfffstNN9102eMcOHCA5cuXs3HjRrp06QLAwoULiYiIYNmyZfTp0wcoTFzmzZvH9ddfD8CYMWP4+9//ftH9zp07l8DAQBYvXuxIQJo0aeJUx9fXl3/84x9OXWsPPfSQ4/11113HrFmzuPHGG8nKysLPz69c+wX46quvGDJkCP/4xz/o16+fozwpKYlnnnmGmJgYAKKjoy/7HQkhxLXAk2/xBw9oQXrrrbcYOXIkw4cPp3nz5sybNw8fHx8+/vjjMuu/88479OzZk2eeeYZmzZrx8ssv065dO+bMmeOoM3jwYKZMmUJcXNwlj71z505mzJhx0WOVlJ+fT2ZmptNS0zz44IOcPHmS5cuX07NnT9avX0+7du1YsGCBU71nnnmGnTt3Oi0dOnQo1zH27NmDl5cXsbF/JYx16tShadOm7Nmzx1Hm4+PjSI4AwsLCSnV9lbRz505uuummS7bOtGrVqtS4o23btnHPPffQsGFD/P396dGjB1CY2JR3v5s3b6ZPnz589tlnTskRwPjx43n44YeJi4tj+vTpF+2aE0KIa40n3+IPbm5BslgsbNu2jUmTJjnKdDodcXFxbNq0qcxtNm3axPjx453K4uPjXe4ey8nJYeDAgcydO5fQ0NDL1k9MTOSll15y6RjFvL282Txwc4W2vVLeXt4u1Tebzdx+++3cfvvtvPjiizz88MMkJCQ4dTsFBwfTuHHjSo7U2YUJiaZpl+wu9Pa+/HleOE4qOzub+Ph44uPjWbhwIXXr1iUpKYn4+HgsFku593v99ddTp04dPv74Y3r16uUU+9SpUxk4cCArVqzg22+/JSEhgcWLF3P//fdfdr9CCFGTefIt/uDmFqS0tDRsNhshISFO5SEhISQnJ5e5TXJyskv1L+app56iS5cu3HfffeWqP2nSJDIyMhzLsWPHyn0sTdPwMfi4ZbnS7sPmzZuTnZ19RfsoqVmzZhQUFLB5818J45kzZ9i3bx/Nmzev8H5vuOEG/ve//zmNY7qcvXv3cubMGaZPn85NN91ETExMqVaq8uw3ODiYtWvXcvDgQfr27VuqbpMmTXjqqaf473//ywMPPMD8+fNdOzkhhKiBPPkWf/CALjZ3WL58OWvXrmXmzJnl3sZkMhEQEOC01CRnzpzh1ltv5Z///Ce//fYbhw8fZunSpbz++uulksjz58+TnJzstJS3yzE6Opr77ruPkSNH8uOPP/Lrr7/yt7/9jfr165c7WS3LmDFjyMzMpH///mzdupUDBw7w2WefsW/fvotu07BhQ4xGI7Nnz+bPP/9k+fLlvPzyyxXab7169Vi7di179+5lwIABFBQUkJuby5gxY1i/fj1Hjx5l48aNbNmyhWbNmlX4PIUQoqbw5Fv8wc0JUnBwMHq9npSUFKfylJSUi3Z7hYaGulS/LGvXruXQoUMEBQXh5eWFl1dhT+ODDz7IzTff7NpJ1BB+fn7Exsby9ttv0717d1q2bMmLL77IyJEjncZ3AUyZMoWwsDCn5dlnny33sebPn0/79u25++676dy5M0opVq5ceUV3d9WpU4e1a9eSlZVFjx49aN++PR9++OEl91m3bl0WLFjA0qVLad68OdOnT+fNN9+s8H5DQ0NZu3Ytv//+O4MGDUKn03HmzBmGDBlCkyZN6Nu3L3feeWeFu2qFEKIm8eRb/AE0Vd77wKtIbGwsHTt2ZPbs2QDY7XYaNmzImDFjmDhxYqn6/fr1Iycnh//85z+Osi5dunDDDTcwb948p7pHjhwhKiqKHTt20KZNG0d5cnIyaWlpTnVbtWrFO++8wz333ENUVNRl487MzCQwMJCMjIxSrUl5eXkcPnyYqKgozGbzZfclREXJnzUhRHVky8xkf8fCm3WabN16Ve9iu9T1uyS33+Y/fvx4hg4dSocOHejYsSMzZ84kOzub4cOHAzBkyBDq169PYmIiAE8++SQ9evRgxowZ9OrVi8WLF7N161Y++OADxz7Pnj1LUlISJ0+eBHB0h1w4ueGFGjZsWK7kSAghhBAV57jFv65n3uIPHpAg9evXj9OnTzNlyhSSk5Np06YNq1atcgzETkpKQqf7qyewS5cuLFq0iMmTJ/P8888THR3NsmXLHHMgQeEYo+IEC6B///4AJCQkMHXq1KtzYkIIIYQok+MWfw+cILKY27vYqivpYhOeQP6sCSGqo9PvvkvarNkEPvAA4a++clWPXd4utmvyLjYhhBBCuI+n3+IPkiAJIYQQ4irz9Fv8QRIkIYQQQlxlnn6LP0iCJIQQQoiryJaZie3cOQAMHjxIWxIkIYQQQlw11eEWf5AESQghhBBXUXW4xR8kQRIu0DSNZcuWXbLOsGHD6N279yXrREZGuvQcvKtp6tSpTrOuu3s/QghR0zjGHzWSBElUE5dLbk6dOsWdd94JFD7GRdM0du7c6fJxtmzZwqhRoyoYpecpK3F8+umnWbNmjXsCEkIID1YdbvEHD5hJW1QfrjwQ+FLq1q1bKfvxZH5+fvj5+bk7DCGE8DjV4RZ/kBYk4YKSLSXFz6xr27YtmqZx8803O9V98803CQsLo06dOowePRqr1epYV7KLrayWqPT0dDRNY/369QCsX78eTdP47rvvaNu2Ld7e3tx6662kpqby7bff0qxZMwICAhg4cCA5OTkXjX/BggUEBQWxbNkyoqOjMZvNxMfHc+zYsYtus2XLFm6//XaCg4MJDAykR48ebN++3elcAO6//340TXN8vrCLrbh17lLfy6lTp+jVqxfe3t5ERUWxaNEij+6OFEKIiqguXWzSgnQVKKVQubluObbm7Y2maZW+319++YWOHTvy/fff06JFC4xGo2PdunXrCAsLY926dRw8eJB+/frRpk0bRo4ceUXHnDp1KnPmzMHHx4e+ffvSt29fTCYTixYtIisri/vvv5/Zs2fz3HPPXXQfOTk5vPLKK3z66acYjUYef/xx+vfvz8aNG8usf/78eYYOHcrs2bNRSjFjxgzuuusuDhw4gL+/P1u2bKFevXrMnz+fnj17otfrL3rsy30vQ4YMIS0tjfXr12MwGBg/fjypqalX9J0JIYQncbrFP0K62K55KjeXfe3au+XYTbdvQ/PxqfT9FneT1alTp1TXW61atZgzZw56vZ6YmBh69erFmjVrrjhBmjZtGl27dgVgxIgRTJo0iUOHDnHdddcB8H//93+sW7fukgmS1Wplzpw5xMbGAvDJJ5/QrFkzR8J3oVtvvdXp8wcffEBQUBAbNmzg7rvvdnwPQUFBl+2CvNT3snfvXr7//nu2bNlChw4dAPjHP/5BdHR0Ob8dIYTwfNXlFn+QLjZRBVq0aOHUkhIWFlYpLSE33HCD431ISAg+Pj6O5Ki47HLH8fLy4sYbb3R8jomJISgoiD179pRZPyUlhZEjRxIdHU1gYCABAQFkZWWRlJTkcvyX+l727duHl5cX7dq1c6xv3LgxtWrVcvk4QgjhqarLLf5QzhakBx54wOUdz5s3j3r16rm8XU2keXvTdPs2tx37ajMYDM4xaBp2u73MujpdYY6ulHKUlRyXc7H9aprm0nEqaujQoZw5c4Z33nmHRo0aYTKZ6Ny5MxaLxeV9XY14hRDCk1WX8UdQzgRp2bJl9O3bF+9yXmyLx4RIglRI07Qq6eZyp+IxRzab7Yr2U9xFderUKdq2bQtQoakDyqugoICtW7c6utP27dtHeno6zZo1K7P+xo0beffdd7nrrrsAOHbsGGlpaU51DAbDFX8PTZs2paCggB07dtC+fWF37MGDBzlX1FcvhBA1QXW5xR9cGIM0a9ascic8X3zxRYUDEu6VkZFRKkGpU6cOERERTmX16tXD29ubVatW0aBBA8xmM4GBgS4fz9vbm06dOjF9+nSioqJITU1l8uTJV3IKl2QwGBg7diyzZs3Cy8uLMWPG0KlTpzLHHwFER0fz2Wef0aFDBzIzM3nmmWdK/UchMjKSNWvW0LVrV0wmU4W6xWJiYoiLi2PUqFG89957GAwGJkyYgHcVDbIXQgh3qC63+EM5xyCtW7eO2rVrl3un3377LfXr169wUMJ91q9fT9u2bZ2Wl156qVQ9Ly8vZs2axfvvv094eDj33XdfhY/58ccfU1BQQPv27Rk3bhzTpk27klO4JB8fH5577jkGDhxI165d8fPzY8mSJRet/9FHH3Hu3DnatWvH4MGDeeKJJ0r9R2HGjBmsXr2aiIgIRytYRXz66aeEhITQvXt37r//fkaOHIm/vz9ms7nC+xRCCE9SnbrYNFVy8Icot8zMTAIDA8nIyCAgIMBpXV5eHocPHyYqKkoubh5kwYIFjBs3jvT0dHeHUi7Hjx8nIiKC77//nttuu63MOvJnTQhRXdgyM9nfsfAO4iZbt7rtLrZLXb9LqtBt/na7nYMHD5KamlpqkGn37t0rskshrnlr164lKyuLVq1acerUKZ599lkiIyPl75QQokaoTrf4QwUSpJ9//pmBAwdy9OhRLmx80jTtigerCnGtslqtPP/88/z555/4+/vTpUsXFi5cWOruNyGEqI6q0y3+UIEE6dFHH6VDhw6sWLGCsLAwGUAqqo1hw4YxbNgwd4dxUfHx8cTHx7s7DCGEqBLVafwRVCBBOnDgAF988QWNGzeuiniEEEIIUQNZkwqfe2lsGHGZmp7B5Zm0Y2NjOXjwYFXEUuPI+HdR1eTPmBCiurAcL0yQDBHVI0EqVwvSb7/95ng/duxYJkyYQHJyMq1atSo1PqLk4yCuVcXfSU5OTrkn1xSiInJycoDSs3QLIYSnsR47DoCxJiVIbdq0QdM0p/+tPvTQQ473xetkkHYhvV5PUFCQ4zlbPj4+MlZLVCqlFDk5OaSmphIUFOT0jDchhPA09vx8ClJSgBrWgnT48OGqjqPGKX6ye2U8pFWIiwkKCnL8WRNCCE9lPXECAJ2vL/qgIPcGU07lSpAaVZMR555E0zTCwsKoV6/eRR++KsSVMBgM0nIkhKgWrMf+Gn9UXXpUKjRRZFlOnTqF1WqlYTV4AN3VpNfr5SImhBDimmYpvoOtmnSvQQXuYruYW2+9laioqMranRBCCCFqCGs1u4MNKrEF6dNPP3XcUSOEEEIIUcziuIOtgZsjKb9Ka0G68cYbqVOnToW2nTt3LpGRkZjNZmJjY/nll18uWX/p0qXExMRgNptp1aoVK1eudFr/5Zdfcscdd1CnTh00TWPnzp1O68+ePcvYsWNp2rQp3t7eNGzYkCeeeIKMjIwKxS+EEEKIi3OMQWpQfVqQrjhBOn/+PB988AEdO3akdevWLm+/ZMkSxo8fT0JCAtu3b6d169bEx8df9O6vn376iQEDBjBixAh27NhB79696d27N7t27XLUyc7Oplu3brz22mtl7uPkyZOcPHmSN998k127drFgwQJWrVrFiBEjXI5fCCGEEBenlMJyvPq1IGmqglPx/vDDD3z00Uf8+9//Jjw8nAceeIAHH3yQG2+80aX9xMbGcuONNzJnzhwA7HY7ERERjB07lokTJ5aq369fP7Kzs/nmm28cZZ06daJNmzbMmzfPqe6RI0eIiopix44dtGnT5pJxLF26lL/97W9kZ2fj5XX5nsfMzEwCAwPJyMggICCgHGcqhBBCXHsK0tI40O0m0DRift2JZjS6NZ7yXr9dGoOUnJzMggUL+Oijj8jMzKRv377k5+ezbNkymjdv7nKQFouFbdu2MWnSJEeZTqcjLi6OTZs2lbnNpk2bGD9+vFNZfHw8y5Ytc/n4JRV/URdLjvLz88nPz3d8zszMvKLjCSGEENcCS1H3mldYqNuTI1eUu4vtnnvuoWnTpvz222/MnDmTkydPMnv27Cs6eFpaGjabjZCQEKfykJAQkpOTy9wmOTnZpfrljePll19m1KhRF62TmJhIYGCgY4moRiPxhRBCCHcpHn9krEbjj8CFBOnbb79lxIgRvPTSS/Tq1avGzO2TmZlJr169aN68OVOnTr1ovUmTJpGRkeFYjhX94EIIIYS4uOIWJEPDGpog/fjjj5w/f5727dsTGxvLnDlzSEtLu6KDBwcHo9frSSl6PkuxlJSUiz4+ITQ01KX6l3L+/Hl69uyJv78/X3311SUf+GkymQgICHBahBBCCHFpjofU1tQWpE6dOvHhhx9y6tQpHnnkERYvXkx4eDh2u53Vq1dz/vx5lw9uNBpp3749a9ascZTZ7XbWrFlD586dy9ymc+fOTvUBVq9efdH6F5OZmckdd9yB0Whk+fLlmM1ml+MXQgghxKVZHJNEVp872KACt/n7+vry0EMP8eOPP/L7778zYcIEpk+fTr169bj33ntdDmD8+PF8+OGHfPLJJ+zZs4fHHnuM7Oxshg8fDsCQIUOcBnE/+eSTrFq1ihkzZrB3716mTp3K1q1bGTNmjKPO2bNn2blzJ7t37wZg37597Ny50zFOqTg5ys7Odgw4T05OJjk5GZvN5vI5CCGEEKJsjhak6jZ2V1WCgoIC9dVXX6l77rmnQtvPnj1bNWzYUBmNRtWxY0f1888/O9b16NFDDR061Kn+559/rpo0aaKMRqNq0aKFWrFihdP6+fPnK6DUkpCQoJRSat26dWWuB9Thw4fLFXNGRoYCVEZGRoXOWQghhKjpbHl5anfTGLW7aYyynjnj7nCUUuW/fld4HqRrncyDJIQQQlxa/p+H+fOuu9D5+NBk21Y0TXN3SOW+fperi+2BBx5wad6fQYMGXXQmbCGEEEJcG6wnCrvXDPXre0Ry5IpyTRT59ddfc/r06XLtUCnFf/7zH15++WXq1at3RcEJIYQQovqyFj1ixNCgeg3QhnImSEopmjRpUtWxCCGEEKIGsZ44AdTgBGndunUu77h+/foubyOEEEKImsNyvDBBMjaofjlBuRKkHj16VHUcQgghhKhhHF1s1bDRxOV5kIQQQgghyqM6j0GSBEkIIYQQlc6WlY0tPR2QBEkIIYQQAvhrgLY+MBC9n5+bo3GdJEhCCCGEqHQl50CqjlxOkBISEjh69GhVxCKEEEKIGqI6jz+CCiRIX3/9Nddffz233XYbixYtIj8/vyriEkIIIUQ1Vp3nQIIKJEg7d+5ky5YttGjRgieffJLQ0FAee+wxtmzZUhXxCSGEEKIaKp4DyVA/3M2RVEyFxiC1bduWWbNmcfLkST766COOHz9O165dueGGG3jnnXfIyMio7DiFEEIIUY0Ud7EZr5UWpJKUUlitViwWC0opatWqxZw5c4iIiGDJkiWVFaMQQgghqhGl1LXXxQawbds2xowZQ1hYGE899RRt27Zlz549bNiwgQMHDvDKK6/wxBNPVHasQgghhKgG7BkZ2LOygGvoLrZWrVrRqVMnDh8+zEcffcSxY8eYPn06jRs3dtQZMGAAp0+frtRAhRBCCFE9FI8/0gcHozOb3RxNxZTrWWwl9e3bl4ceeuiSD6MNDg7GbrdfUWBCCCGEqJ4c44+qaesRuNiCZLVaWbBgAZmZmVUVjxBCCCGqueo+/ghcTJAMBgN5eXlVFYsQQgghagDHLNrXSoIEMHr0aF577TUKCgqqIh4hhBBCVHOW4lm0q+kcSFCBMUhbtmxhzZo1/Pe//6VVq1b4+vo6rf/yyy8rLTghhBBCVD/WokHa1XUOJKhAghQUFMSDDz5YFbEIIYQQopqrCXMgQQUSpPnz51dFHEIIIYSoAWxpaaj8fNA0DKGh7g6nwlxOkIqdPn2affv2AdC0aVPq1q1baUEJIYQQonoqHn/kFRqKZjS6OZqKc3mQdnZ2Ng899BBhYWF0796d7t27Ex4ezogRI8jJyamKGIUQQghRTVhPnASq9xxIUIEEafz48WzYsIH//Oc/pKenk56eztdff82GDRuYMGFCVcQohBBCiGqieJLI6jz+CCrQxfbvf/+bL774gptvvtlRdtddd+Ht7U3fvn157733KjM+IYQQQlQjjjmQrrUWpJycHEJCQkqV16tXT7rYhBBCiGucpYa0ILmcIHXu3JmEhASnGbVzc3N56aWX6Ny5c6UGJ4QQQojqxTEGqUH1bkFyuYtt5syZ9OzZkwYNGtC6dWsAfv31V8xmM999912lByiEEEKI6kHZbFhPnQKqfxebywlSq1atOHDgAAsXLmTv3r0ADBgwgEGDBuHt7V3pAQohhBCieihISQGrFQwGvMoYjlOduNzF9sMPP2A0Ghk5ciQzZsxgxowZPPzwwxgMBn744YcKBTF37lwiIyMxm83Exsbyyy+/XLL+0qVLiYmJwWw206pVK1auXOm0/ssvv+SOO+6gTp06aJrGzp07S+0jLy+P0aNHU6dOHfz8/HjwwQdJSUmpUPxCCCGE4K8ZtMPC0PR6N0dzZVxOkG655RbOnj1bqjwjI4NbbrnF5QCWLFnC+PHjSUhIYPv27bRu3Zr4+HhSU1PLrP/TTz8xYMAARowYwY4dO+jduze9e/dm165djjrZ2dl069aN11577aLHfeqpp/jPf/7D0qVL2bBhAydPnuSBBx5wOX4hhBBCFLI4nsFWvbvXADSllHJlA51OR0pKSqmZs/fv30+HDh3IzMx0KYDY2FhuvPFG5syZA4DdbiciIoKxY8cyceLEUvX79etHdnY233zzjaOsU6dOtGnThnnz5jnVPXLkCFFRUezYsYM2bdo4yjMyMqhbty6LFi3i//7v/wDYu3cvzZo1Y9OmTXTq1KnUcfPz88nPz3d8zszMJCIigoyMDAICAlw6ZyGEEKImOj17Dmlz5xLU5/8Ie/lld4dTpszMTAIDAy97/S73GKTi1hVN0xg2bBgmk8mxzmaz8dtvv9GlSxeXgrRYLGzbto1JkyY5ynQ6HXFxcWzatKnMbTZt2sT48eOdyuLj41m2bFm5j7tt2zasVitxcXGOspiYGBo2bHjRBCkxMZGXXnqp3McQQgghrjWOSSLrV+9b/MGFBCkwMBAofEqvv7+/04Bso9FIp06dGDlypEsHT0tLw2azlZpXKSQkxDEA/ELJycll1k9OTi73cZOTkzEajQQFBZV7P5MmTXJKzIpbkIQQQghRyDEGqZrPgQQuJEjz588HIDIykqeffhpfX98qC8oTmUwmp1YzIYQQQjiznKg5Y5BcHqSdkJBQaclRcHAwer2+1N1jKSkphIaGlrlNaGioS/Uvtg+LxUJ6evoV7UcIIYQQhZTFUnibP9V/DiSoQIKUkpLC4MGDCQ8Px8vLC71e77S4wmg00r59e9asWeMos9vtrFmz5qKzcnfu3NmpPsDq1atdmsW7ffv2GAwGp/3s27ePpKQkmQ1cCCGEqADryZNgt6N5e6MPDnZ3OFfM5Ykihw0bRlJSEi+++CJhYWFomnZFAYwfP56hQ4fSoUMHOnbsyMyZM8nOzmb48OEADBkyhPr165OYmAjAk08+SY8ePZgxYwa9evVi8eLFbN26lQ8++MCxz7Nnz5KUlMTJk4XTne/btw8obDkKDQ0lMDCQESNGMH78eGrXrk1AQABjx46lc+fOZQ7QFkIIIcSlWY4VDtA2NmhwxbmBJ3A5Qfrxxx/53//+53Tb/JXo168fp0+fZsqUKSQnJ9OmTRtWrVrlGIidlJSETvdXQ1eXLl1YtGgRkydP5vnnnyc6Opply5bRsmVLR53ly5c7EiyA/v37A4Xdg1OnTgXg7bffRqfT8eCDD5Kfn098fDzvvvtupZyTEEIIca2xHj8GgKGG3MDk8jxIzZs3Z+HChbRt27aqYqoWyjuPghBCCHEtSHn9Dc5+/DG1hw4hpMT0PZ6mvNdvl8cgzZw5k4kTJ3LkyJEriU8IIYQQNYj1WFELUoOa0YLkchdbv379yMnJ4frrr8fHxweDweC0vqzHkAghhBCiZrMUTxIZUf3nQIIKJEgzZ86sgjCEEEIIUV0ppRwtSMYaMgbJ5QRp6NChVRGHEEIIIaopW3o69qwsoGbMgQQVGIMEcOjQISZPnsyAAQNITU0F4Ntvv+WPP/6o1OCEEEII4fmKn8HmVa8eOrPZzdFUDpcTpA0bNtCqVSs2b97Ml19+SVZRxvjrr7+SkJBQ6QEKIYQQwrM5BmjXkO41qECCNHHiRKZNm8bq1asxGo2O8ltvvZWff/65UoMTQgghhOcrOUlkTeFygvT7779z//33lyqvV68eaWlplRKUEEIIIaqPmjZJJFQgQQoKCuLUqVOlynfs2EH9GjIwSwghhBDl52hBqiG3+EMFEqT+/fvz3HPPkZycjKZp2O12Nm7cyNNPP82QIUOqIkYhhBBCeDAZgwS8+uqrxMTEEBERQVZWFs2bN6d79+506dKFyZMnV0WMQgghhPBQymrFWtSzZKhBY5BcngfJaDTy4Ycf8uKLL7Jr1y6ysrJo27Yt0dHRVRGfEEIIITyY9dQpsNvRTCa86tZ1dziVxuUE6ccff6Rbt240bNiQhg0bVkVMQgghhKgmLI7utQZomubmaCqPy11st956K1FRUTz//PPs3r27KmISQgghRDVhddziX3PGH0EFEqSTJ08yYcIENmzYQMuWLWnTpg1vvPEGx4tm0RRCCCHEtcNyLAmoWQO0oQIJUnBwMGPGjGHjxo0cOnSIPn368MknnxAZGcmtt95aFTEKIYQQwkNZkwoTJGOjRm6OpHJV6FlsxaKiopg4cSLTp0+nVatWbNiwobLiEkIIIUQ1YDlanCDVrHHJFU6QNm7cyOOPP05YWBgDBw6kZcuWrFixojJjE0IIIYQHU0o5Bmkba1gXm8t3sU2aNInFixdz8uRJbr/9dt555x3uu+8+fHx8qiI+IYQQQniogtOnUbm5oNdjCA93dziVyuUE6YcffuCZZ56hb9++BAcHV0VMQgghhKgGiscfGcLD0Uo8wL4mcDlB2rhxY1XEIYQQQohqxjH+qAbOi+hyggRw4MAB1q1bR2pqKna73WndlClTKiUwIYQQQng2S3ELUsOaNf4IKpAgffjhhzz22GMEBwcTGhrqNGumpmmSIAkhhBDXCEvSUQCMDWvWLf5QgQRp2rRpvPLKKzz33HNVEY8QQgghqglrUtEdbDXsFn+owG3+586do0+fPlURixBCCCGqCaWUo4utJo5BcjlB6tOnD//973+rIhYhhBBCVBO29HTs58+DptW4x4xABbrYGjduzIsvvsjPP/9Mq1atMBgMTuufeOKJSgtOCCGEEJ7JerRw/JFXSAg6k8nN0VQ+lxOkDz74AD8/PzZs2FDq0SKapkmCJIQQQlwDanL3GlQgQTp8+HBVxCGEEEKIasRSgwdowxU+rFYIIYQQ16biW/wNNbQFqVwJ0vjx48nOzna8v9RSEXPnziUyMhKz2UxsbCy//PLLJesvXbqUmJgYzGYzrVq1YuXKlU7rlVJMmTKFsLAwvL29iYuL48CBA0519u/fz3333UdwcDABAQF069aNdevWVSh+IYQQ4lpjdcyiXfPmQIJyJkg7duzAarU63l9s2blzp8sBLFmyhPHjx5OQkMD27dtp3bo18fHxpKamlln/p59+YsCAAYwYMYIdO3bQu3dvevfuza5duxx1Xn/9dWbNmsW8efPYvHkzvr6+xMfHk5eX56hz9913U1BQwNq1a9m2bRutW7fm7rvvJjk52eVzEEIIIa41lqPFk0TWvDvYADSllHJnALGxsdx4443MmTMHALvdTkREBGPHjmXixIml6vfr14/s7Gy++eYbR1mnTp1o06YN8+bNQylFeHg4EyZM4OmnnwYgIyODkJAQFixYQP/+/UlLS6Nu3br88MMP3HTTTQCcP3+egIAAVq9eTVxc3GXjzszMJDAwkIyMDAICAirjqxBCCCGqhYKzZznQpStoGk23b0Pn7e3ukMqtvNdvt45BslgsbNu2zSkh0el0xMXFsWnTpjK32bRpU6kEJj4+3lH/8OHDJCcnO9UJDAwkNjbWUadOnTo0bdqUTz/9lOzsbAoKCnj//fepV68e7du3L/O4+fn5ZGZmOi1CCCHEtchy6BAAhvr1q1Vy5Aq3JkhpaWnYbDZCQkKcykNCQi7a1ZWcnHzJ+sWvl6qjaRrff/89O3bswN/fH7PZzFtvvcWqVauoVatWmcdNTEwkMDDQsUTUwEmxhBBCiPLIP/QnAMbrr3NzJFXnmryLTSnF6NGjqVevHv/73//45Zdf6N27N/fccw+nTp0qc5tJkyaRkZHhWI4dO3aVoxZCCCE8Q35RC5LpuuvdHEnVcWuCFBwcjF6vJyUlxak8JSWF0NDQMrcJDQ29ZP3i10vVWbt2Ld988w2LFy+ma9eutGvXjnfffRdvb28++eSTMo9rMpkICAhwWoQQQohrUXEXm6mxJEhVwmg00r59e9asWeMos9vtrFmzhs6dO5e5TefOnZ3qA6xevdpRPyoqitDQUKc6mZmZbN682VEnJycHKBzvVJJOp8Nut1/5iQkhhBA1WHELkvG6mtvF5vJM2gAnT57kxx9/JDU1tVRC4eqjRsaPH8/QoUPp0KEDHTt2ZObMmWRnZzN8+HAAhgwZQv369UlMTATgySefpEePHsyYMYNevXqxePFitm7dygcffAAUji8aN24c06ZNIzo6mqioKF588UXCw8Pp3bs3UJhk1apVi6FDhzJlyhS8vb358MMPOXz4ML169arIVyKEEEJcE2xZWRQU9dKYrq+5LUguJ0gLFizgkUcewWg0UqdOHTRNc6yryLPY+vXrx+nTp5kyZQrJycm0adOGVatWOQZZJyUlObX0dOnShUWLFjF58mSef/55oqOjWbZsGS1btnTUefbZZ8nOzmbUqFGkp6fTrVs3Vq1ahdlsBgq79latWsULL7zArbfeitVqpUWLFnz99de0bt3a1a9ECCGEuGYUd6951a2LvgYPN3F5HqSIiAgeffRRJk2aVKqL6loi8yAJIYS4FqV/+RWnnn8en86daDR/vrvDcVmVzYOUk5ND//79r+nkSAghhLhWWf6s+XewQQUSpBEjRrB06dKqiEUIIYQQHi7/YM2/gw0qMAYpMTGRu+++m1WrVtGqVSsMBoPT+rfeeqvSghNCCCGEZ8n/s2iSyBreglShBOm7776jadOmAKUGaQshhBCiZrLn5WEtmijZVINn0YYKJEgzZszg448/ZtiwYVUQjhBCCCE8leXIEVAKfWAg+jp13B1OlXJ5DJLJZKJr165VEYsQQgghPFjx+CPj9dfX+F4jlxOkJ598ktmzZ1dFLEIIIYTwYPn79gJgahLt5kiqnstdbL/88ovjWWYtWrQoNUj7yy+/rLTghBBCCOE58nbvAcDcrLmbI6l6LidIQUFBPPDAA1URixBCCCE8lFKKvD3FCVKMm6Opei4nSPOr4ayZQgghhLgyBamp2M6eBb0eU5Mm7g6nysl02EIIIYS4rLzduwEwXReFrujZpjWZyy1IUVFRlxy5/mfRBFJCCCGEqDmKu9dMzZq5OZKrw+UEady4cU6frVYrO3bsYNWqVTzzzDOVFZcQQgghPEjerj+Aa2OANlQgQXryySfLLJ87dy5bt2694oCEEEII4VmUUuTu2AGAT9s27g3mKqm0MUh33nkn//73vytrd0IIIYTwEJYjR7CdO4dmNGJqfm20IFVagvTFF19Qu3btytqdEEIIITxE7o6dAJhbtUJnNLo3mKvE5S62tm3bOg3SVkqRnJzM6dOneffddys1OCGEEEK4X+6O7QD4tGvr5kiuHpcTpN69ezt91ul01K1bl5tvvpmYmJo/cZQQQghxrcnZXjj+yLutJEgXlZCQUBVxCCGEEMIDFaSlYTl0CDRNEqQLZWZmEhAQ4Hh/KcX1hBBCCFH95fzyCwCmmBi8atVyczRXT7kSpFq1anHq1Cnq1atHUFBQmRNFKqXQNA2bzVbpQQohhBDCPbI3FyZIvh1vdHMkV1e5EqS1a9c67lBbt25dlQYkhBBCCM+Rs3kzAD6xsW6O5OoqV4LUo0ePMt8LIYQQouaypqRgOXIENA2fDh3cHc5V5fIgbYD09HR++eUXUlNTsdvtTuuGDBlSKYEJIYQQwr2yf/wRAPMNrdBfY2OMXU6Q/vOf/zBo0CCysrIICAhwGo+kaZokSEIIIUQNkVWUIPl17ebmSK4+l2fSnjBhAg899BBZWVmkp6dz7tw5x3L27NmqiFEIIYQQV5my2cj+aRMAvjdJgnRZJ06c4IknnsDHx6cq4hFCCCGEB8j7/XfsGRnoAgLwbtXK3eFcdS4nSPHx8WzdurUqYhFCCCGEh8j6X2H3mm+XLmheFRqyXK2V64yXL1/ueN+rVy+eeeYZdu/eTatWrTAYDE5177333sqNUAghhBBXXfEAbb9uXd0ciXtoSil1uUo6Xfkamq6liSIzMzMJDAwkIyNDZg8XQghRo9jS09nfpSvY7TRevw5DaKi7Q6o05b1+l6sF6cJb+YUQQghRc2Vv2gR2O6boxjUqOXKFy2OQPv30U/Lz80uVWywWPv300woFMXfuXCIjIzGbzcTGxvJL0XNfLmbp0qXExMRgNptp1aoVK1eudFqvlGLKlCmEhYXh7e1NXFwcBw4cKLWfFStWEBsbi7e3N7Vq1aJ3794Vil8IIYSoSc4XPTXD9xq8vb+YywnS8OHDycjIKFV+/vx5hg8f7nIAS5YsYfz48SQkJLB9+3Zat25NfHw8qampZdb/6aefGDBgACNGjGDHjh307t2b3r17s2vXLked119/nVmzZjFv3jw2b96Mr68v8fHx5OXlOer8+9//ZvDgwQwfPpxff/2VjRs3MnDgQJfjF0IIIWoSe24uWd+vAcA//g43R+NGykWapqnU1NRS5Tt37lS1atVydXeqY8eOavTo0Y7PNptNhYeHq8TExDLr9+3bV/Xq1cupLDY2Vj3yyCNKKaXsdrsKDQ1Vb7zxhmN9enq6MplM6l//+pdSSimr1arq16+v/vGPf5Q7zry8PJWRkeFYjh07pgCVkZFR7n0IIYQQni5j5Uq1u2mMOnDrbcput7s7nEqXkZFRrut3uVuQ2rZtS7t27dA0jdtuu4127do5ltatW3PTTTcRFxfnUnJmsVjYtm2b03Y6nY64uDg2bdpU5jabNm0qdZz4+HhH/cOHD5OcnOxUJzAwkNjYWEed7du3c+LECXQ6HW3btiUsLIw777zTqRXqQomJiQQGBjqWiIgIl85VCCGEqA4yvlkBQECvXk5Py7jWlHtig+LxOTt37iQ+Ph4/Pz/HOqPRSGRkJA8++KBLB09LS8NmsxESEuJUHhISwt69e8vcJjk5ucz6ycnJjvXFZRer8+effwIwdepU3nrrLSIjI5kxYwY333wz+/fvp3bt2qWOO2nSJMaPH+/4nJmZKUmSEEKIGqXg7FmyNmwAIODuXm6Oxr3KnSAlJCQAEBkZSb9+/TCbzVUWVFUrvivvhRdecCR18+fPp0GDBixdupRHHnmk1DYmkwmTyXRV4xRCCCGupsxvVkBBAeYWLTA3aeLucNzK5UHaQ4cOrbTkKDg4GL1eT0pKilN5SkoKoRe5rTA0NPSS9YtfL1UnLCwMgObNmzvWm0wmrrvuOpKSkq7gjIQQQojqK33ZVwAE3n+/myNxv3IlSLVr1yYtLQ2AWrVqUbt27YsurjAajbRv3541a9Y4yux2O2vWrKFz585lbtO5c2en+gCrV6921I+KiiI0NNSpTmZmJps3b3bUad++PSaTiX379jnqWK1Wjhw5QqNGjVw6ByGEEKImyNu7l/zde9AMBgJ63eXucNyuXF1sb7/9Nv7+/o73lTloa/z48QwdOpQOHTrQsWNHZs6cSXZ2tmPKgCFDhlC/fn0SExMBePLJJ+nRowczZsygV69eLF68mK1bt/LBBx8AhbN5jxs3jmnTphEdHU1UVBQvvvgi4eHhjnFUAQEBPProoyQkJBAREUGjRo144403AOjTp0+lnZsQQghRXWR8tQwAv1tvxatWLfcG4wHKlSANHTrU8X7YsGGVGkC/fv04ffo0U6ZMITk5mTZt2rBq1SrHIOukpCSnR5106dKFRYsWMXnyZJ5//nmio6NZtmwZLVu2dNR59tlnyc7OZtSoUaSnp9OtWzdWrVrl1DX4xhtv4OXlxeDBg8nNzSU2Npa1a9dSS/5QCCGEuMYoq5WM//wHgMD7e7s3GA9RrmexZWZmlnuH18pzyeRZbEIIIWqKzP/+lxNPPIk+OJjo9evQvMp9D1e1U6nPYgsKCrpst5pS6pp6WK0QQghRU5xbuAiAoAceqNHJkSvK9S2sK3omixBCCCFqlvwDB8jZvBl0OmoN6O/ucDxGuRKkHj16VHUcQgghhHCDs0UPmve/7TYMRdPgiArMgySEEEKImsF66hTpy74GoHYFHjhfk0mCJIQQQlyjznz0MVit+HTsiE+7tu4Ox6NIgiSEEEJcgyxHjnBuyRIAgh8t/Yita125EqTly5djtVqrOhYhhBBCXCUpr78BViu+3W/Ct0sXd4fjccqVIN1///2kp6cDoNfrSU1NrcqYhBBCCFGFsn/6iay1a0GvJ+S559wdjkcqV4JUt25dfv75Z+Cv+Y6EEEIIUf2oggJSpr8GQK0BAzBdf72bI/JM5brN/9FHH+W+++5D0zQ0TSM0NPSidWWiSCGEEMJznf3sn+Tv348uMJC6Y0a7OxyPVa4EaerUqfTv35+DBw9y7733Mn/+fIKCgqo4NCGEEEJUJktSEqffeQeAehPGo5dr+UWVez7xmJgYYmJiSEhIoE+fPvj4+FRlXEIIIYSoREopTr04BZWXh0+nTgT16ePukDyayw9cSUhIAOD06dPs27cPgKZNm1K3bt3KjUwIIYQQlSb986XkbN6MZjYT9vLfZTzxZbg8D1JOTg4PPfQQ4eHhdO/ene7duxMeHs6IESPIycmpihiFEEIIcQVy//iDlFdfBaDuuCcxRkS4OSLP53KC9NRTT7FhwwaWL19Oeno66enpfP3112zYsIEJEyZURYxCCCGEqCDryZMcHzMWlZ+PX48e1B4yxN0hVQuaUkq5skFwcDBffPEFN998s1P5unXr6Nu3L6dPn67M+DxWZmYmgYGBZGRkEBAQ4O5whBBCiFIKTp/myN/+hvVoEsaoKCKXLEZ/jV+zynv9rlAXW0hISKnyevXqSRebEEII4SEKzp0j6aERWI8mYQgPp+H8j6/55MgVLidInTt3JiEhgby8PEdZbm4uL730Ep07d67U4IQQQgjhuoLTp0kaMpT8AwfwqluXhgvmY7jEHIaiNJfvYnvnnXeIj4+nQYMGtG7dGoBff/0Vs9nMd999V+kBCiGEEKL8rKdOkTRsOJajRx3JkbFhQ3eHVe24PAYJCrvZFi5cyN69ewFo1qwZgwYNwtvbu9ID9FQyBkkIIYSnyfrhB06+8AK202mF3WqSHJVS3uu3yy1IAD4+PowcObLCwQkhhBCi8hScO0fa7NmcW/QvAEzRjYn44AMMYWFujqz6qlCCJIQQQgj3syQlcXbBAtK//ApVNDa41pDB1Bs/Hp3Z7OboqjdJkIQQQohqJve33zjz0cecX70a7HYAzM2bU+/pCfh26eLm6GoGSZCEEEKIakDZ7WRt2MDZjz4mZ+tWR7lv95uo89AIfGI7yuNDKpEkSEIIIYQHsxw9SsbXy8lYvhzr8eOFhQYDgb16Ufuh4ZibNHFvgDWUywnSsWPH0DSNBg0aAPDLL7+waNEimjdvzqhRoyo9QCGEEOJao+x2sn74gXP/XEj2jz86ynV+ftTq349agwdjKGPSZlF5XE6QBg4cyKhRoxg8eDDJycncfvvttGjRgoULF5KcnMyUKVOqIk4hhBCixrNlZpL+5ZecW/QvrElJhYWahm/XrgT27o3/bbeiu4am1HEnlxOkXbt20bFjRwA+//xzWrZsycaNG/nvf//Lo48+KgmSEEII4SJbZiZn5s/n3CefYi96bJcuIICgBx+k1sABGCMi3BzhtcflBMlqtWIymQD4/vvvuffeewGIiYnh1KlTlRudEEIIUYPZc3I4++lnnPnoI+znzwOFcxjVGvQ3Au+9B52Pj5sjvHa5nCC1aNGCefPm0atXL1avXs3LL78MwMmTJ6lTp06lByiEEELUNMpqJf2LLzj97rvYTqcBYIqOJviJsfjHxcndaB7A5YfVvvbaa7z//vvcfPPNDBgwwPE8tuXLlzu63lw1d+5cIiMjMZvNxMbG8ssvv1yy/tKlS4mJicFsNtOqVStWrlzptF4pxZQpUwgLC8Pb25u4uDgOHDhQ5r7y8/Np06YNmqaxc+fOCsUvhBBClIey28lYsYJDve4m+aW/Fz4SJCKC8DfeIOrrZQTcfrskRx7C5QTp5ptvJi0tjbS0ND7++GNH+ahRo5g3b57LASxZsoTx48eTkJDA9u3bad26NfHx8aSmppZZ/6effmLAgAGMGDGCHTt20Lt3b3r37s2uXbscdV5//XVmzZrFvHnz2Lx5M76+vsTHx5NXNMtoSc8++yzh4eEuxy2EEEK4wnriBEnDhnNywtNYk5LQ16lDyIuTuX7FNwTeczeazuVLsqhKykU5OTkqOzvb8fnIkSPq7bffVqtWrXJ1V0oppTp27KhGjx7t+Gyz2VR4eLhKTEwss37fvn1Vr169nMpiY2PVI488opRSym63q9DQUPXGG2841qenpyuTyaT+9a9/OW23cuVKFRMTo/744w8FqB07dpQ77oyMDAWojIyMcm8jhBDi2nTuq6/U3nbt1e6mMWpPm7Yqde5cZcvKcndY16TyXr9dTlfvu+8+Pv30UwDS09OJjY1lxowZ9O7dm/fee8+lfVksFrZt20ZcXJyjTKfTERcXx6ZNm8rcZtOmTU71AeLj4x31Dx8+THJyslOdwMBAYmNjnfaZkpLCyJEj+eyzz/ApxyC4/Px8MjMznRYhhBDiUpTNRsr01zg1cRL27Gy827blumVfUffxx9H5+ro7PHEJLidI27dv56abbgLgiy++ICQkhKNHj/Lpp58ya9Ysl/aVlpaGzWYj5ILJrkJCQkhOTi5zm+Tk5EvWL369VB2lFMOGDePRRx+lQ4cO5Yo1MTGRwMBAxxIht1wKIYS4BHtuLifGjePsggUABI8eTaN/foaxUSP3BibKxeUEKScnB39/fwD++9//8sADD6DT6ejUqRNHjx6t9ACrwuzZszl//jyTJk0q9zaTJk0iIyPDsRw7dqwKIxRCCFGd2bOzSRo5kvOrv0czGgmf8SZ1x45B0+vdHZooJ5cTpMaNG7Ns2TKOHTvGd999xx133AFAamoqAQEBLu0rODgYvV5PSkqKU3lKSgqhoaFlbhMaGnrJ+sWvl6qzdu1aNm3ahMlkwsvLi8aNGwPQoUMHhg4dWuZxTSYTAQEBTosQQghxIXt2NkmPPELu1m3o/PxoOP9jAnv1cndYwkUuJ0hTpkzh6aefJjIyko4dO9K5c2egsDWpbdu2Lu3LaDTSvn171qxZ4yiz2+2sWbPGsd8Lde7c2ak+wOrVqx31o6KiCA0NdaqTmZnJ5s2bHXVmzZrFr7/+ys6dO9m5c6djmoAlS5bwyiuvuHQOQgghRDFbVjZJo4qSI39/Gn78ET7t27s7LFERFRkBfurUKbV9+3Zls9kcZZs3b1Z79uxxeV+LFy9WJpNJLViwQO3evVuNGjVKBQUFqeTkZKWUUoMHD1YTJ0501N+4caPy8vJSb775ptqzZ49KSEhQBoNB/f77744606dPV0FBQerrr79Wv/32m7rvvvtUVFSUys3NLTOGw4cPy11sQgghrkjB+Sx1eMBAtbtpjNrb4UaV89tv7g5JlKG812+XZ9KGwm6s0NBQjh8/DkCDBg0qPElkv379OH36NFOmTCE5OZk2bdqwatUqxyDrpKQkdCXmhujSpQuLFi1i8uTJPP/880RHR7Ns2TJatmzpqPPss8+SnZ3NqFGjSE9Pp1u3bqxatQqz2VyhGIUQQohLsWVlc2zUKHK3b3e0HHm3auXusMQV0JRSypUN7HY706ZNY8aMGWRlZQHg7+/PhAkTeOGFF5ySmZosMzOTwMBAMjIyZDySEEJcw5TVyrFHHiX7p5/QBQTQ8KOP8G7V8vIbCrco7/Xb5RakF154gY8++ojp06fTtWtXAH788UemTp1KXl6ejOERQghxzVBKcSphKtk//YTm40PDj/4hyVEN4XILUnh4OPPmzePee+91Kv/66695/PHHOXHiRKUG6KmkBUkIIUTae+9x+p1ZoNMR8d67+PXo4e6QxGWU9/rtcn/Y2bNniYmJKVUeExPD2bNnXd2dEEIIUS1l//RTYXIEhE55UZKjGsblBKl169bMmTOnVPmcOXNo3bp1pQQlhBBCeLKCs2c5+dxEAIL69aNW//5ujkhUNpfHIL3++uv06tWL77//3jGv0KZNmzh27JhjPiEhhBCiplJKceqFyRScPo3x+usJmficu0MSVcDlFqQePXqwf/9+7r//ftLT00lPT+eBBx5g3759jme0CSGEEDVV+pLPyVq3Ds1goP6MN9F5e7s7JFEFKjQPUnh4eKm71Y4fP86oUaP44IMPKiUwIYQQwtNYT50i9Y03AKj71FOYyxiTK2qGSpu06MyZM3z00UeVtTshhBDCoxTe0p+APTsb7zZtqD10iLtDElXo2pjVUQghhLhCmcuXk/3D/9AMBsJemYam17s7JFGFJEESQgghLqMgLY2UVxMBCB79OKbrr3dzRKKqSYIkhBBCXEbyy9OwZWRgataMOiNGuDsccRWUe5D2Aw88cMn16enpVxqLEEII4XEy//tfzn/3Hej1hL8yDc1gcHdI4iood4IUGBh42fVDhsiANSGEEDWHLSOD5L+/DECdESMwN2/u5ojE1VLuBGn+/PlVGYcQQgjhcU6/MwtbWhrG664jePTj7g5HXEUyBkkIIYQoQ/7Bg5xbsgSA0ClT0JlMbo5IXE2SIAkhhBBlSHn9dbDZ8LvtNnw7xbo7HHGVSYIkhBBCXCDrf/8j+4f/gcFAyDNPuzsc4QaSIAkhhBAlqIICUl57DYDaAwdijIx0b0DCLSRBEkIIIUo49/nnWA4eQh8URPDjj7k7HOEmkiAJIYQQRWyZmaTNmg1A8Jgx6C8zxY2ouSRBEkIIIYqkvTcPW3o6xuuvp1a/vu4OR7iRJEhCCCEEYDl6lLP//CcAIc89KzNmX+MkQRJCCCGA1DffBKsV327d8Ove3d3hCDeTBEkIIcQ1L3vzL5xf/T3o9YQ896y7wxEeQBIkIYQQ1zRls5Hy2nQAgvr2wRQd7eaIhCeQBEkIIcQ1LWPZMvJ370Hn70/dsWPdHY7wEJIgCSGEuGbZsrJJnTkTgOBHH8Wrdm33BiQ8hiRIQgghrlln/vEhttNpGBo2pNbgv7k7HOFBJEESQghxTbKePMnZ+QsAqPfM0+iMRvcGJDyKJEhCCCGuSakz3kLl5+Nz4434x8W5OxzhYSRBEkIIcc3J3bmTzBUrQNMImTQRTdPcHZLwMB6RIM2dO5fIyEjMZjOxsbH88ssvl6y/dOlSYmJiMJvNtGrVipUrVzqtV0oxZcoUwsLC8Pb2Ji4ujgMHDjjWHzlyhBEjRhAVFYW3tzfXX389CQkJWCyWKjk/IYQQnkMpRUpi4W39gfffj7l5czdHJDyR2xOkJUuWMH78eBISEti+fTutW7cmPj6e1NTUMuv/9NNPDBgwgBEjRrBjxw569+5N79692bVrl6PO66+/zqxZs5g3bx6bN2/G19eX+Ph48vLyANi7dy92u53333+fP/74g7fffpt58+bx/PPPX5VzFkII4T6ZK1aS++uvaD4+1B33pLvDER5KU0opdwYQGxvLjTfeyJw5cwCw2+1EREQwduxYJk6cWKp+v379yM7O5ptvvnGUderUiTZt2jBv3jyUUoSHhzNhwgSefvppADIyMggJCWHBggX079+/zDjeeOMN3nvvPf78888y1+fn55Ofn+/4nJmZSUREBBkZGQQEBFT4/IUQQlw99txcDt15FwXJydR98gmCH3vM3SGJqywzM5PAwMDLXr/d2oJksVjYtm0bcSUGx+l0OuLi4ti0aVOZ22zatMmpPkB8fLyj/uHDh0lOTnaqExgYSGxs7EX3CYVJVO1LzH+RmJhIYGCgY4mIiCjXOQohhPAcZz76mILkZAzh4dQePtzd4QgP5tYEKS0tDZvNRkhIiFN5SEgIycnJZW6TnJx8yfrFr67s8+DBg8yePZtHHnnkorFOmjSJjIwMx3Ls2LFLn5wQQgiPYj11ijP/+AcA9Z59Bp3Z7OaIhCfzcncA7nbixAl69uxJnz59GDly5EXrmUwmTCbTVYxMCCFEZUp9cwYqLw/vDu3xj493dzjCw7m1BSk4OBi9Xk9KSopTeUpKCqGhoWVuExoaesn6xa/l2efJkye55ZZb6NKlCx988MEVnYsQQgjPlbN9h+O2/tDnn5fb+sVluTVBMhqNtG/fnjVr1jjK7HY7a9asoXPnzmVu07lzZ6f6AKtXr3bUj4qKIjQ01KlOZmYmmzdvdtrniRMnuPnmm2nfvj3z589Hp3P7DX1CCCGqgLLbSXn1VQCC/u9Bua1flIvbu9jGjx/P0KFD6dChAx07dmTmzJlkZ2czvGjw3JAhQ6hfvz6JiYkAPPnkk/To0YMZM2bQq1cvFi9ezNatWx0tQJqmMW7cOKZNm0Z0dDRRUVG8+OKLhIeH07t3b+Cv5KhRo0a8+eabnD592hHPxVquxJVTdju29HQKTqdRcPo0trNnsOfnQ0EBymoFpdB8fND7+qLz9UXn54c+KAhjw4ZoBoO7wxdCVFPp//43ebt2ofP1pe6Tclu/KB+3J0j9+vXj9OnTTJkyheTkZNq0acOqVascg6yTkpKcWne6dOnCokWLmDx5Ms8//zzR0dEsW7aMli1bOuo8++yzZGdnM2rUKNLT0+nWrRurVq3CXDQgb/Xq1Rw8eJCDBw/SoEEDp3jcPOtBjaDsdqwnT5F/8AD5Bw5gOXiQ/AMHyf/zT1TRXFQuMRgwRUUVPg7gtlvx6dABTZ6ZJIQoh4IzZ0h9cwYAwWPH4BUc7OaIRHXh9nmQqqvyzqNQ09nS08nbv5/8/QfI37eP/P37yT9wAHtOzkW30deqhVdwMPrgOujM3mheXo4WIntODvbsbMdScPp0qX3p/P3x696doD7/h09srIwlEEJc1MnnniPj6+WYmjUjaunnaF5ubxcQblbe67f8SRHlZs/JIe+PP8j99dfC5fddFFxk6gQMBkyRkZiiG2OKjsbYuDGmxo0x1q/vUuuPUgrriZPk7dlN9g8/cH7demxpaWSuWEHmihWYmjShzsiRBNzdSxIlIYST7J9/JuPr5aBphL00VZIj4RJpQaqga6EFSdls5O3eTfbGn8jeuJGcnTvBai1VzxAejqlpU0xNmmBu2gRTkyYYGzWqknFDym4n77ffyFi+nPSvlqFycwHw6dyJsKlTMTZqVOnHFEJUP/bsbP68/wGsSUnUGjiQ0Ckvujsk4SHKe/2WBKmCamqCpGw2crZu4/x3q8j872psaWlO673q1cO7TRu8W7fGu/UNmGJi0Pv5uSVWW2Ym5xYuJG3e+6j8fDSTiXrPPEOtQQOlNUmIa9ypl14i/V+L8QoL47rlX6P393d3SMJDSIJUxWpSgqRsNnK2beP8qtJJkc7XF5/OnfDr2hXfLl0wNGzoccmHJSmJ5KlTyf6p8FEyfrfeStgr0/CqVcvNkQkh3CHrx40ce/hhABrO/xjfi0wbI65NkiBVseqeICm7ndxt28j8dhWZq/+L7XSJpCggAP+4OAJ6xuPbqVO1uGNMKcW5zz4j9Y03UVYrhvr1ifjwA0zXXefu0IQQV5EtI4M/772PgpQUag0aROiLk90dkvAwMkhblMmakkrGV1+SvvQLrCdOOMqrY1JUkqZp1B4yBJ8OHTg+7imsSUkcHTCQBu+9i0+7du4OTwhxlSS/8goFKSkYGzWi3tMT3B2OqMakBamCqlsLUs727Zz56GOy1q8Hmw0ovF3ePy6OgDt7Vsuk6GIKzp7l2GOPkffrb2hGIxHz3sO3Sxd3hyWEqGKZq1ZxYtxToNMRuWgh3m3auDsk4YGki62KVZcEKfvnzaTNmUPO1q2OMu/27Qnq838ExMej8/Z2Y3RVx56by4nxE8hatw6djw8NP/sU7xYt3B2WEKKKWJKSOPzAg9izsqjzyCPUe2qcu0MSHkoSpCrm6QlS3u7dpM54i+yNGwsLDAaCevem9rChmK6/3r3BXSV2i4Vjox4h5+ef0depQ+S/FmFs2NDdYQkhKpndYuFo/wHk7d6Nd7t2NPpkgTyeSFyUjEG6RlmTk0l9483Cp1YDGAzU6tuXOiMfxnCNPWdOZzTSYM5sjv5tMPl795I0ciSRixbhVaeOu0MTQlSi1NdeJ2/3bvRBQdR/a4YkR6JSyCPsawilFBlff82f99xbmBxpGgH33MP1K1cQ+uLkay45Kqb38yPig/cxhIdjPZrEsUcexV40uaQQovrLXLWKcwsXAhD++mvX7L91ovJJglQD2HNzOfHUeE4+NxH7+fOYb7iBqC//Tf03XscYEeHu8NzOUK8eEf/4B/qgIPJ27eLkxEkou93dYQkhrpDl6FFOvVB4G3+dkSPx697dzRGJK2WxWdiVtosle5fw4sYX2Xd2n9tikS62aq7gzBmOPfY4eb/9BgYDdUePps7DI+SZQxcwXRdV2N02/CHOf/cdaXPmUveJse4OSwhRQfb8fI4/9RT27Gy827Wj7pNPuDsk4SKrzcqhjEPsPrObP9L+YNeZXew/t58Ce4GjTrPazWhau6lb4pOraDVmOXaMpOEPYT1+HH1QEA3enStz/lyCT4cOhL30Eqeef560d9/FeN11BN7dy91hCSEqIGXaK+Tv3oO+Vq3CcUfyn0KPlluQy/5z+9lzZg97z+5l95ndHEw/iNVe+vmeQaYgWgS3oEWdFrSp1+bqB1tE/kRVUwVpaSQ9NALr8eMYGjak4QfvY4yMdHdYHi/ogfvJP3SQsx99zKnnn8cY0QDv1q3dHZYQwgXnPv+c9KVLQdMIf/11GXfkYTItmew7u4/dZ3az9+xe9pzZw+HMw9hV6aEN/kZ/mtVuRos6LRxJUX2/+h7xSCtJkKohW1YWSaNGYT12DENEBJEL/4lX3bruDqvaqDd+PJY/D5O1bh3HHn2MRp99iqlxY3eHJYQoh9xffyXl5WkA1B03Dr+burk5omtXXkEef2b8yaH0QxxIP8Ch9EMcSj/EiawTZdavY65DszrNaFa7mePVU5Khssg8SBXkrnmQlM3GsZGjyP7pp8K5fRYtxNio0VU7fk1hy8omadgw8nbtwqtePRot/KcMaBfCwxWkpXH4wf+jICUF/9vjqD9rlsdeXGsKq83KyeyTHDt/zGk5lH6I4+ePoyg7hQj3DS+VDNX18Yz/yMs8SDVU2nvzyP7pJzQfHyLef1+SowrS+/kS8eEHJA0ZSv6BAyQNGy4PtxXCg9ktFo6PG1f4nLXrriMsMVGSo0qQZckiOTuZ5JxkUrJTSM5JJjk7mVNZpzh2/hjJOclldo0VCzIFcX3Q9TQOakzjoMZcH3Q90UHRBJmDrt5JVBFJkKqR7J83kzZ3LgBhUxPwbimPzrgSXrVq0fDjjzjyt79hPZrEkT59CUt8lYA77nB3aEKIEpTdzqmJE8ndug2dry8N5sxG7+fn7rA8mtVm5UzeGc7kniEtN4203DRSc1JJyUkpTIiKkqJsa/Zl9+Xt5U19v/o08G9AhH8EEf4RRAVG0TioMXXMdWpsoioJUjVRcOYMJ555GpQi8P8eJPDee90dUo3gVbcukQsXcuKp8eRs2cKJJ54kZ+AA6j7xBPqgIHeHJ8Q1TylFyvTpZK78Fry8qP/OO9dsS69Sioz8jMKEJ68w6SmZAJ3OPe34nJ6fXu79BhgDCPUNJcQnhFDfUMdSnAzV5CToUmQMUgVd7TFIJyY8TeaKFZiiGxP5+ec19iGz7qKsVlJnvMXZBQsA0AUGUnf04wQ9+CA6X1/3BifENUopRdqcuY6W8/A3XifwnnvcHFXlyy3IvWSyU7ycyTvjNEfQ5XhpXtTxrkOwd7BjuTARCvEJwcfgU4Vn53nkYbVV7GomSNmbNpE0/CHQ6Yj8/HPpWqtC2T//TMqrieTv3w+AzteXwN69Cbi7F9433ICm17s5QiGuDUopUqe/xtlPPgGg3sTnqDNsmHuDckG+LZ8zuWc4m3fW8Voy2SlOeNJy08rVzVVSkCmIYO/gv5Ifc7Dz56Il0BSITqtmD8yw5sL5U5B5qvC1QQeoFVmph5AEqYpdrQRJ2Wwcvv8B8vfvp9bAgYROebHKjiUKqYIC0r/4N2fnz8dy9KijXF+rFr5du+LdujXerVpibNxYxkEIUQXsFgvJU18i48svAQh5/nlqDxns1piUUmRZsziTe4Yzec6JT1llWdYsl/Zv1pudkpsLkx1HubkOBn01fBivrQCyU/9KfBxLMmSeLHw9fwry0p23u28utP1bpYYid7HVEBnL/0P+/v3oAgLk0RhXieblRa3+/Qjq24ecn38m/d9fkvXDD9jOnSPzm2/I/OYbR119nToYGzXCGNEAfe066GvVQl8rCK/atdEHBKB5+6DzNqMzm9G8vQtfzWY0XTX7X50QV4n11CmOjxtH3q+/gU5H2KuvENS7d6Ufx67snLecJz0/nfT8dDLyM0jPT+dc3jnO5p0tlficzT2LxW5x6RgGnYHa5trU8a5T+GquQ12fun8lQOZgx2cfL5/qN85HKcjPhKzTkH26MAHKPl30+YJkKCsVLjIlQCkGH/APK1zMgVV6CpciCZIHU1YrabNnAxA8aqQMGr7KNJ0O3y5d8O3SBWW1krN9Bzlbt5D32+/k/vEHtrQ0bGfOkHvmDLnbt7u2b5Ppr2TJaEQzGdEZTWgm01+fTSY0R5nhr89mE3p/f3QBAegDAtEHBqAPCEBX9F5nNlfRNyJE1Tq/Zg2nJr+I7dw5dAEB1H/zjUs+gNZis5BlzSLLksV563myLdmFr9Zszlv+ej2Xd86RABUnQxmWjEvevn4xvgZfR7LjSHxKJEAly/wN/tUj6bEVFCY6eemQl+G85F5QlnuuKBkqWmwuJI2aHvxDi5KfUAgIL/G5aAkIA1MAeMD3JgmSB8tcuRLryZPo69Sh1t8qt4lRuEYzGPCN7YhvbEdHmS0rC8vRo1iPHsVy4gS2c+nYzp37a8nIwJ6Xh8rNLXzNz3dsq/LzseXnQ0ZG5cdqNKILLE6eAvEKqYchLBxDWBiG+kWvEQ3R+8ngc1ExSilsykaBvQCr3UqBveCi7612q9P7suraklOo/8FKam89BEB6w1pseDyWs+obctcuJa8gj3xbPnkFeWRbsx1JkastOmXx8fIhyBREoCmQIFMQQaYgantfkOyY61Dbuza1zbXx9vKQG2QKLGDJKlzys8CSDZbzha/5WX+tu9jnkkmP5fyVxWIKAN9g8K3rvASEgX+JJMg3GHTVZxynJEgeStntnPnHPwCoPXSotAp4IL2fH94tWuDdonyD5pXdjsrL+ytpys1FWSzY8/NR+RaUJb/wvcXi+Kzy87HnW4rK8gvr5OZhzzqPLSMTW2YmtswM7OkZ2M6fB7sdZbFgO52G7XTapQOqXQsiwlARodiiGmC9rj75UWFY/UyFFy1lw2a3UaAKsCu7473NbnOssynn9yW3u3CdTdlQSqFQKKWwY3f6fOGrXdlRlFGOHRQXX1/UKlD8uczf4jJN/Zdcf8lVF195qeGexdtdGHPJcytz/aXWXbhtifcX29axXuH4bqHwu74w6akMkcmKXlvsdN2t8LJDgQ7+E6vxRddMrBnfQzn//+Dj5YOf0Q8/gx9+Rj/8Df74GnzxN/rjZ/AjyOycABUvgaZAjHpjpZzLJdntYM2+SLJSlNSU+pxdRgJU4nMl/QZODL6FXVreQYWvjqXEZ++gogQoGHzrFb4aPCRprGSSIHmonJ9/Jv/AQXS+vtTq38/d4YhLsCs7FpvF8T/lku+tNmvpcpsVi92CVWfFarBi1Vuxmq1l76PE9o7tHOsLsNoNWG2BWO0+FBTUQcvNx5CdjzHHijHbgjmngKAMG8GZirqZUCdDUS8DAnKBs+fg7Dm0X3fjReE/Bt7A6QA4UU/jaD04EqJxpJ5Gai1QHtDkLTyXTtPhpXlh0Bvw0nlh0BW+emleGHRe+OXrCDtjI+R0ARFHcojan0ng2b9aVZOb1uW3IR0xNgzlIS8zZi8zZn3Ra9F7k96Er8HXKRny9fJFX1mtEnYbWHPAklOU0OQUfc4uo/yC9ZdqrXHxLjWXeJnB6AtGv8LF5Of82ehbosz/r89OyU8QmAOgOg7+rkKSIHmoc4uXABB4333or+Kz3qozu7KTW5BLtjWbbGs2Odacv94X5JBvyyfflo/FZilc7Ja/3tsshetKltmd11ntVsf2xf+Tttgs2JTN3afuzFy01C4ucB4Qrtf0BFi8qJ+hI/ycRv0zigYpNuqfslD7XAF1M6FupqLDQShuLrGY9Jyp78uZ+v6ciwgkvWEQmQ2CUGYTek2PXqdHr+nx0nk5LpTFZcWvOk2HTtOhoTluPS5+XzxOo9R6TUNH4XoNrczXy62/GI1LJ3yXWl/R/ZZnPErJ+B3705zXOd5fcI6ObS44/5IxOdZdULeootNxS64z6A0YNIMjASpOhvSaHu1MOgWHj2I9cYKC06kUpJ4ufD2dRkFaGgVpyai8vNInazAQcHsctQcPolnL5txiLwB7QWGLi70AlK3oc1GZLR8K8iAvDQqOQ0HR5wJL0Wv+Ba95hWNkSpZZcy+eABWUEWMlUpoOu8EPm5cPdoMvNoMvNi8fbF6FrwVevti8fLF6+VDg5UOBvvC91csHq84Hq94Xi94bq94bq5cP+Zo3Ns0Lu11hV2BXqnCxK2yqqCu0eJ1NYc9W2LPApopbWxU2uxWlUrHZU5z3oRQ2OyXqFXetljiWvYx6Tsctqmsva10Z9RzxU7RfxaS7Yri/bYMq/V0uRhIkD2RNSeX8mjUABPWrua1HSimnhCa7oDCpcSQ2Bc5JTnGic2HiU/w+tyDX3acE4LhwGHSFi1FvLPXeS+fleH/h+uL/fRt1Rgw6L4w6LwyaHoOmL3pfmIAYNT0GTed4dbyn8H3hq4ax6NWgNAyahl6poguPvejV5ni1ZWWRf/gUeUdOknc0mfwjyeQfP40x30bYnxmE/ZkBHC88UQ2M9QIwNaiNuX4tTPUDMUfUwivAXDi+UikK+2qKXrmwrIw6Lr9Set+uqNAsJ1fnGKpo0+JuM1Xc7VV02oVdYiXqqKIuy6LvobDcXrSuZHnxZ7ujzLG+jHqO90X17HY7uSkWCo7lUZBiwZZSgLKU7xz13nYMATbMQQX4huThVzcPneEj+Poj+LoCX1MVsSuNXIzkYCJXmcjBTA4mcpSJXKf3Jsf7bLzJwUSW8iYHM1nKXPiKmRxlJgtv8jFA7pW0xFqLlsxKOlPPl2Nx339APSJBmjt3Lm+88QbJycm0bt2a2bNn07Fjx4vWX7p0KS+++CJHjhwhOjqa1157jbvuusuxXilFQkICH374Ienp6XTt2pX33nuP6OhoR52zZ88yduxY/vOf/6DT6XjwwQd555138POAeW0yv/kP2Gx4t22LuWkTd4fjUJzQXCpJKTOJseaQXfDX++LPOdacy44FqQgdGr56Mz56E756I746Iz6aF2ZNj1HTFS4ULxpGTcOEDgMaRsCkKCxXYKRoUQqjUpgUGOx2DMqO0W7HABjtNgx2W1G5DZ3NDtaS//PN+eu943/EF7wqu1OigrIVll1lesCnaCGkcFE3guW8F3nnDOSne5GXbiAv3YAtT48lJRNLSibntx35ax9GG6agAsy1rJiCrJiDrJgCCtCqz9hMj6ABntKpqeyQc9rI+eNmso97U5B7wY+pKQy+Nox+BXh52/HytuFltpV4b8fLbEfnVf6/73alUYAOOzoK0GNHRz6GwkUZsBS/L/qcj5F8vC74XLp+HsaipKcowSlKgP56byIPI65++zoN9DoNTacVvtc0dJqGruizn6YRUGKdpmnodKXr6RyfS9Qr3remFdbXlahXYl2pesX705VRr2jfel0Z9RzH1dDrKF2v1HFL1CsV31/rStUrjlFXRj1NQ9MgPMh945vcniAtWbKE8ePHM2/ePGJjY5k5cybx8fHs27ePevXqlar/008/MWDAABITE7n77rtZtGgRvXv3Zvv27bRs2RKA119/nVmzZvHJJ58QFRXFiy++SHx8PLt378ZcNNh50KBBnDp1itWrV2O1Whk+fDijRo1i0aJFV/X8y5LxzQoAAq9w7g+b3eZIXoqTluLEpbjcqUuquMyaW5TMZJNtzSrcriCHnIK8wgGylUwDfNHwUTp8AF87+CqFj7Lja7fja7Pha7fjbbPiW2AtLFMKH7sdX7vCVxW+eheVm5XymAtLVbKjodBh13TYiy4gdsdnHbbizyXel/VqQ4dNFb/XnD8rDZumo8Bfh81fwxahc1y0tFw7xnQr5gwL5vQ8vDPy8T6fj82iJydVT06q6a9YNY3cABO5vibyfI3k+prJ8zWR62sk32TEatSjNB0KrbBVpCg9KGwh0ZzKi9+DdkF9nN6XV0X+tLie1lfkGOXojiu6YGnFXWOahlbcZVl08Sl8rwMKL4BQeBHX0NB0f9XVHOU6vAoK8Dubgd/ZdIJOpFA76QRelr8GBdsMBtKjIshsUJ/zDcLJqVcPZTSDpkfT6VE6PWheaHovlKYvnIFe06N0XmhF69AXvdfp0em8UDovdDo96PWgK+yideUC76VpGHUagdpFEotyJCBlJiplJCAl1xVvI2oet8+kHRsby4033sicOXMAsNvtREREMHbsWCZOnFiqfr9+/cjOzuabEpP1derUiTZt2jBv3jyUUoSHhzNhwgSefvppADIyMggJCWHBggX079+fPXv20Lx5c7Zs2UKHDh0AWLVqFXfddRfHjx8nPDz8snFX1Uzaxzb/QNbQR1B6HSdnjyfbbCPHkk1uQWHCkmvLIdeaQ549jxxbHnn2fHLt+eTaLeQpC7mqgDxVQC4F5FdBMlOsMDkpTEx8ihIUX7sdb6UcCYyv3Y5PiQTGaX1RuY9d4X0FCY1daVjwwlr0P0crXliUF5bi98WLKqxTgBfWomSiAB029NhUifdFr86fdRSoC7Yp+l/tXwlGGds4jqN3JB1O26AvqqM5yuzqr6SlrESm5HvPaV/4i8FmpdH5FK7POMn1mSeJyihcfK2XHtth03Rkmf3I8vYnx+xLgZeRAi9D4avBiE1voPC/pYWL0jTQ69A0XeFtwzoNdHo0nQ6l06HpNNDrC9frdYWJQPH2ej1a0bZa8Tq9HnQ6dHp90ee/ynU6XWEiQtHhcb54aoBe+ytZcVw0KS4r3EbTaSW2LdxO51hfeMHWitZrKMcxNFThRbtofxrFsWiO7junf8aL3zr9065KlSmrFXt2DvacbOzZ2RScTsOakow16RjWEydK/Ub6oCD8br0V/9vj8O3SBZ3JVKqOENVBtZhJ22KxsG3bNiZNmuQo0+l0xMXFsWnTpjK32bRpE+PHj3cqi4+PZ9myZQAcPnyY5ORk4uLiHOsDAwOJjY1l06ZN9O/fn02bNhEUFORIjgDi4uLQ6XRs3ryZ+++/v9Rx8/PzyS8xj01mZtX0Aa959ylige1RiteOzayUfXoVtbb4lEhafIpbYEq0xPgUJSy+JeoWJzRGuw5D0aJTBgrwIl+VTEIMTolJfomyXLzIwFAiWTE4kprC+vpS+/or0SnaD15Y1V/vi8tdTRQ0p6bvovf6wv9d6i9oYtbpnMuLm3z1Os3xv8i/1uP4XPLVoAOfEk3ef613/p9oyfLiY+mdtnMuL/k/W90FMRZuR6nYi+teeH4lz8OV8ysuL30ezoORlVJYT5zEcugglmPHsR4/juX4MazHjmM9dQp7ZiZ6ZScwN5PA3GtnbAWAvWjxRF4hIZiaNMG7VUv8unfH3KqVPItQXFPcmiClpaVhs9kICQlxKg8JCWHv3r1lbpOcnFxm/eTkZMf64rJL1bmw+87Ly4vatWs76lwoMTGRl156qZxnVnE++RoFOtgRA+FWG2Y7mJWG2a5hsuswquJFj1F54aX0GOwGvDBgUAb0mPDCiJcyodPM6PEGzYhdZ8KmM2DXGbHrDNg0Aza9sfCzvrAsQ2ckXWdE6Y3Y9CbQeaH0JpTegE7nVfYF9oJEoqwLrEnT8C7RRF7qQluiT/rC8tIJxF/lJZvEHRdrp0SgdHm1mNW2htE0DWOD+hgb1C9zvbJYKDiXju3sGQrOnMWWkY7Ky8een4fKy0fl52G3WCi6FQdlt1N424wdZbMXzv1kt4FdOV6x2VCqRL0Ly+z2wv2U2LZwfRn1lHK6i6zopEqe4CXKShRV5raX3cdf330ZhYWvXnr0vr5oPj7ofHzwql0HQ1goXmFhmKKj8apVCyGuZW4fg1RdTJo0yanlKjMzk4iIiEo/Tp9/bcGekcEb3t7ShC2uCZrRiCGkHoaQ0mMOhRDCXdyaIAUHB6PX60lJSXEqT0lJITQ0tMxtQkNDL1m/+DUlJYWwsDCnOm3atHHUSU1NddpHQUEBZ8+evehxTSYTpquQsGiaJs9cE0IIIdzMrY8UNxqNtG/fnjVFc/5A4SDtNWvW0Llz5zK36dy5s1N9gNWrVzvqR0VFERoa6lQnMzOTzZs3O+p07tyZ9PR0tm3b5qizdu1a7HY7sbGxlXZ+QgghhKie3N7FNn78eIYOHUqHDh3o2LEjM2fOJDs7m+HDhwMwZMgQ6tevT2JiIgBPPvkkPXr0YMaMGfTq1YvFixezdetWPvjgA6CwBWbcuHFMmzaN6Ohox23+4eHh9C66bb5Zs2b07NmTkSNHMm/ePKxWK2PGjKF///7luoNNCCGEEDWb2xOkfv36cfr0aaZMmUJycjJt2rRh1apVjkHWSUlJ6HR/NXR16dKFRYsWMXnyZJ5//nmio6NZtmyZYw4kgGeffZbs7GxGjRpFeno63bp1Y9WqVY45kAAWLlzImDFjuO222xwTRc6aNevqnbgQQgghPJbb50GqrqpqHiQhhBBCVJ3yXr/dOgZJCCGEEMITSYIkhBBCCHEBSZCEEEIIIS4gCZIQQgghxAUkQRJCCCGEuIAkSEIIIYQQF5AESQghhBDiApIgCSGEEEJcQBIkIYQQQogLuP1RI9VV8QTkmZmZbo5ECCGEEOVVfN2+3INEJEGqoPPnzwMQERHh5kiEEEII4arz588TGBh40fXyLLYKstvtnDx5En9/fzRNq7T9ZmZmEhERwbFjx+QZbx5Ifh/PJb+N55LfxnNdi7+NUorz588THh6OTnfxkUbSglRBOp2OBg0aVNn+AwICrpk/rNWR/D6eS34bzyW/jee61n6bS7UcFZNB2kIIIYQQF5AESQghhBDiApIgeRiTyURCQgImk8ndoYgyyO/jueS38Vzy23gu+W0uTgZpCyGEEEJcQFqQhBBCCCEuIAmSEEIIIcQFJEESQgghhLiAJEhCCCGEEBeQBMnDzJ07l8jISMxmM7Gxsfzyyy/uDqlGmTp1KpqmOS0xMTGO9Xl5eYwePZo6derg5+fHgw8+SEpKitM+kpKS6NWrFz4+PtSrV49nnnmGgoICpzrr16+nXbt2mEwmGjduzIIFC67G6VUrP/zwA/fccw/h4eFomsayZcuc1iulmDJlCmFhYXh7exMXF8eBAwec6pw9e5ZBgwYREBBAUFAQI0aMICsry6nOb7/9xk033YTZbCYiIoLXX3+9VCxLly4lJiYGs9lMq1atWLlyZaWfb3Vyud9m2LBhpf4e9ezZ06mO/DZVIzExkRtvvBF/f3/q1atH79692bdvn1Odq/nvWI2+ZinhMRYvXqyMRqP6+OOP1R9//KFGjhypgoKCVEpKirtDqzESEhJUixYt1KlTpxzL6dOnHesfffRRFRERodasWaO2bt2qOnXqpLp06eJYX1BQoFq2bKni4uLUjh071MqVK1VwcLCaNGmSo86ff/6pfHx81Pjx49Xu3bvV7NmzlV6vV6tWrbqq5+rpVq5cqV544QX15ZdfKkB99dVXTuunT5+uAgMD1bJly9Svv/6q7r33XhUVFaVyc3MddXr27Klat26tfv75Z/W///1PNW7cWA0YMMCxPiMjQ4WEhKhBgwapXbt2qX/961/K29tbvf/++446GzduVHq9Xr3++utq9+7davLkycpgMKjff/+9yr8DT3W532bo0KGqZ8+eTn+Pzp4961RHfpuqER8fr+bPn6927dqldu7cqe666y7VsGFDlZWV5ahztf4dq+nXLEmQPEjHjh3V6NGjHZ9tNpsKDw9XiYmJboyqZklISFCtW7cuc116eroyGAxq6dKljrI9e/YoQG3atEkpVXjh0Ol0Kjk52VHnvffeUwEBASo/P18ppdSzzz6rWrRo4bTvfv36qfj4+Eo+m5rjwouw3W5XoaGh6o033nCUpaenK5PJpP71r38ppZTavXu3AtSWLVscdb799lulaZo6ceKEUkqpd999V9WqVcvx2yil1HPPPaeaNm3q+Ny3b1/Vq1cvp3hiY2PVI488UqnnWF1dLEG67777LrqN/DZXT2pqqgLUhg0blFJX99+xmn7Nki42D2GxWNi2bRtxcXGOMp1OR1xcHJs2bXJjZDXPgQMHCA8P57rrrmPQoEEkJSUBsG3bNqxWq9NvEBMTQ8OGDR2/waZNm2jVqhUhISGOOvHx8WRmZvLHH3846pTcR3Ed+R3L7/DhwyQnJzt9j4GBgcTGxjr9FkFBQXTo0MFRJy4uDp1Ox+bNmx11unfvjtFodNSJj49n3759nDt3zlFHfi/XrV+/nnr16tG0aVMee+wxzpw541gnv83Vk5GRAUDt2rWBq/fv2LVwzZIEyUOkpaVhs9mc/sAChISEkJyc7Kaoap7Y2FgWLFjAqlWreO+99zh8+DA33XQT58+fJzk5GaPRSFBQkNM2JX+D5OTkMn+j4nWXqpOZmUlubm4VnVnNUvxdXurvQ3JyMvXq1XNa7+XlRe3atSvl95K/dxfXs2dPPv30U9asWcNrr73Ghg0buPPOO7HZbID8NleL3W5n3LhxdO3alZYtWwJctX/HroVrlpe7AxDiarrzzjsd72+44QZiY2Np1KgRn3/+Od7e3m6MTIjqo3///o73rVq14oYbbuD6669n/fr13HbbbW6M7NoyevRodu3axY8//ujuUGokaUHyEMHBwej1+lJ3GqSkpBAaGuqmqGq+oKAgmjRpwsGDBwkNDcVisZCenu5Up+RvEBoaWuZvVLzuUnUCAgIkCSun4u/yUn8fQkNDSU1NdVpfUFDA2bNnK+X3kr935XfdddcRHBzMwYMHAfltroYxY8bwzTffsG7dOho0aOAov1r/jl0L1yxJkDyE0Wikffv2rFmzxlFmt9tZs2YNnTt3dmNkNVtWVhaHDh0iLCyM9u3bYzAYnH6Dffv2kZSU5PgNOnfuzO+//+70j//q1asJCAigefPmjjol91FcR37H8ouKiiI0NNTpe8zMzGTz5s1Ov0V6ejrbtm1z1Fm7di12u53Y2FhHnR9++AGr1eqos3r1apo2bUqtWrUcdeT3ujLHjx/nzJkzhIWFAfLbVCWlFGPGjOGrr75i7dq1REVFOa2/Wv+OXRPXLHePEhd/Wbx4sTKZTGrBggVq9+7datSoUSooKMjpTgNxZSZMmKDWr1+vDh8+rDZu3Kji4uJUcHCwSk1NVUoV3h7bsGFDtXbtWrV161bVuXNn1blzZ8f2xbfH3nHHHWrnzp1q1apVqm7dumXeHvvMM8+oPXv2qLlz58pt/mU4f/682rFjh9qxY4cC1FtvvaV27Nihjh49qpQqvM0/KChIff311+q3335T9913X5m3+bdt21Zt3rxZ/fjjjyo6OtrpVvL09HQVEhKiBg8erHbt2qUWL16sfHx8St1K7uXlpd588021Z88elZCQcM3fSn6p3+b8+fPq6aefVps2bVKHDx9W33//vWrXrp2Kjo5WeXl5jn3Ib1M1HnvsMRUYGKjWr1/vNM1CTk6Oo87V+nespl+zJEHyMLNnz1YNGzZURqNRdezYUf3888/uDqlG6devnwoLC1NGo1HVr19f9evXTx08eNCxPjc3Vz3++OOqVq1aysfHR91///3q1KlTTvs4cuSIuvPOO5W3t7cKDg5WEyZMUFar1anOunXrVJs2bZTRaFTXXXedmj9//tU4vWpl3bp1Cii1DB06VClVeKv/iy++qEJCQpTJZFK33Xab2rdvn9M+zpw5owYMGKD8/PxUQECAGj58uDp//rxTnV9//VV169ZNmUwmVb9+fTV9+vRSsXz++eeqSZMmymg0qhYtWqgVK1ZU2XlXB5f6bXJyctQdd9yh6tatqwwGg2rUqJEaOXJkqYui/DZVo6zfBXD6N+Zq/jtWk69ZmlJKXe1WKyGEEEIITyZjkIQQQgghLiAJkhBCCCHEBSRBEkIIIYS4gCRIQgghhBAXkARJCCGEEOICkiAJIYQQQlxAEiQhhBBCiAtIgiSEEEIIcQFJkIQQNcawYcPo3bv3VT/uggUL0DQNTdMYN25cubYZNmyYY5tly5ZVaXxCCNd5uTsAIYQoD03TLrk+ISGBd955B3c9HCAgIIB9+/bh6+tbrvrvvPMO06dPdzzgVQjhWSRBEkJUC6dOnXK8X7JkCVOmTGHfvn2OMj8/P/z8/NwRGlCYwIWGhpa7fmBgIIGBgVUYkRDiSkgXmxCiWggNDXUsgYGBjoSkePHz8yvVxXbzzTczduxYxo0bR61atQgJCeHDDz8kOzub4cOH4+/vT+PGjfn222+djrVr1y7uvPNO/Pz8CAkJYfDgwaSlpbkc87vvvkt0dDRms5mQkBD+7//+70q/BiHEVSIJkhCiRvvkk08IDg7ml19+YezYsTz22GP06dOHLl26sH37du644w4GDx5MTk4OAOnp6dx66620bduWrVu3smrVKlJSUujbt69Lx926dStPPPEEf//739m3bx+rVq2ie/fuVXGKQogqIF1sQogarXXr1kyePBmASZMmMX36dIKDgxk5ciQAU6ZM4b333uO3336jU6dOzJkzh7Zt2/Lqq6869vHxxx8TERHB/v37adKkSbmOm5SUhK+vL3fffTf+/v40atSItm3bVv4JCiGqhLQgCSFqtBtuuMHxXq/XU6dOHVq1auUoCwkJASA1NRWAX3/9lXXr1jnGNPn5+RETEwPAoUOHyn3c22+/nUaNGnHdddcxePBgFi5c6GilEkJ4PkmQhBA1msFgcPqsaZpTWfHdcXa7HYCsrCzuuecedu7c6bQcOHDApS4yf39/tm/fzr/+9S/CwsKYMmUKrVu3Jj09/cpPSghR5aSLTQghSmjXrh3//ve/iYyMxMvryv6J9PLyIi4ujri4OBISEggKCmLt2rU88MADlRStEKKqSAuSEEKUMHr0aM6ePcuAAQPYsmULhw4d4rvvvmP48OHYbLZy7+ebb75h1v+3d4e4CQQBGEZ/qhErMHABQgiXQHAW5DrugUISDA5OgecKSHCAhlbUNJO0JS2UpHlPzySjNl9mNjPTabbbbXa7XRaLRa7Xa7rd7gNXD9yLQAL4oNPpZLPZ5HK5ZDQaZTAYpK7rVFWVl5fbP5lVVWW1WmU4HKbX62U2m2W5XKbf7z9w9cC9NF6fde0swD8xn89T1/WP/i9qNBpZr9dPeSIF+JwdJIA7OB6PaTabmUwmN40fj8dPvfkb+JodJIBfOp/P2e/3Sd6P1lqt1rdzDodDTqdTkqTdbt/8hhvwNwQSAEDBERsAQEEgAQAUBBIAQEEgAQAUBBIAQEEgAQAUBBIAQEEgAQAU3gATzf1mW1/OTQAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -249,7 +240,7 @@ "id": "fbc7da60", "metadata": {}, "source": [ - "The SEI growth is slow compared to the reversible component of the lithium plating. What happens if the SEI growth rate is increased?" + "The SEI growth is slow compared to the reversible component of the lithium plating. What happens if the SEI growth rate on the lithium metal electrode is increased?" ] }, { @@ -260,19 +251,19 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEGCAYAAACdJRn3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAqzklEQVR4nO3deZxcZZ3v8c+v9y29JU3SSSfpJIQlJGFrliAqo6IBWVxQ4argqMPFZUZH7x3x6iCj43XUmbnqXBQBGXADRRmNiiKXYXHAQDoQQhLIQtZOOkknve9d3b/7xzkdKk16S+p0dVV/369Xv7rq1KlzflWp1Lef85zzPObuiIiIjEdGsgsQEZHUo/AQEZFxU3iIiMi4KTxERGTcFB4iIjJuWckuYLxmzJjh1dXVyS5DRCSlrF279pC7VyRqeykXHtXV1dTW1ia7DBGRlGJmuxK5PR22EhGRcVN4iIjIuCk8RERk3BQeIiIybgoPEREZN4WHiIiMm8JDRETGTeEhIpFp74nxq+f3JrsMiYDCQ0Qi8+t1e/n0z9ZxsLU72aVIgik8RCQyDW09AMQGNOlculF4iEhkGjt6k12CREThISKROazwSFsKDxGJTJPCI20pPEQkMjpslb4UHiISGR22Sl8KDxGJhLvrsFUaU3iISCRau2I6RTeNKTxEJBKHO3qSXYJEKLLwMLO7zeygmW0YZb3zzCxmZtdEVYuITDx1lqe3KFse9wArR1rBzDKBrwN/jLAOEUkCdZant8jCw92fBBpHWe2vgV8CB6OqQ0SSQy2P9Ja0Pg8zmwO8E/jeGNa90cxqzay2oaEh+uJE5IQpPNJbMjvMvwV8zt0HRlvR3e9w9xp3r6moqIi+MhE5YYfbFR7pLCuJ+64B7jczgBnA5WYWc/dfJbEmEUmQRp1tldaSFh7uvmDwtpndA/xWwSGSPtRhnt4iCw8zuw+4BJhhZnXAl4BsAHe/Par9isjkoD6P9BZZeLj7deNY90NR1SEiyaHwSG+6wlxEEs7dOdzRS2lBdrJLkYgoPEQk4Tp6++mNDVBemJPsUiQiCg8RSbjG8DTd6QqPtKXwEJGEGxwUUS2P9KXwEJGEG+wsLy/MTXIlEhWFh4gk3OA1Hjpslb4UHiKScK+2PBQe6UrhISIJ19jRS25WBgU5mckuRSKi8BCRhDvc3sv0whyCoeskHSk8RCThGjt6KC/SIat0pvAQkYRr7OjVmVZpTuEhIgl3uKNXZ1qlOYWHiCRcY0cvZQUKj3Sm8BCRhOru66ezt5/p6vNIawoPEUmow7rGY0pQeIhIQg0OiqjwSG8KDxFJqMZODU0yFSg8RCShGjWi7pQQWXiY2d1mdtDMNgzz+PvNbL2ZvWhmT5vZmVHVIiIT5/CRuTx0nUc6i7LlcQ+wcoTHdwBvdPdlwFeAOyKsRUQmSGNHL1kZRnF+VrJLkQhF9q/r7k+aWfUIjz8dd3c1UBVVLSIycRo7eikrzME0sFVamyx9Hh8Bfj/cg2Z2o5nVmlltQ0PDBJYlIuOlq8unhqSHh5n9BUF4fG64ddz9DnevcfeaioqKiStORMYtGNdK4ZHukhoeZrYcuAu42t0PJ7MWEUkMhcfUkLTwMLN5wIPAB919S7LqEJHEaup8NTyMoN+jf8CTWZJEILIOczO7D7gEmGFmdcCXgGwAd78duAWYDnw37FiLuXtNVPWISPQGBpyWrj5K87MByM0O/j7t7R9IZlkSgSjPtrpulMc/Cnw0qv2LyMRr647hDiXhiLo5mWF4xBQe6SbpHeYikj6au4ILBIe2PHoUHmlH4SEiCdPc2QdAaUEQHjmZmYBaHulI4SEiCdPcdXR4HOnzUHikHYWHiCRMcziibkn+0X0ePbH+pNUk0VB4iEjCtKjlMWUoPEQkYQb7PEryB/s81GGerhQeIpIwzZ19FOVmkR2GRm62OszTlcJDRBKmuav3SKsD1OeRzhQeIpIwLZ19R/o7QNd5pDOFh4gkTHNXH2UFrw6KqD6P9KXwEJGEae7spSS+5ZGls63SlcJDRBKmufPVQREBzIyczAy1PNKQwkNEEsLdae46us8DgtaHWh7pR+EhIgnR3hOjf8ApzT96IqicrAydbZWGFB4ikhBHLhBUy2NKUHiISEIcGZok/+jwyMnK0GRQaUjhISIJ8epw7EcftsrNyqSnT+GRbiILDzO728wOmtmGYR43M/uOmW0zs/Vmdk5UtYhI9I5MBFWglsdUEGXL4x5g5QiPXwYsDn9uBL4XYS0iErEjLY9jHLZSh3n6iSw83P1JoHGEVa4GfuiB1UCpmVVGVY+IRGuwz6M4Xx3mU0Ey+zzmAHvi7teFy17DzG40s1ozq21oaJiQ4kRkfJo7e8nPziQvHEl3UNDyUHikm5ToMHf3O9y9xt1rKioqkl2OiBxDc+drLxAEtTzSVTLDYy8wN+5+VbhMRFJQcHV5zmuW52RlquWRhpIZHquA68Ozri4EWty9Pon1iMgJaBkyrtUgtTzSU1ZUGzaz+4BLgBlmVgd8CcgGcPfbgYeAy4FtQCfwl1HVIiLRa+7qZVFF0WuW62yr9BRZeLj7daM87sAnotq/iEyskfo8dNgq/aREh7mITG6DI+qW5B+rz0OHrdKRwkNETlhXXz+9sYGj5i8flBt2mAcHGyRdDHvYysy+M4bnt7r7FxNYj4ikoAOtPQDMLM59zWODswn29Ts5WTahdUl0RurzuBq4ZZTn3wwoPESmuPqWLgBmFee95rHB8OiJ9ZOTpYMd6WKk8Pg/7n7vSE82s7IE1yMiKehAazcAs0peGx45msc8LY30Z8BToz3Z3b+VuFJEJFXVtwwfHq+2PBQe6WSk8LjDzLaa2VfMbMmEVSQiKWd/SzfFeVkU5Lz2YIZaHulp2PBw97OBK4AY8Asze8HMbjaz6okqTkRSw/6WbipL8o/5WG5WMFCiWh7pZcTeK3ff7O7/4O5LgOuBEuBRMxv1kJaITB37W7uZeYxDVvDqYavuPl1lnk7GdOqDmWUAJwEzgULgYJRFiUhqqW/ppvIYZ1rBq/N7tHXHJrIkidiIw5OY2euB64B3AC8C9wN/6+4t0ZcmIqmgr3+AQ+09w7Y8ivOC8BicLErSw0gXCe4BdhEExq3urtaGiLzGwbYe3I99jQdw5Krz1m6FRzoZqeVxsbvvmrBKRCQl7W0KLhCcU3bsDvPi/OBrRi2P9DJSn8eoQ6Sb2a2JK0VEUtHe5k4AqoYJj/zsTLIzjVaFR1oZqeXxUTNrHeFxA64Fbk1oRSKSUuoaw5ZH6bHDw8wozstWyyPNjBQedwLTRnn+nQmsRURSUF1TFzOKcsnLzhx2nZL8bFp1tlVaGTY83P0fJrIQEUlNe5u7hu3vGDQtXy2PdKMhLkXkhNQ1dQ7b3zGoJD9bfR5pJtLwMLOVZrbZzLaZ2c3HeHyemT1mZs+b2XozuzzKekQksQYGnH3N3aOGR3FelsIjzUQWHmaWCdwGXAYsAa47xgCLXwR+Ho6jdS3w3ajqEZHEa2jvobd/gKphOssHleiwVdoZNTzM7BQze9TMNoT3l5vZWCaAOh/Y5u7b3b2X4GLDq4es40BxeLsE2Df20kUk2XYdHjxNt2DE9Yrzs2nt7tNUtGlkLC2PO4HPA30A7r6eoJUwmjnAnrj7deGyeLcCHzCzOuAh4K+PtSEzu9HMas2stqGhYQy7FpGJsG5PEwBL55SMuF5JfjZ9/U6XBkdMG2MJjwJ3f3bIskSdc3cdcI+7VwGXAz8KB2E8irvf4e417l5TUVGRoF2LyIl6blcz88oLqJj22rnL4w2Ob9XapdN108VYwuOQmS0iOMSEmV0D1I/heXuBuXH3q8Jl8T4C/BzA3f8M5AEzxrBtEUkyd2ft7ibOmVc66rqD41up3yN9jCU8PgF8HzjNzPYCnwY+NobnrQEWm9kCM8shONS1asg6u4E3A5jZ6QThoeNSIimgrqmLhrYezp1fNuq6Ghwx/Yw4JDuAu28H3mJmhUCGu7eNZcPuHjOzTwIPA5nA3e6+0cy+DNS6+yrgs8CdZva3BC2bD7l61ERSwgt1zQCcPW/08DgyOGKnwiNdjBoeZvaZIfcBWoC17r5upOe6+0MEHeHxy26Ju70JeN3YyxWRyeLl+jYyM4zFM4tGXVctj/QzlsNWNcBNBGdKzQH+O7CSoMXwdxHWJiKT2OYDbSyYUXhkjvKRaEKo9DNqy4Ogo/scd28HMLMvAb8D3gCsBb4RXXkiMllt3t/GslFO0R00LS/4qtHZVuljLC2Pk4CeuPt9wEx37xqyXESmiI6eGLsbOzl11mgDbweyMjMoys1SyyONjKXl8RPgGTP7dXj/SuCnYQf6psgqE5FJa8uB4LyZsYYHDA7LrvBIF2M52+orZvYH4KJw0U3uXhvefn9klYnIpLVxXzBP3GnjCI9peWp5pJOxtDxw9zVmtovgOgzMbJ677460MhGZtP7z5YNUleUzr3zkMa3iaXDE9DKWgRGvMrOtwA7gifD376MuTEQmp46eGP+17RCXLpk5eOr+mBRrTo+0MpYO868AFwJb3H0B8BZgdaRVicik9eSWBnpjA1y6ZOa4nqcJodLLWMKjz90PAxlmluHujxFc+yEiU9Cv1+1jemEO51eXj+t5xXmaxzydjKXPo9nMioAngZ+Y2UGgI9qyRGQyauzo5dGXD3D9imqyMsc3l1xJfjbtPTFi/QPjfq5MPmP5F7wa6AT+FvgD8ApwRZRFicjk9Kvn99LX71xzbtW4nzs4vlWbWh9pYSzhcYu7D7h7zN3vdffvAJ+LujARmXx+sbaOpXOKOb2yePSVh9Cw7OllLOFx6TGWXZboQkRkctu4r4VN9a2859y5o698DBocMb0M2+dhZh8DPg4sNLP1cQ9NA56KujARmVweqK0jJzODq8+afVzPL1bLI62M1GH+U4LrOb4G3By3vM3dGyOtSkQmld7YAL9et5dLl8yktCDnuLZxpOWhwRHTwkjhkQm0EswkeBQzK1eAiEwdj750gKbOPq6pGX9H+aCyMHQOtWs81XQwUnisJZy3HBh6GakDCyOpSEQmnQfW1jGzOJc3LK447m1ML8whO9Oob+lOYGWSLMN2mLv7AndfGP4sGPIzpuAws5VmttnMtpnZzcOs814z22RmG83sp8f7QkQkGgdbu3l880HedU4VmRljH45kqIwMY1ZJHvtbuhJYnSTLmAZGNLOrCCZ/Anjc3X87hudkArcRnK1VB6wxs1Xh1LOD6ywGPg+8zt2bzOyk8b4AEYnWg8/vZcA5rms7hqosyWefWh5pYSwDI/4T8CmCuTs2AZ8ys/89hm2fD2xz9+3u3gvcT3DBYby/Am5z9yYAdz84nuJFJFqH2nu49+mdnDOvlEUVo89VPprKkjzq1fJIC2O5zuNy4FJ3v9vd7yaYv3wsV5jPAfbE3a8Ll8U7BTjFzJ4ys9VmtvJYGzKzG82s1sxqGxoaxrBrETlR7s4nfvIcTZ29fOnKMxKyzcqSfA609DAw4KOvLJPaWAeYKY27PbZJi8cmC1gMXAJcB9xpZqVDV3L3O9y9xt1rKiqOv8NORMZuzc4mntnRyP+6/HTOnFuakG1WluTR2z/A4Y7ehGxPkmcsfR5fA543s8cIzrp6A0df9zGcvUD8pahV4bJ4dcAz7t4H7DCzLQRhsmYM2xeRCP37UzsoLcg+7ivKj6WyJA+A+pYuKqblJmy7MvGGbXmY2W1m9jp3v49gPo8HgV8CK9z9Z2PY9hpgsZktMLMc4Fpg1ZB1fkXQ6sDMZhAcxto+3hchIolV19TJwxv3c+1588jPyUzYdmeX5gPodN00MFLLYwvwz2ZWCfwcuM/dnx/rht09ZmafBB4muODwbnffaGZfBmrdfVX42FvNbBPQD/zPcO4QEUmiH63ehZnxwRXzE7rdWYMtj2Z1mqe6YcPD3b8NfNvM5hO0Gu42s3zgPoIg2TLaxt39IeChIctuibvtwGfCHxGZBDp6Ytz/7B7edsZM5oQthUSZXphDXnYGe5oUHqlu1A5zd9/l7l9397MJOrXfAbwUdWEikhz//tQOWrr6+KvXJ34QCTNjXnkBuxs7E75tmVhjuc4jy8yuNLOfEAyUuBl4V+SViciEa+ro5ftPbuctp8/k7HllkexjXnkhuw8rPFLdSEOyX0rQ0rgceJbgIr8b3V1T0IqkqW/+cTOdvf38z7edGtk+5pUX8NS2Q7g7Zsc/3Ikk10gd5p8nGJb9s4NXgItI+tqwt4X7nt3NX160gFNnTYtsP/OnF9DV109Dew8nTcuLbD8SrZE6zN80kYWISPK4O1/93UuUFeTw6UsXR7qveeUFAOxp7FR4pLCxXmEuImnssc0H+fP2w3zqzYspzsuOdF9zw/DYpX6PlKbwEJniYv0DfO2hl1kwo5D/dsG8yPdXVZaPmcIj1Sk8RKa4X6/bx9aD7Xxu5alkZ0b/lZCXncnCGYWsr2uOfF8SHYWHyBT3szV7WFRRyNvOmDVh+zx/QTm1u5ro1+i6KUvhITKF7TzUwbM7G3n3uVUTetrsedXltHXH2Ly/bcL2KYml8BCZotydf/vPbZjBO88eOtVOtM6rLgdgzc7GCd2vJI7CQ2SK+uGfd/HL5+r4xCUnU1mS2DGsRlNVlk9lSR61u3QJWapSeIhMQV29/Xz70a1cfPIMPnPpKRO+fzNj6ZwSNu5rmfB9S2IoPESmoJ+t2U1jRy+festiMjKSM0TIGbOL2XGog46eWFL2LydG4SEyxRxo7eZbj27lggXlR/oekmFJZTHu8PL+1qTVIMdP4SEyhbg7n/vlerr7+vnau5YltZYz5pQAsGmfwiMVKTxEppD7nt3D45sb+Pxlp7OwoiiptcwuyaO0IJuNCo+UpPAQmSJ2H+7kH3+3iYtPnsEHL0zs9LLHw8w4Z14Zf9p6iAFdLJhyIg0PM1tpZpvNbJuZ3TzCeu82MzezmijrEZmq+geczz6wjswM4xvXLE9aJ/lQV55Zyd7mLp7brVN2U01k4WFmmcBtwGXAEuA6M1tyjPWmAZ8CnomqFpGp7q4/bWfNzib+4aozmJ3geclPxKVLZpGXncGv1u1NdikyTlG2PM4Htrn7dnfvJZiJ8OpjrPcV4OtAd4S1iExZL9a18C9/3MLKM2ZN+JXkoynKzeKtS2axat0+Ont1ym4qiTI85gB74u7XhcuOMLNzgLnu/ruRNmRmN5pZrZnVNjQ0JL5SkTTV0NbDx3+6lhlFOfzvdy2blNO+fnDFfFq7Y/zq+X3JLkXGIWkd5maWAfwr8NnR1nX3O9y9xt1rKioqoi9OJA0cbu/h/XetpqGth9vefw7lhTnJLumYauaXsaSymHuf3om7Os5TRZThsReYG3e/Klw2aBqwFHjczHYCFwKr1GkucuKaO3v5wA+eZdfhTu6+4TzOnleW7JKGZWZ86KJqNh9oY/V2DZSYKqIMjzXAYjNbYGY5wLXAqsEH3b3F3We4e7W7VwOrgavcvTbCmkTSXktnHx/8wbO8crCdO6+v4aKTZyS7pFFdddZsygqyuffpnckuRcYosvBw9xjwSeBh4CXg5+6+0cy+bGZXRbVfkals9+FO3vW9p3h5fyu3f/Ac3nBKahzmzcvO5H3nzeOPm/azt7kr2eXIGETa5+HuD7n7Ke6+yN2/Gi67xd1XHWPdS9TqEDl+j28+yDu++xSH2nv50Ucu4E2nzUx2SePygQuD+dN/vHpXkiuRsdAV5iIpzN1Zs7ORD9z1DB/69zWU5mfzHx+/iAsXTk92aeNWVVbApUtmcv+zu+nu6092OTKKrGQXICJj4+40dfax41AHrzS08+yORp7edoh9Ld2UFWTz91cs4QMXziM3KzPZpR63Gy6q5uGNB1j1wj7eWzN39CdI0ig8RCaZzt4YL+xpYfP+VvY0dbGnsZPdjZ3UNXXRHjf3RWlBNisWTudvLz2Jy5dVUpib+v+dVyyczikzi7j36Z28Z4LnVZfxSf1Pm0gaaO3u43fr63nwuTqe291MfzhQYF52BnPLCphbXsAFC8qZW17AghmFLJhRSPX0wkkzRlWimBk3XFTNF/5jA/c+vZMPvW5BskuSYSg8RJLocHsPd/3XDn749E46evtZVFHITW9cyLnzy1g6p4SKotwp99f3tefN44nNDfzDbzexrKqEc+cnb8IqGZ7CQyQJ9jZ3cdeftnP/s3vojvVzxfLZfOTiBZxZVTLlwmKozAzjW9eexSXffJyvPfQyD9y0Ysq/J5ORwkNkAm090MbtT2zn1+EosledNZuPX3IyJ5+U3ImZJpuCnCz+5s2L+eKvNvD4lgb+4tSTkl2SDKHwEJkAa3c18b3HX+H/vXSA/OxMPrhiPh99/ULmTKLh0Seb9503l9se28btj7+i8JiEFB4iEdl5qIOHNtTz0Iv1bNjbSllBNp9+y2JuWFFN2SQdpHAyyc7M4CMXL+Aff/cSz+9umtTjc01FCg+RBHqloZ2H1tfz0Ib9vFQfzM191txSbr1yCe89by4FOfovNx7Xnj+P2594hVt/s4kHP3YRmWl2dlkq0ydZ5AS4O1sPtvP7F/fz0Iv1bD7QBsC588v44ttP57JllTo0dQKKcrP4+yuW8Kn71/Hj1bu44aLqZJckIYWHyDgMDDibD7SxZmcjz+xoZM2ORg629WAG580v50tXLuGypZXMKslLdqlp46ozZ/OLtXV88+HNvO2MWXpvJwmFh8gIemMDvLi3hTU7g6BYs7OR1u7gKu/KkjwuXDidCxaW85bTZzKzWF9qUTAzvvqOZbz1W0/wxV9t4M7rz9Wpu5OAwkMk1NTRy3O7m9h8oI0t+9vYfKCdVw6209s/AMDCikIuX1bJ+QvKOa+6nKqyfH2JTZB50wv47KWn8tWHXuI36+u56szZyS5pylN4yJTh7jS09bCnqYu6pmCsqF2HO9h1OBg7an9rN4OzoM4pzeeUmUW8YfEMzppbSk11ORXTcpP7Aqa4D1+8gN+s38dXf7eJS0+fSX5O6g4AmQ4UHpKS+voH6Oztp6u3n87eGHVNXXT29hMbGOBQWw+H2ns51N5DQ1sPh9qD+w1tPUdaEYMqpuUyv7yAFYums6iiiPMXlHParGlMy8tO0iuT4WRmGH9/xRLec/ufuetP2/nrNy9OdklTmsJDIjf0i76zt5+uvv5wWYyOnn46+4Lbnb3B8rbuGB09MdoHf7pjdPQGv9t7YvTEBkbcZ2aGMb0whxlFucyYlsuik4qoKMplTlk+c8sKqCrLp6qsQH+9ppjzqst582kn8e9P7+Sv3rCQvGz9+yVLpOFhZiuBbwOZwF3u/k9DHv8M8FEgBjQAH3Z3TSM2SbX3xNjf0kVTZx+NHb00d/bS2NEX/u6lqbOPps5geUdPEBRdff309fu49pOfnUlhbhZFuZkU5WVRmJNFZUlecDs3i2m5we+CnEzyczIpyMlkVnE+xflZZGVkMKMoh7KCnLQbcVYCf/m6BTz6g2f4/YZ63nl2VbLLmbIiCw8zywRuAy4F6oA1ZrbK3TfFrfY8UOPunWb2MeAbwPuiqknGJ9Y/wLM7GvnjpgM8u6ORl/e3MnCMHMjJyqC8IIeywhzKCrI5bVYxhbmZFORkBV/u2YNf8sEXfkFO3GPhz+Dj+dmZuhBMRnTRouksmFHIHU/u4LKllWp9JEmULY/zgW3uvh3AzO4HrgaOhIe7Pxa3/mrgAxHWI2PQ3hPjsZcP8l9bD/HISwdo7OglLzuDmvnl/PWbFrOwopCyghzKC18Ni/zsTJ11JBMmI8P43MrTuOnHa/lfD77Iv77vrGSXNCVFGR5zgD1x9+uAC0ZY/yPA74/1gJndCNwIMG/evETVJ6G6pk6e3HKI/9rWwBObG+jo7acoN4s3nXYSly2dxRtPrdCwGjKprFw6i79582K+8+hW3lMzlxWLUm/O9lQ3Kb4RzOwDQA3wxmM97u53AHcA1NTUjO8AuhzR0ROjNzbAxn2t1O5qZO2uJrYeaGd/azcQXPR25Zmzefe5VZw9t5SszIwkVywyvI9fsohf1O7ha79/iQc/dpE+rxMsyvDYC8TPYF8VLjuKmb0F+ALwRnfvibCetNXXP0CmGY2dvbR09dHWHaO+uYsDrd00dvbR2NHDtoPtrN7eeOQ5ZnDarGIuOnk6SyqLueTUChZVFOnwk6SMvOxMbr78dP7mvuf55z9u4ebLTkt2SVNKlOGxBlhsZgsIQuNa4L/Fr2BmZwPfB1a6+8EIazmivqWLQ229dPTGcA9O6czMgAwzMswwgwGHAXcGBvyYt/vdcXcGBnj1tkP/gAfrho8duX2sbQw4ftT2guf3xgboifXT3Rf87okN0N0X/O7pO/Zjhzt6AY5c4Hb0ewyl+dnMLM7jE3+xiLKCHBbPnMbZ80op1rUMkuKuOnM2z2w/zO1PvMLyqhIuX1aZ7JKmjMjCw91jZvZJ4GGCU3XvdveNZvZloNbdVwHfBIqAB8K/eHe7+1UR1cN3H3+Fbz68OYrNJ0yGBX9R5WZlkJuVSV528Ds3O4PcrAwKc7MoLwyXZWWQm53JSdNycXdKC3KYXpQTnNpamsfM4jzKCnJ09pKktVuuXMKm+lb+xwMvsKSymOoZhckuaUowP9afq5NYTU2N19bWjvt5P6/dw9/9Yj1XnjmbK5dXUpibFbQywtbDYMtgsDViFrRGht7OsGCgtsy4lkqwPHgsI/62GRkZg+uGz8t47e3BVk+GDe5bX/Yi41Hf0sVb/8+TLKks5r6/ulDX+ByDma1195pEbW9SdJhPhCuXz6a9O8aHLqrWB0skzVSW5POFy0/n5gdf5LbHtmnokgkwZU5PyM/J5MMXL1BwiKSp9503l3eePYd/eWQLv3lhX7LLSXtTJjxEJL2ZGf/07mWcV13GZx94gbW7mpJdUlpTeIhI2sjNyuT7H6xhVnEeN/6wlt2HO5NdUtpSeIhIWikvzOHuD51HbMB59+1Ps25Pc7JLSksKDxFJOyefVMQDN60gNyuD933/z/x2vfpAEk3hISJp6ZSZ0/j1J17H0jklfPKnz/Nvj24l1S5NmMwUHiKStqYX5fKTj15w5CysT/70eQ6EY7nJiZky13mIyNSUl53Jv773TBbPLOJbj2zlkZcO8NYlM1kyu5jq6YXMLM7jpGm5FOdnU5SbpREZxkjhISJpz8z4+CUnc8Wy2dz5p+08vHE/v11ff8x1i3KzKMnPpqwwm7KCHOaU5lNTHcxtf8bsYo0AEZoyw5OIiMRr74mx63AHB9t6aGjtobW7j/aeGC1dfTQfmVK5j+0N7bR2xwCYXZLHyqWVXL5sFufOL0upINHwJCIiCVCUm8UZs0s4Y5T1+gecHYc6WLenmT9sqOfHq3dx91M7WFRRyPUrqnnXOXOYNgVHqFbLQ0RkHNq6+3h44wF+9OedvFDXQmFOJu8+t4rrV8zn5JOmJbu8YSW65aHwEBE5Tuv2NPPDp3fy2/X19PYP8LqTp3P9imrefNpJk25mQ4WHwkNEJplD7T38bM0efrx6F/Ut3cwqzuPtyyu5YnklZ80tnRR9IwoPhYeITFKx/gEe2XSAXz5XxxNbGujrd+aU5nPF8krevrySpbNLkjayt8JD4SEiKaClq49HNh3gd+v38aeth4gNOEW5WSydU8zyqlKWzSlheVUJ88oLJqRlklLhYWYrgW8TTEN7l7v/05DHc4EfAucCh4H3ufvOkbap8BCRVNPc2cujLx1k3Z5m1u9t4aX6VnpjAwAU52WxvKqUpWGYLJtTQlVZfsIDJWXCw8wygS3ApUAdsAa4zt03xa3zcWC5u99kZtcC73T39420XYWHiKS63tgAWw608eLeluCnroWX97fS1x98H5cVZLOsqpTlc0pYVhWEyqzivBMKlFS6zuN8YJu7bwcws/uBq4FNcetcDdwa3v4F8H/NzDzVjqWJiIxDTlYGS+eUsHROCdeFy3pi/Wze38b6uiBM1u9t4XtPvEL/QPB1OKMol5veuJCPvn5h8gqPE2V4zAH2xN2vAy4Ybh13j5lZCzAdOBRhXSIik05uVibLq0pZXlV6ZFl3Xz+b6luDMKlroWJabvIKHCIlrjA3sxuBGwHmzZuX5GpERCZGXnYm58wr45x5Zcku5TWivIplLzA37n5VuOyY65hZFlBC0HF+FHe/w91r3L2moqIionJFRGSsogyPNcBiM1tgZjnAtcCqIeusAm4Ib18D/Kf6O0REJr/IDluFfRifBB4mOFX3bnffaGZfBmrdfRXwA+BHZrYNaCQIGBERmeQi7fNw94eAh4YsuyXudjfwnihrEBGRxJtcI3eJiEhKUHiIiMi4KTxERGTcFB4iIjJuKTeqrpk1ALuO8+kzSM2r11OxbtU8cVKxbtU8MeJrnu/uCbtQLuXC40SYWW0iBwabKKlYt2qeOKlYt2qeGFHWrMNWIiIybgoPEREZt6kWHncku4DjlIp1q+aJk4p1q+aJEVnNU6rPQ0REEmOqtTxERCQBFB4iIjJuUyY8zGylmW02s21mdnOSa5lrZo+Z2SYz22hmnwqX32pme81sXfhzedxzPh/WvtnM3ha3fMJel5ntNLMXw9pqw2XlZvaImW0Nf5eFy83MvhPWtd7Mzonbzg3h+lvN7Ibh9peAek+Ney/XmVmrmX16Mr7PZna3mR00sw1xyxL23prZueG/3bbwucc/GfbINX/TzF4O6/oPMysNl1ebWVfce377aLUN9/ojqjthnwkLpqF4Jlz+MwumpIii5p/F1bvTzNaFyyfmvXb3tP8hGBL+FWAhkAO8ACxJYj2VwDnh7WnAFmAJwXzu/+MY6y8Ja84FFoSvJXOiXxewE5gxZNk3gJvD2zcDXw9vXw78HjDgQuCZcHk5sD38XRbeLpugz8B+YP5kfJ+BNwDnABuieG+BZ8N1LXzuZRHV/FYgK7z99biaq+PXG7KdY9Y23OuPqO6EfSaAnwPXhrdvBz4WRc1DHv8X4JaJfK+nSsvjfGCbu293917gfuDqZBXj7vXu/lx4uw14iWA+9+FcDdzv7j3uvgPYRvCaJsPruhq4N7x9L/COuOU/9MBqoNTMKoG3AY+4e6O7NwGPACsnoM43A6+4+0ijEyTtfXb3JwnmtBlazwm/t+Fjxe6+2oNvhx/GbSuhNbv7H909Ft5dTTCD6LBGqW2415/wukcwrs9E+Jf8m4BfJLLukWoO9/le4L6RtpHo93qqhMccYE/c/TpG/rKeMGZWDZwNPBMu+mTY5L87ruk4XP0T/boc+KOZrbVgXnmAme5eH97eD8wMb0+Wmgddy9H/uSbz+zwoUe/tnPD20OVR+zDBX7eDFpjZ82b2hJm9Plw2Um3Dvf6oJOIzMR1ojgvQiXivXw8ccPetccsif6+nSnhMSmZWBPwS+LS7twLfAxYBZwH1BE3RyeRidz8HuAz4hJm9If7B8K+ZSXfud3jM+SrggXDRZH+fX2OyvrfDMbMvADHgJ+GiemCeu58NfAb4qZkVj3V7E/D6U+4zEec6jv7DaELe66kSHnuBuXH3q8JlSWNm2QTB8RN3fxDA3Q+4e7+7DwB3EjSNYfj6J/R1ufve8PdB4D/C+g6EzeHBZvHByVRz6DLgOXc/AJP/fY6TqPd2L0cfPoq0fjP7EHAF8P7wi4jwsM/h8PZagv6CU0apbbjXn3AJ/EwcJjiMmDVkeSTC/bwL+Nngsol6r6dKeKwBFodnQeQQHMJYlaxiwmOUPwBecvd/jVteGbfaO4HBMytWAdeaWa6ZLQAWE3R8TdjrMrNCM5s2eJugY3RDuL/Bs3puAH4dV/P1FrgQaAmbxQ8DbzWzsvDQwFvDZVE66i+zyfw+D5GQ9zZ8rNXMLgw/e9fHbSuhzGwl8HfAVe7eGbe8wswyw9sLCd7b7aPUNtzrj6LuhHwmwrB8DLhmIuoG3gK87O5HDkdN2Hs9nh7/VP4hOENlC0EKfyHJtVxM0CxcD6wLfy4HfgS8GC5fBVTGPecLYe2biTtTZqJeF8FZJS+EPxsH90VwjPdRYCvw/4DycLkBt4V1vQjUxG3rwwQdj9uAv4z4vS4k+GuwJG7ZpHufCcKtHugjOBb9kUS+t0ANwRfiK8D/JRxdIoKatxH0BQx+rm8P1313+LlZBzwHXDlabcO9/ojqTthnIvy/8mz4XjwA5EZRc7j8HuCmIetOyHut4UlERGTcpsphKxERSSCFh4iIjJvCQ0RExk3hISIi46bwEBGRcVN4iIjIuCk8ZMoys+lxw1bvt1eH5G43s+9GsL97zGyHmd00wjqvt2Co/g3DrSMyGeg6DxGC+RyAdnf/5wj3cQ/wW3f/xSjrVYfrLY2qFpETpZaHyBBmdomZ/Ta8fauZ3WtmfzKzXWb2LjP7hgUT6vwhHKNscJKdJ8IRhx8eMtzFcPt5j5ltMLMXzOzJqF+XSCIpPERGt4hgjoargB8Dj7n7MqALeHsYIP8GXOPu5wJ3A18dw3ZvAd7m7meG2xZJGVmjryIy5f3e3fvM7EWCGeT+EC5/kWDWtlOBpcAjwXhzZBKMQzSap4B7zOznwIOJLlokSgoPkdH1ALj7gJn1+asdhQME/4cM2OjuK8azUXe/ycwuAN4OrDWzcz0cSltkstNhK5ETtxmoMLMVEMzVYmZnjPYkM1vk7s+4+y1AA0fPDyEyqanlIXKC3L3XzK4BvmNmJQT/r75FMCz2SL5pZosJWi6PEgx3L5ISdKquyATRqbqSTnTYSmTitABfGe0iQeA3wKEJq0rkOKjlISIi46aWh4iIjJvCQ0RExk3hISIi46bwEBGRcfv/SXM+WST1bB0AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAGwCAYAAAC99fF4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABTXUlEQVR4nO3deXhTVf4/8HeWJumaUkpXSguUfSlQoBSVRYqICOIyMOpPkK86grh2FqyjIM73S0EFcUGZYUR0HAEXREcRBquIYJW1LAJlK7RAd2jSNWmS8/ujTUokhZQmvUn6fj1PHtqbc5NP7nPbvjnn3HNlQggBIiIiIrIjl7oAIiIiIk/EkERERETkAEMSERERkQMMSUREREQOMCQREREROcCQREREROQAQxIRERGRA0qpC2hrFosFFy5cQHBwMGQymdTlEBERkROEEKisrERMTAzk8rbp42l3IenChQuIi4uTugwiIiK6DgUFBejcuXObvFe7C0nBwcEAGg5ySEiIxNUQERGRM/R6PeLi4mx/x9tCuwtJ1iG2kJAQhiQiIiIv05ZTZThxm4iIiMgBhiQiIiIiBxiSiIiIiBxgSCIiIiJygCGJiIiIyAGGJCIiIiIHGJKIiIiIHGBIIiIiInKAIYmIiIjIAYYkIiIiIgcYkoiIiIgcYEgiIiIicoAhiYiI2kRdvVnqEohahCGJiIjc7ufT5ej9wma8/u0JqUshchpDEhERud1znx8CALz27XGJKyFyHkMSERG5na6mXuoSiFqMIYmIiNzuUo1R6hKIWowhiYiI3M4ipK6AqOUYkoiIiIgcYEgiIqI2o1Lyzw55D56tRETUZjoE+EldApHTGJKIiKjNhPqrpC6ByGkMSURE5FYGU9NK26HsSSIvwpBERERudfkaScEahiTyHgxJRETkVhW1TSFJLpOwEKIWYkgiIiK3ulTNhSTJOzEkERGRW13ek0TkTRiSiIjIrSp4SxLyUgxJRETkVhW8uS15KYYkIiJyq0sMSeSlGJKIiMitdLUcbiPvxJBERERudamaPUnknRiSiIjIrSrYk0ReStKQtH37dkyePBkxMTGQyWTYuHGj0/vu3LkTSqUSgwYNclt9RETUepy4Td5K0pBUXV2NpKQkrFixokX7VVRUYMaMGRg3bpybKiMiIldhSCJvpZTyzSdOnIiJEye2eL/Zs2fjvvvug0KhuGbvk8FggMFgsH2v1+tb/H5ERHT9LnGdJPJSXjcn6b333sPp06exYMECp9pnZmZCq9XaHnFxcW6ukIiIrOrqzTCYLFKXQXRdvCoknThxAs8++yw+/PBDKJXOdYJlZGRAp9PZHgUFBW6ukoiIrNiLRN5M0uG2ljCbzbjvvvuwcOFC9OzZ0+n91Go11Gq1GysjIqLmcD4SeTOvCUmVlZXYs2cP9u/fj8cffxwAYLFYIISAUqnEf//7X9x8880SV0lERJdjTxJ5M68JSSEhITh06JDdtrfffhvfffcdPv30U3Tt2lWiyoiIqDnsSSJvJmlIqqqqwsmTJ23f5+XlIScnB2FhYejSpQsyMjJw/vx5fPDBB5DL5ejfv7/d/hEREdBoNFdsJyIiz8CQRN5M0pC0Z88ejB071vZ9eno6AGDmzJlYs2YNCgsLkZ+fL1V5RETUSlxtm7yZTAghpC6iLen1emi1Wuh0OoSEhEhdDhGRT8vcdBR/334agSoFqo1m3NI3Ev+YMVTqssgLSfH326uWACAiIu9iHW4LDVBJXAlRyzEkERGR21iH20ID/CSuhKjlGJKIiMhtmnqSGJLI+zAkERGR29hCkj+H28j7MCQREZHbWIfbtOxJIi/EkERERG7T1JPEkETehyGJiIjcoq7eDIPJAoBzksg7MSQREZFbWHuRFHIZAtVecxcsIhuGJCIicgvb5f/+fpBBJnE1RC3HkERERG5h7UnipG3yVgxJRETkFpy0Td6OIYmIiNxCZ1ttm2skkXdiSCIiIrfgatvk7RiSiIjILSpqudo2eTeGJCIicgv2JJG3Y0giIiK3qKixzkliSCLvxJBERERuYVsCgFe3kZdiSCIiIrewzUni1W3kpRiSiIjILXQ1TStuE3kjhiQiInKLpp4khiTyTgxJRETkcgaTGTVGMwAuAUDeiyGJiIhcTtfYiySTAcEapcTVEF0fhiQiInI53WVXtsnlMomrIbo+DElERORyTattcz4SeS+GJCIicrmm1bY5H4m8F0MSERG5HFfbJl/AkERERC6n43Ab+QCGJCIicjkOt5EvYEgiIiKXu9Q43Mb7tpE3Y0giIiKX42rb5AsYkoiIyOV0NQxJ5P0YkoiIyOUqaq03t+WcJPJeDElERORy1onbWvYkkRdjSCIiIpezDbdx4jZ5MUlD0vbt2zF58mTExMRAJpNh48aNV22/YcMGjB8/Hp06dUJISAhSU1OxZcuWtimWiIicUm+2oNJgAsAlAMi7SRqSqqurkZSUhBUrVjjVfvv27Rg/fjw2bdqEvXv3YuzYsZg8eTL279/v5kqJiMhZ+sYr2wAgRKOUsBKi1pH07J04cSImTpzodPvly5fbfb9o0SJ88cUX+M9//oPBgwc73MdgMMBgMNi+1+v111UrERE5x3r5f4hGCaWCszrIe3n12WuxWFBZWYmwsLBm22RmZkKr1doecXFxbVghEVH7w9W2yVd4dUh69dVXUVVVhWnTpjXbJiMjAzqdzvYoKChowwqJiNofXS1vbku+wWsHiz/66CMsXLgQX3zxBSIiIpptp1aroVar27AyIqL2zXb5P69sIy/nlSFp3bp1ePjhh/HJJ58gLS1N6nKIiOgyHG4jX+F1w21r167FrFmzsHbtWkyaNEnqcoiI6DcqaqyrbbMnibybpD1JVVVVOHnypO37vLw85OTkICwsDF26dEFGRgbOnz+PDz74AEDDENvMmTPx+uuvIyUlBUVFRQAAf39/aLVaST4DERHZ481tyVdI2pO0Z88eDB482Hb5fnp6OgYPHoz58+cDAAoLC5Gfn29r/49//AMmkwlz585FdHS07fHUU09JUj8REV3J0Zwk60oAZouQoiSi6yJpT9KYMWMgRPM/MGvWrLH7ftu2be4tiIiIWk1Xe2VI8mtMSUazRZKaiK6H181JIiIiz6ava1xM8rKQpFI2hiQTQxJ5D4YkIiJyqav1JNWzJ4m8CEMSERG5lL624ea2IRoHPUkMSeRFGJKIiMilrMNt2suublNZe5JMnLhN3oMhiYiIXKau3mybdxSiabo2iD1J5I0YkoiIyGX0jfOR5DIgUNUUkmxXt3HiNnkRhiQiInIZ66TtEH8/yOUy23YVlwAgL8SQRERELmO7/F9jv9q2StkQmHh1G3kThiQiInKZpp4k+7WKVQoFAA63kXdhSCIiIpexXv6v/c3Nbf3Yk0ReiCGJiIhcptnhNttikgIW3r+NvARDEhERuYzOwc1tAcBP2fTnpt7C3iTyDgxJRETkMo7u2wY09SQBnJdE3oMhiYiIXMY2cVvz24nbl/UkmTncRt6BIYmIiFymuYnbcrkMysZ1k9iTRN6CIYmIiFzm8sUkf8vPNnmbIYm8A0MSERG5THNzkoCm+7cZ2JNEXoIhiYiIXKa5JQAA9iSR92FIIiIil2laAkB5xXNqJW9yS96FIYmIiFzCYhGoNDRM3HY8J4mrbpN3YUgiIiKXqDSYIBqv7nc03KZiTxJ5GYYkIiJyCX3jlW1qpRwaP8UVz1vnJBnZk0RegiGJiIhc4mqX/wPsSSLvw5BEREQu0XRl25WTtoHLr27jitvkHRiSiIjIJayrbTfXk2S7us1sbrOaiFqDIYmIiFyisrEnKdjBpG3gsp4kE3uSyDswJBERkUtU1jX2JDUz3Ga9ya2BE7fJSzAkERGRS1hDUrM9SUprTxJDEnkHhiQiInKJa03cVnEJAPIyDElEROQSTXOSmglJysYVt9mTRF6CIYmIiFzCNiepuXWS2JNEXoYhiYiIXKJpTtLV10liSCJvwZBEREQuYZ2TFKzmitvkGxiSiIjIJZztSapnTxJ5CUlD0vbt2zF58mTExMRAJpNh48aN19xn27ZtGDJkCNRqNRITE7FmzRq310lERNdmnbjNe7eRr5A0JFVXVyMpKQkrVqxwqn1eXh4mTZqEsWPHIicnB08//TQefvhhbNmyxc2VEhHRteiv0ZOk4r3byMs4PpPbyMSJEzFx4kSn269cuRJdu3bF0qVLAQB9+vTBjh078Nprr2HChAkO9zEYDDAYDLbv9Xp964omIqIr1NWbbT1EzS0myZ4k8jZeNScpOzsbaWlpdtsmTJiA7OzsZvfJzMyEVqu1PeLi4txdJhFRu2OdjwQAQWpe3Ua+watCUlFRESIjI+22RUZGQq/Xo7a21uE+GRkZ0Ol0tkdBQUFblEpE1K7YFpJUK6GQyxy2YU8SeRtJh9vaglqthlqtlroMIiKfdq0r2wDAT9G44jZ7kshLeFVPUlRUFIqLi+22FRcXIyQkBP7+/hJVRUREtjWSmpmPBABq9iSRl/GqkJSamoqsrCy7bVu3bkVqaqpEFREREeBsTxLXSSLvImlIqqqqQk5ODnJycgA0XOKfk5OD/Px8AA3ziWbMmGFrP3v2bJw+fRp/+ctfcOzYMbz99tv4+OOP8cwzz0hRPhERNbrWGklA05wkA3uSyEtIGpL27NmDwYMHY/DgwQCA9PR0DB48GPPnzwcAFBYW2gITAHTt2hVff/01tm7diqSkJCxduhT//Oc/m738n4iI2gZ7ksgXSTpxe8yYMRCi+UXFHK2mPWbMGOzfv9+NVRERUUtdayFJ4LKr2xiSyEt41ZwkIiLyTPraa0/ctq24beKK2+QdGJKIiKjVrMNtIVcLSexJIi/DkERERK1mW0zSmTlJnLhNXoIhiYiIWs2Zidu2q9vYk0RegiGJiIhazbqY5NWG2y5fcftqF+0QeQqGJCIiajXbnCT/5nuS1AoFAEAIwGRhSCLPx5BEREStdqnaCADQ+quabeOnbLrxLddKIm/AkERERK1SazSj0tDQkxQR0vwNxa1LAAC8fxt5B4YkIiJqlbIqA4CGG9gGq5sfblPIZZA1diZxGQDyBgxJRETUKiWVdQAaepFkMlmz7WQyma03iT1J5A0YkoiIqFVKKxt6kjoFNT/UZmVbddvMidvk+RiSiIioVWwhKdiJkKRkTxJ5D6ducBsWFtaiF5XJZNi3bx/i4+OvqygiIvIeLQlJtlW3OSeJvIBTIamiogLLly+HVqu9ZlshBB577DGYzeZWF0dERJ6vtMo63Ka5ZlvbqtvsSSIv4FRIAoDf//73iIiIcKrtE088cd0FERGRd2lZT1LTqttEns6pkGSxtOxkrqysvK5iiIjI+7RsTlLDqtuck0TewOmJ21999VWLwxIREfm+khaEJHXjcFtdPadkkOdzOiRNnToVcXFx+Otf/4qTJ0+6syYiIvISFouwLSYZ4URICtY0DGBUNa7QTeTJnA5JeXl5ePTRR7Fu3Tr06tULo0ePxr/+9S/U1ta6sz4iIvJgutp625pHHYOav2+bVZCaIYm8h9MhKS4uDvPnz8epU6fw7bffIiEhAXPmzEF0dDRmz56N3bt3u7NOIiLyQNYr20ID/KBunG90NdaepMo6hiTyfNe1mOTYsWPx/vvvo7CwEK+88goOHTqEESNGICkpydX1ERGRB2vJatsAEKT2A8CQRN7B6SUAHAkODsa4ceNw9uxZHDt2DEeOHHFVXURE5AVacmUbcPmcpHq31UTkKtfVk1RbW4sPPvgAY8aMQY8ePbBu3Tqkp6fjzJkzLi6PiIg8mfXmti0NSexJIm/Qop6kn3/+GatXr8bHH38Mo9GIu+66C99++y3Gjh3rrvqIiMiDFekaepIiQ6692jZw2cRthiTyAk6HpL59+yI3NxeDBw9GZmYm7rvvPqduU0JERL6rUNdwhXO01rmQFKxpnJPEq9vICzgdktLS0rB27VpOziYiIpsLuobhtmitv1PtgzjcRl7E6ZD0xhtvuLMOIiLyQoUVDT1JMaHO9iRx4jZ5D6cmbg8ZMgSXLl1y+kVvvPFGnD9//rqLIiIiz2c0WWzrJDnbkxSsZk8SeQ+nepJycnJw4MABhIWFOfWiOTk5MBgMrSqMiIg8W7G+DkIAKoUcHQOvvdo20DTcVlVnghACMpnMnSUStYrTw23jxo2DEMKptjzpiYh8X2HjfKQorQZyuXO/960Tt00Wgbp6C/xV116lm0gqToWkvLy8Fr9w586dW7wPERF5j5Ze2QYAAX4KyGSAEECloZ4hiTyaUyEpPj7e3XUQEZGXuVDR0JMUE+rcfCQAkMtlCFIrUVlnQlWdCRHB7qqOqPWua8VtIiKi6+lJAjh5m7wHQxIREV0Xa09SdAt6koCmeUlVXFCSPJzkIWnFihVISEiARqNBSkoKdu3addX2y5cvR69eveDv74+4uDg888wzqKura6NqiYjIytqTFNPCnqSmBSW5VhJ5NklD0vr165Geno4FCxZg3759SEpKwoQJE1BSUuKw/UcffYRnn30WCxYswNGjR/Huu+9i/fr1eO6559q4ciIiKmrhattWQRxuIy9xXSGpoqIC//znP5GRkYGLFy8CAPbt29fiBSSXLVuGRx55BLNmzULfvn2xcuVKBAQEYPXq1Q7b//TTT7jhhhtw3333ISEhAbfccgvuvffeq/Y+GQwG6PV6uwcREbVOXb0Z5dVGAM6vtm3VtOo2QxJ5thaHpIMHD6Jnz55YsmQJXn31VVRUVAAANmzYgIyMDKdfx2g0Yu/evUhLS2sqRi5HWloasrOzHe4zcuRI7N271xaKTp8+jU2bNuG2225r9n0yMzOh1Wptj7i4OKdrJCIix86W1wBo6BXS+vu1aN9g3r+NvESLQ1J6ejoefPBBnDhxAhpN0/8ebrvtNmzfvt3p1ykrK4PZbEZkZKTd9sjISBQVFTnc57777sNLL72EG2+8EX5+fujevTvGjBlz1eG2jIwM6HQ626OgoMDpGomIyLGjhQ298n2ig1u8gDAnbpO3aHFI2r17Nx599NErtsfGxjYbblxl27ZtWLRoEd5++23s27cPGzZswNdff42//e1vze6jVqsREhJi9yAiotY5YgtJLf+d2jQniRO3ybM5fVsSK7Va7XBez/Hjx9GpUyenXyc8PBwKhQLFxcV224uLixEVFeVwnxdeeAEPPPAAHn74YQDAgAEDUF1djT/84Q/461//Crlc8ov1iIjahSMXGv4O9G1VSGJPEnm2FqeKKVOm4KWXXkJ9fcP/AGQyGfLz8zFv3jzcfffdTr+OSqVCcnIysrKybNssFguysrKQmprqcJ+amporgpBC0bCkvbP3lSMiotYRQth6kvrGtDwkceI2eYsWh6SlS5eiqqoKERERqK2txejRo5GYmIjg4GD83//9X4teKz09HatWrcL777+Po0ePYs6cOaiursasWbMAADNmzLCbDD558mS88847WLduHfLy8rB161a88MILmDx5si0sERGRexXrDbhYbYRCLkPPyJbfV4QTt8lbtHi4TavVYuvWrdixYwcOHjyIqqoqDBkyxO4qNWdNnz4dpaWlmD9/PoqKijBo0CBs3rzZNpk7Pz/frufo+eefh0wmw/PPP4/z58+jU6dOmDx5covDGRERXb8jhToAQPdOgdD4tfw/qLaJ2wxJ5OFkop2NU+n1emi1Wuh0Ok7iJiK6Dm99dwKv/vc4pg6KwfLfD27x/gcKKnDHip2I0WrwU8Y4N1RIvkiKv98t7kl64403HG6XyWTQaDRITEzEqFGjOPxFROSjWjMfCbjstiSck0QersUh6bXXXkNpaSlqamrQoUMHAMClS5cQEBCAoKAglJSUoFu3bvj++++5cCMRkQ86WVIFAOhxHfORAPuJ2xaLgFzesnWWiNpKiyduL1q0CMOGDcOJEydQXl6O8vJyHD9+HCkpKXj99deRn5+PqKgoPPPMM+6ol4iIJGQyW5BXVg0ASOwUdF2vEaxumJMkBFBTb3ZZbUSu1uKepOeffx6fffYZunfvbtuWmJiIV199FXfffTdOnz6Nl19+uUXLARARkXcouFSLerOAxk+O2NCW3djWSuMnh1Iug8kiUFVnsq2bRORpWtyTVFhYCJPpynFkk8lkW3E7JiYGlZWVra+OiIg8yqnGobZu4UHXPUwmk8ma5iVx1W3yYC0OSWPHjsWjjz6K/fv327bt378fc+bMwc033wwAOHToELp27eq6KomIyCOcKm0ISd0jrm+ozSqYk7fJC7Q4JL377rsICwtDcnIy1Go11Go1hg4dirCwMLz77rsAgKCgICxdutTlxRIRkbRsIalTYKteJ6hxXhIXlCRP1uKB4KioKGzduhXHjh3D8ePHAQC9evVCr169bG3Gjh3rugqJiMhjnCptmLTd/TonbVsFN85D4oKS5Mmue7Zc79690bt3b1fWQkREHkwIYbv8v9UhybYMAOckkee6rpB07tw5fPnll8jPz4fRaLR7btmyZS4pjIiIPEt5tRG62nrIZEDX8FYOt/H+beQFWhySsrKyMGXKFHTr1g3Hjh1D//79cebMGQghMGTIEHfUSEREHsB6ZVtsqD/8Va27qwJvckveoMUTtzMyMvCnP/0Jhw4dgkajwWeffYaCggKMHj0av/vd79xRIxEReYA9Zy8BAPpEt/6+WZy4Td6gxSHp6NGjmDFjBgBAqVSitrYWQUFBeOmll7BkyRKXF0hERJ7hxxOlAICbeoS3+rU4J4m8QYtDUmBgoG0eUnR0NE6dOmV7rqyszHWVERGRx6g2mLC3sSdpVI9OrX49DreRN2jxnKQRI0Zgx44d6NOnD2677Tb88Y9/xKFDh7BhwwaMGDHCHTUSEZHEsk+Vo94s0CUsAAmtnLQNwHYrkiouJkkerMUhadmyZaiqapi8t3DhQlRVVWH9+vXo0aMHr2wjIvJR2xuH2kb1bP1QGwAEazgniTxfi0NSt27dbF8HBgZi5cqVLi2IiIg8ixAC2483hiQXDLUBTT1JvHcbebIWz0nq1q0bysvLr9heUVFhF6CIiMg35BZX4kx5DVRKOUYmuqonicNt5PlaHJLOnDkDs9l8xXaDwYDz58+7pCgiIvIcmw4VAQBG9+xk6wFqLU7cJm/g9Nn+5Zdf2r7esmULtFqt7Xuz2YysrCwkJCS4tDgiIpLepkOFAIDbBkS57DWtYavGaIbZIqCQy1z22kSu4nRImjp1KgBAJpNh5syZds/5+fkhISEBS5cudWlxREQkrRPFlThZUgWVQo5xfSJd9rrW25IADUNuWn8/l702kas4HZIsFgsAoGvXrti9ezfCw10zLk1ERJ7LOtR2U49whGhcF2TUSgVUSjmMJgsq6+oZksgjtXhwOS8vzx11EBGRB7IOtU0cEO3y1w7RKFFWZeTkbfJYToWkN954w+kXfPLJJ6+7GCIi8hwnS6qQW1wJP4UM41041GYVpG4ISZy8TZ7KqZD02muvOfViMpmMIYmIyEdsPtzQi3RDYji0Aa4fDrPOS6piSCIP5VRI4hAbEVH783XjfKTb+rt+qA0AgtWNq25zuI08VIvXSbqcEAJCCFfVQkREHiKvrBpHC/VQymW4pZ/rh9qApp4krrpNnuq6QtIHH3yAAQMGwN/fH/7+/hg4cCD+9a9/ubo2IiKSiHXCdmr3jggNULnlPYI53EYe7rpucPvCCy/g8ccfxw033AAA2LFjB2bPno2ysjI888wzLi+SiIja1jeHrQtIumeoDYBtSQFdLXuSyDO1OCS9+eabeOeddzBjxgzbtilTpqBfv3548cUXGZKIiLxcfnkNDp/XQyGXYUI/162y/VvhQQ09VKWVBre9B1FrtHi4rbCwECNHjrxi+8iRI1FYWOiSooiISDqbGnuRRnQLQ1ige4baACAiWAMAKGFIIg/V4pCUmJiIjz/++Irt69evR48ePVxSFBERSecb6wKSbrqqzapTiBoAe5LIc7V4uG3hwoWYPn06tm/fbpuTtHPnTmRlZTkMT0RE5D3OXarBgXM6yGVw61AbAEQEN4Qk9iSRp3K6J+nw4cMAgLvvvhu//PILwsPDsXHjRmzcuBHh4eHYtWsX7rzzTrcVSkRE7vdN49pIw7uGoVNjiHEX6+uXVxtgMlvc+l5E18PpkDRw4ECkpKRg1apV6NmzJz788EPs3bsXe/fuxYcffojBgwdfVwErVqxAQkICNBoNUlJSsGvXrqu2r6iowNy5cxEdHQ21Wo2ePXti06ZN1/XeRERkzzofaZIbr2qz6hiohlwGCAGUVxvd/n5ELeV0SPrhhx/Qr18//PGPf0R0dDQefPBB/Pjjj6168/Xr1yM9PR0LFizAvn37kJSUhAkTJqCkpMRhe6PRiPHjx+PMmTP49NNPkZubi1WrViE2NrZVdRAREXChohb78ysga4OhNgBQyGUID2occtNzyI08j9Mh6aabbsLq1atRWFiIN998E3l5eRg9ejR69uyJJUuWoKioqMVvvmzZMjzyyCOYNWsW+vbti5UrVyIgIACrV6922H716tW4ePEiNm7ciBtuuAEJCQkYPXo0kpKSmn0Pg8EAvV5v9yAiInsmswXPfX4IADAsIQwRIZo2ed+IEOu8pLo2eT+ilmjx1W2BgYGYNWsWfvjhBxw/fhy/+93vsGLFCnTp0gVTpkxx+nWMRiP27t2LtLS0pmLkcqSlpSE7O9vhPl9++SVSU1Mxd+5cREZGon///li0aBHMZnOz75OZmQmtVmt7xMXFOf9hiYjaicxvjmFbbik0fnI8P6lPm70vlwEgT9aqe7clJibiueeew/PPP4/g4GB8/fXXTu9bVlYGs9mMyEj7ewJFRkY22yt1+vRpfPrppzCbzdi0aRNeeOEFLF26FP/7v//b7PtkZGRAp9PZHgUFBU7XSETUHhTr67B6Z8ONzJdNG4SBnUPb7L1tV7hxuI08UIuXALDavn07Vq9ejc8++wxyuRzTpk3DQw895MrarmCxWBAREYF//OMfUCgUSE5Oxvnz5/HKK69gwYIFDvdRq9VQq917hQYRkTf7z4ELEAJIju/g1tuQONK0DACH28jztCgkXbhwAWvWrMGaNWtw8uRJjBw5Em+88QamTZuGwMDAFr1xeHg4FAoFiouL7bYXFxcjKsrxhMHo6Gj4+flBoVDYtvXp0wdFRUUwGo1Qqdy3MiwRka/6z4ELAIA7BsW0+Xt3CuFwG3kup4fbJk6ciPj4eLz55pu48847cfToUezYsQOzZs1qcUACAJVKheTkZGRlZdm2WSwWZGVlITU11eE+N9xwA06ePAmLpWk9jePHjyM6OpoBiYjoOuSVVePAOR0Uclmb9yIBTT1JXHWbPJHTIcnPzw+ffvopzp07hyVLlqBXr16tfvP09HSsWrUK77//Po4ePYo5c+aguroas2bNAgDMmDEDGRkZtvZz5szBxYsX8dRTT+H48eP4+uuvsWjRIsydO7fVtRARtUdf5JwHANyQGG67HL8tMSSRJ3N6uO3LL790+ZtPnz4dpaWlmD9/PoqKijBo0CBs3rzZNpk7Pz8fcnlTjouLi8OWLVvwzDPPYODAgYiNjcVTTz2FefPmubw2IiJfZ7EIfLLnHADgzsFtP9QGwLbUQGmlAUIIyGQySeogckQmhBBSF9GW9Ho9tFotdDodQkJCpC6HiEgyP54oxQPv7kKwRondf02Dxk9x7Z1czGiyoOfz3wAA9r8wHh0COXWCHJPi73erlgAgIiLvtW53w5IoUwfFShKQAECllKNjYzAq1PEKN/IsDElERO1QeZUBW39tuLp4+jBpF9mNCfUH0HBbFCJPwpBERNQO/XNHHoxmCwZ21qJ/rFbSWmJCG+YlXdAxJJFnYUgiImpnLlUb8cFPZwAAj49NlLYYNPUknWdPEnkYhiQionbm3R15qDaa0Sc6BOP7Rl57BzeLtQ23cU4SeRaGJCKidkRXU481jb1IT41L9IhL7jkniTwVQxIRUTvy7s48VBlM6B0VjFv6Or4FVFtjSCJPxZBERNRO6Grr8d7OPADAk+N6QC6XvhcJaJq4XayvQ73Zco3WRG2HIYmIqJ1Ys/MMKutM6BkZhFv7eUYvEgCEB6qhUshhEQ1BichTMCQREbUD+rp6vLvjNADgiZs9pxcJAORyGaKtywBw8jZ5EIYkIqJ24IOfzkBfZ0JiRBBuGxAtdTlXiNFyXhJ5HoYkIiIfV2M04Z87GuYiPXFzIhQe1ItkxbWSyBMxJBER+bhP955DRU094jsG4PaBMVKX41CsbbiNIYk8B0MSEZEPM1sEVjf2Ij10Y1eP7EUCmnqSCi4xJJHnYEgiIvJh3x4txpnyGmj9/XBPcmepy2lWj8hgAMCRCzoIISSuhqgBQxIRkQ9btysfAHDv8C4IUCklrqZ5/WJCoJTLUFZlxAUdr3Ajz8CQRETko3S19dhxsgwAPLoXCQA0fgr0bOxNOlhQIW0xRI0YkoiIfFTW0WLUmwV6RgYhMSJI6nKuKSkuFABw4JxO2kKIGjEkERH5qE2HigAAE/t73rpIjiR11gIADp6rkLYQokYMSUREPkhfV4/tJ0oBAJMGekdIGtg5FABw6JwOFgsnb5P0GJKIiHyMEAIvfvErjCYLekQEoYcXDLUBQM/IIGj85Kg0mHC6rFrqcogYkoiIfM3aXQXYsP88FHIZ/ja1P2Qyz1wb6beUCjn6xTQMuR0+z3lJJD2GJCIiH1JXb8aSzccAAH+e0AsjunWUuKKW6RXVcIXbiZJKiSshYkgiIvIpXx8shK62HrGh/njkpm5Sl9NiPRuHBo8XV0lcCRFDEhGRT/mocfHI+1K6eOwtSK7GuvL2yRKGJJIeQxIRkY84VqTH3rOXoJTL8Luhnr14ZHN6RDb0JJ0tr0ZdvVniaqi9Y0giIvIBFovAwi+PAABu6ReJiGCNxBVdn05BaoQG+MEigFOl7E0iaTEkERH5gNU785B9uhz+fgr8eUJvqcu5bjKZzLZkAYfcSGoMSUREXi6/vAYvb8kFADx/ex90DQ+UuKLWsc5LOl7MK9xIWgxJRERebtGmozCaLLghsSPuG95F6nJazdqTdIJXuJHEGJKIiLzYT6fKsPnXIshlwPzb+3nNwpFX0zPSulYSQxJJiyGJiMhLmS0CL/2nYbL2/xsRb1uI0dv1iQ6BTAbklVWjWF8ndTnUjjEkERF5qXW783GsqBJafz88k9ZT6nJcJixQhUFxoQCAb48WS1sMtWsMSUREXkhXW4+l/z0OAHgmrQc6BKokrsi1xveNBABsPcKQRNLxiJC0YsUKJCQkQKPRICUlBbt27XJqv3Xr1kEmk2Hq1KnuLZCIyMO8kXUCF6uNSIwIwv0j4qUux+XG92kIST+dLEeVwSRxNdReSR6S1q9fj/T0dCxYsAD79u1DUlISJkyYgJKSkqvud+bMGfzpT3/CTTfd1EaVEhF5hpMlVXj/pzMAgBdu7ws/heS/yl0uMSIICR0DYDRb8OPxUqnLoXZK8p+sZcuW4ZFHHsGsWbPQt29frFy5EgEBAVi9enWz+5jNZtx///1YuHAhunW7+g0cDQYD9Hq93YOIyFsJIfC3r47AZBEY1zsCo3t2krokt5DJZLilXxQA4KtDhRJXQ+2VpCHJaDRi7969SEtLs22Ty+VIS0tDdnZ2s/u99NJLiIiIwEMPPXTN98jMzIRWq7U94uLiXFI7EZEUNuacxw/HS6FSyPHXSX2kLsetpiTFAGiYl6SrqZe4GmqPJA1JZWVlMJvNiIyMtNseGRmJoqIih/vs2LED7777LlatWuXUe2RkZECn09keBQUFra6biEgKJZV1eLHx/mxPjktEt05BElfkXv1iQtArMhhGkwVfHbogdTnUDkk+3NYSlZWVeOCBB7Bq1SqEh4c7tY9arUZISIjdg4jI25jMFjyzPge62nr0iwnBo6O7S12S28lkMtydHAsA+GzvOYmrofZIKeWbh4eHQ6FQoLjY/hLP4uJiREVFXdH+1KlTOHPmDCZPnmzbZrFYAABKpRK5ubno3t33f3EQUfuzdOtx7DxZjgCVAq9NH+STk7UdmTooFou/OYZ9+RU4XVrl871n5Fkk/SlTqVRITk5GVlaWbZvFYkFWVhZSU1OvaN+7d28cOnQIOTk5tseUKVMwduxY5OTkcL4REfmkD7LP4J1tpwAAL98z0HbbjvYgIkSDUY2T0zfsOy9xNdTeSNqTBADp6emYOXMmhg4diuHDh2P58uWorq7GrFmzAAAzZsxAbGwsMjMzodFo0L9/f7v9Q0NDAeCK7UREvuCTPQWY/8WvAIAnbk7E7QNjJK6o7d09pDO25Zbi8/3nkT6+J+Ry778/HXkHyUPS9OnTUVpaivnz56OoqAiDBg3C5s2bbZO58/PzIZe3j25lIqLL/XSyDBkbDgEAHrqxK9LH+86tR1pifN9IBGuUOF9Ri59Pl2NkonNzUolaSyaEEFIX0Zb0ej20Wi10Oh0ncRORxzpWpMe0ldnQ15kwJSkGr/9+EGSy9tuDkrHhENbuysddQ2KxbNogqcshCUjx95tdNEREHubweR3u/cfP0NeZkBzfAS/fM7BdByQAuKfxKrfNh4tQzduUUBthSCIi8iA5BRW4b9XPuFRTj6S4UKx+cBg0fgqpy5LckC4d0DU8EDVGM7457HgdPSJXY0giIvIQ23JL8MA/f4G+zoSh8R3w4UPDofX3k7osjyCTyXDXYK6ZRG2LIYmISGKllQb8+ZMDePC93ag0mDCiWxje/5/hCNYwIF3uziENISn7dDnOXaqRuBpqDxiSiIgkUnCxBi9vPoYxr3yPT/aeg0wGzLohAWtmDUegWvKLjz1O5w4BSO3WEQDwOddMojbAn0IiojZiNFlwpFCP746V4LtjxTh8Xm97LqmzFi/c3hdDE8IkrNDz3Z3cGdmny7Fh/3k8fnNiu5/QTu7FkERE5GJ19WacLq3GydIqnCypwsmSShwvrsKZsmqYLParrtyYGI4HUuMxvk8kF0l0wsT+UXhh42HklVVjX34FkuM7SF0S+TCGJCKi61RrNGPP2Ys4fF6Ps+XVOFNejbPlNSjU1TW7T4hGiRt7hGNsrwiM6RWBTsHqNqzY+wWqlZjYPwob9p/HZ/vOMSSRWzEkERG1wMVqIz7eU4Dvj5Vgf34FjGaLw3Zafz8kRgQhsVMQEiOC0DMqGD0jgxAVouEQUSvdndwZG/afx5c5FzBndHfEhQVIXRL5KIYkIiInHCvS470dZ7Ax5zwMpqZgFK3VYFhCGLp1CkRCx0DEdwxAQsdAhAb4MQy5SWq3jhgUF4qcggo89u99+GR2KteSIrdgSCIiuopCXS1e3pyLz/c3XU3VPzYE04fG4cYenZDQMYBhqI3J5TKsuH8Ibn/jRxw6r8PrWScw79beUpdFPoghiYjIgVqjGX/ffgorfziFuvqGnqPbBkThf27oiuT4DgxGEosN9UfmXQMw+8N9+Ff2Wcwe3Z0Lb5LLMSQREV3GYhH44sB5vLw51zYBe1hCB8y/vR8GdNZKXB1dbkK/KPSKDEZucSX+/ctZPDYmUeqSyMdwMUkiIgBCCHx3rBi3vfEjnll/AIW6OsSG+mPFfUPw8aOpDEgeSCaT4Q+jugEAVu84g7p6s8QVka9hTxIRtXu78i7i5c3HsOfsJQBAsFqJ2WO646Ebu3JCsIebMigGr/63odfvm8OFuHNwZ6lLIh/CkERE7davF3R4ZUsutuWWAgDUSjkeHJmA2aO7o0OgSuLqyBl+CjnuG94FS7cex0e/5DMkkUsxJBFRu5NXVo1lW4/jPwcuAAAUchmmD4vDkzf3QJRWI3F11FLThsVhedYJ7D5zCceLK9EzMljqkshHMCQRUbsghMC+/Ev454952PJrEax3B5mSFIP08T2REB4obYF03SJDNBjXOwL/PVKMj37Jx4tT+kldEvkIhiQi8mmVdfX4+mAh1u4uwIGCCtv2m3tH4E+39ELfmBDpiiOXuX9EPP57pBgf7ynA4zcnIjyIt3uh1mNIIiKfU2+2YOfJMnyRcwHfHC60rXOkUspx56BY/M+NXdErikMyvmRUj3AMiNXi0Hkd3tl2Ci/c3lfqksgHMCQRkU8wWwR+ySvHfw4UYvPhQlyqqbc9171TIO5JjsM9yZ15Q1kfJZPJ8KcJvTBz9S786+ezePimrojW+ktdFnk5hiQi8lomswUHzumw6VAh/nPgAkoqDbbnwoNUmNg/GncNicWguFCukN0OjOoRjuFdw7Ar7yJe3XIcS6clSV0SeTmGJCLyKiazBXvPXsIne89hy69FqKwz2Z4L0SgxsX80pgyKQUrXMCgVXC+3PZHJZHjutj6YumInPtt3DjNS45EUFyp1WeTFGJKIyKMJIZBbXImdJ8vx08ky/JJ3EVWGpmCk9ffDqJ6dMCUpBqN6hkOt5OKP7dmguFDcNTgWG/afx0tfHcGns1PZi0jXjSGJiDyKyWzBsaJK7D5zEbvyGh7l1Ua7Nlp/P4zvG4npw+IwpEsHKOT8I0hN/nJrb3xzuAh7z17Clwcu4I5BsVKXRF6KIYmIJCOEwLlLtThwrgIHCiqQU1CBQ+d1tqvRrPz9FBjWNQw3dO+Ikd3D0TcmhMGImhWl1eCxMd2xdOtxLP7mGG7pGwV/FXsYqeUYkoiozehq6u0C0YFzFSirMl7RLlitxJD4DhjeNQwpXcMwsHMoVErOLyLnPTKqG9btLsD5ilqs+vE0nhzXQ+qSyAsxJBGRSwkhUKw34HxFDYp0BhTqavHrBT0OFFTgdFn1Fe2Vchn6RIdgUFwokuJCMShOi27hQZCzp4haQeOnwLyJvfHk2v3454+nMeuGBARr/KQui7wMQxIRtZgQArraehTp61BwsRb5F2tQ0Pg4dF5ndyn+b8V3DEBS51BbKOoXEwKNH4dCyPUmDYjG698ex6nSanz4cz7mjOkudUnkZRiSiAgAUFdvxsmSKtTVm6FUyFFeZUCx3oBifR1KKutQpKtDsd6AsioDLlYbYbLe/MwBpVyGKK0GUSEaRGo1SOwUhEFdQjGocyg6BKra8FNRe6aQy/DYmET88ZMD+OePp/HgyATOTaIWYUgi8gEGkxlVdSZUGUyorGt4VBlMqDLUo6rOhEqDqeHfy9pUGeob2jRuu1RTD/NVgo8joQF+iOsQgLgwf8R1CEDnsAD0jAhCUlwoe4fII0wZFIPXvj2Oc5dqselQIe5O7ix1SeRFGJKIJCCEQF29BVUGE6oNJlQbTag2mBv/NaHGYL7sObMt7FQZTNDXNQUba8gxmi3XflMnhAb4IdTfD0aTBR2D1IgMUSMiRIPIYA0iQ9SIDNGgU7Aa4UFqdAj045pE5PH8FHJMGxqHZVuPY2POeYYkahGGJKJWsFgELtYYUVppQGmlASWN/1bUGmE0WaCvNUFXa8Slmnroa+tR3Rhsqo3mFvfaOCNQpUCQRokgtRJBGj8Eqxu+DtYoEaRRNnyvUSJI7Wf3fbBGiQ4BKkQEq7nwHvmcOwbFYNnW49h5sgwl+jpEhGikLom8hEeEpBUrVuCVV15BUVERkpKS8Oabb2L48OEO265atQoffPABDh8+DABITk7GokWLmm1P1FrF+jrsOFGGvLLqhjBUZUBJZR1KKw0oqzK2OuwEqBQIbAwzv/264d+GIBNiCz+XBZ/GsBPUuA/XDiK6UnzHQAzpEop9+RX48sAFPHxTN6lLIi8heUhav3490tPTsXLlSqSkpGD58uWYMGECcnNzERERcUX7bdu24d5778XIkSOh0WiwZMkS3HLLLfj1118RG8tVVan1hBD49YIeXx64gB9yS5FbXHnNfToGqtApWG17dAhQQa2UI0ijRKi/Ch0C/BDi74cgtdIWggLVCgSqlLzUnagNTB0ci335FVi7Kx//b0Q858yRU2RCCNf3+bdASkoKhg0bhrfeegsAYLFYEBcXhyeeeALPPvvsNfc3m83o0KED3nrrLcyYMeOa7fV6PbRaLXQ6HUJCQlpdP/mOkso6fLH/Aj7bdw7HipqCkUwGDIzVYkBnLSKDNbYgFNH4dccgFfx4I1Uij1ZRY8TNS3/AxWojHhgRj79N7S91SdRCUvz9lrQnyWg0Yu/evcjIyLBtk8vlSEtLQ3Z2tlOvUVNTg/r6eoSFhTl83mAwwGBoWrNFr9e3rmjyKYW6Wnx9sBA/HC/FT6fKbUNnKoUc4/tG4tb+UbgxMZyXrRN5udAAFZZNS8KD7+3Gv34+i9E9OyGtb6TUZZGHkzQklZWVwWw2IzLS/kSNjIzEsWPHnHqNefPmISYmBmlpaQ6fz8zMxMKFC1tdK/mOGqMJP58uxzeHirAx5zzqzU2dqYO7hOLuIZ0xeWAMtAFcnZfIl4zpFYFHbuqKVT/mYdnW4xjXJ4IXKtBVST4nqTUWL16MdevWYdu2bdBoHF+tkJGRgfT0dNv3er0ecXFxbVUieYjKunp8fbAQ/zl4AbvzLtldMj80vgMm9IvCuD4R6NYpSMIqicjdHhuTiH//ko8jhXr8cLwUY3pdOfeVyErSkBQeHg6FQoHi4mK77cXFxYiKirrqvq+++ioWL16Mb7/9FgMHDmy2nVqthlqtdkm95B2EEDhTXoMdJ8uw80QZDp6rQKG+DpfPvosN9ceonp1w95BYDE1wPFRLRL6nQ6AK9w7vgnd35OHtbacYkuiqJA1JKpUKycnJyMrKwtSpUwE0TNzOysrC448/3ux+L7/8Mv7v//4PW7ZswdChQ9uoWvJUeWXV+HhPAfS19aitN+PnU+W4oKu7ol33ToH43dA4jO8biW7hgexmJ2qnHrmpGz7IPoNdeRfx5YELmJIUI3VJ5KEkH25LT0/HzJkzMXToUAwfPhzLly9HdXU1Zs2aBQCYMWMGYmNjkZmZCQBYsmQJ5s+fj48++ggJCQkoKioCAAQFBSEoiEMlvsRgMsNiAcqrDTheXIkLFXUo0dehpNKAY0WVyC2qhJ9ChkqDCb+9RlOlkGNIfChu6B6OlG4d0b1TIMICVQxGRIQorQZzxyZi+bcn8MLGwxieEIYoLReYpCtJHpKmT5+O0tJSzJ8/H0VFRRg0aBA2b95sm8ydn58Pubzp8up33nkHRqMR99xzj93rLFiwAC+++GJblk5XUWM0QVdbDyGAGqMZl2qMqDdZYDBbUFlngr62HrraeujrGlahrjGace5SLcqrDAjx90NZlQEFF2uv+T619Q3/3tw7AgM7awEAQ7p0wLCEMN7IkoiaNXdsIr47VoKD53T4y2cH8f6sYfxPFF1B8nWS2pq711kwmMzYlluKsipDw01E60y2VZD1dQ03EJUBkMlkkMtkkMsa1uGRy2SN2xq+FwIQACyNXwg0zLUBmtrKZE3PW4SARTTsZxECQgjb/tbtQojG59CwDeKy9vb/Gk0W1JnMqKu3oN5sgcncsK/JImC2NDxvNFtgNDU8X2+22HpzBODSW274KWTo3ikIcWEBiAhuuH9YfMcA9ItpCEWBagWitf4uez8iah9OllRh0hs/wmCy4G9T++OBEfFSl0RX0e7WSfI1tUYzHnj3F+w5e0nqUjyCUi6DXC6DRilHWKAKKqUcSrkcIf5KhGj8oPVvWIU6UK2Exk+O2FB/dApWQ19rQoi/Er0ig+GvUkClkEPJxRqJyMUSI4Lw7MTeWPifI1j09VGM6hGO+I6BUpdFHoQhyUXqzRY89u+92HP2EoLVSozo3rHx3lpKW29OiMYPKoXMrofH2nsjfvO9TAbIIGvsZWroebJ2BF++r0Ims+uJsraXN7a39ljZvU7j89Z2AC7r1Wr4V6WUQ61UQOMnh0oph1wmg1Iuh0Iug1Ihg59CDpWi4TmVQg4/pcz2WkIAQRolAlUKdl8TkUebmZqA//5ajOzT5cjcdAwrH0iWuiTyIAxJLvLJnnP4PrcUGj853ps1jJeVExF5Ablchhen9MPE17dj869F+OV0OVK6dZS6LPIQHMNwkd8Pi8PDN3bFO/8vmQGJiMiL9IoKxu+HdwEALPzPERhNlmvsQe0FQ5KLyOUyPH97X4zlwmRERF4nfXxPaP39cKRQj6X/zZW6HPIQDElERNTuhQep8fI9DXdv+Pv20/jxRKnEFZEnYEgiIiICMKFflG0ZgHmfHkRlXb3EFZHUGJKIiIgaZdzWG13CAnBBV4fMb45JXQ5JjCGJiIioUYBKiSV3Nwy7ffRLPj7ff07iikhKDElERESXSe3eEbNHdwcA/OXTg/jpVJnEFZFUGJKIiIh+4y8TemHSgGjUmwUeWrMHP51kUGqPGJKIiIh+Qy6XYem0JIzq2Qm19WbMWrMb23JLpC6L2hhDEhERkQMaPwVWzUhGWp8IGEwW/OGDvfjvr0VSl0VtiCGJiIioGWqlAm/fn4zbBkTBaLbgsX/vw9cHC6Uui9oIQxIREdFVqJRyvPH7wZg6KAYmi8ATa/fxqrd2giGJiIjoGpQKOZZOG4TpQ+NgEUD6xwewble+1GWRmzEkEREROUEhlyHzrgF4YEQ8hACe3XAIz6zPQXmVQerSyE2UUhdARETkLeRyGV66ox9CA/yw4vuT+Hz/eWz5tQj3Du+ClK5h6BkZjLiwACjkMqlLJReQCSGE1EW0Jb1eD61WC51Oh5CQEKnLISIiL5VTUIHnNx7C4fN6u+1qpRyxof6I0moQrfVHoFoBP4UcYYEqdAxUoWOQGmGBftD6q9AhwA8dAlSQM1RdkxR/vxmSiIiIrpMQAt8dK8FXBwuRW1SJk6VVMJosLXoNlUKOuDB/pHbviBsTO6FPdDC6hAVAJmNwuhxDUhtgSCIiIncxWwTOXarBhYo6FOlrUairQ53RDIPZgkvVRpRXGVFWZcClmnpU1BihrzM5fJ3OHfwxaWA0bh8Qg/6xIQxMYEhqEwxJRETkKUxmCwp1dcgtqsT3uSXIKajAiRL73qhekcF4bGx3TBoQDaWi/V5vxZDUBhiSiIjIk9Uazfg+twRfHbyA746VoK6+ITDFdwzAnNHdcXdyZ/i1w7DEkNQGGJKIiMhb6Grr8cFPZ7B6Zx4u1dQDAOLC/PHkzT1w5+DYdtWzxJDUBhiSiIjI29QYTfjol3ys/OE0yhrXZeoaHoinxvXA5KSYdrHkAENSG2BIIiIib1VjNOFf2Wex8odTtp6lbuGBePCGBNw9pDMC1b67/CFDUhtgSCIiIm9XZTBhzc48/GP7adsVcsEaJX4/LA4zUhMQFxYgcYWux5DUBhiSiIjIV1QZTPh0TwHW/HQGZ8prAAByGTC+byRm3dAVKV3DfGb5AIakNsCQREREvsZiEdh2vASrd5zBjpNltu19o0Mw64YETE6KgcZPIWGFrceQ1AYYkoiIyJcdL67EezvP4PP952zLB4QHqTB1UCwmJ8VgYGetV/YuMSS1AYYkIiJqDypqjFi7qwD/yj6DC7o62/b4jgEY1zsSw7t2wNCEMIQHqSWs0nkMSW2AIYmIiNoTk9mC746V4MsDF/Dt0WJb75JVt06BGBYfhjG9OmF0r04IUHnmFXIMSW2AIYmIiNqraoMJ3x0rwc+ny7HnzCXkFlfaPe+nkKF7pyAM7hKKkd3Dkdq9o8f0NDEktQGGJCIiogYVNUbsPXsJP50qx5Zfi3DuUu0VbXpGBiE5PgxD4ztgaEIHdAkLkGROU7sNSStWrMArr7yCoqIiJCUl4c0338Tw4cObbf/JJ5/ghRdewJkzZ9CjRw8sWbIEt912m1PvxZBERER0JSEEzl2qxZFCPXblXcTOk2U4VlR5RbvwILUtMA2J74D+MVqolO6/PUq7DEnr16/HjBkzsHLlSqSkpGD58uX45JNPkJubi4iIiCva//TTTxg1ahQyMzNx++2346OPPsKSJUuwb98+9O/f/5rvx5BERETknPIqA3afuYS9Zy9iz9lLOHxeh3qzfWxQK+VI6hyKgZ216BMdgj7RIUiMCHJ5cGqXISklJQXDhg3DW2+9BQCwWCyIi4vDE088gWefffaK9tOnT0d1dTW++uor27YRI0Zg0KBBWLly5TXfjyGJiIjo+tTVm3HwnA57zl7EvrOXsPfsJdvtUS7XNTwQ3/9pjEvfW4q/35JOYTcajdi7dy8yMjJs2+RyOdLS0pCdne1wn+zsbKSnp9ttmzBhAjZu3OiwvcFggMFgsH2v1+tbXzgREVE7pPFTYHjXMAzvGgagYYjuVGk19p29hF8v6HC0sBJHi/RIjAiSuFLXkDQklZWVwWw2IzIy0m57ZGQkjh075nCfoqIih+2Lioocts/MzMTChQtdUzARERHZyGQyJEYENYaiOAANwanaaJa2MBdx/0wriWVkZECn09keBQUFUpdERETks2QyGYLUnrnWUktJ+inCw8OhUChQXFxst724uBhRUVEO94mKimpRe7VaDbXaM9Z4ICIiIu8haU+SSqVCcnIysrKybNssFguysrKQmprqcJ/U1FS79gCwdevWZtsTERERXQ/J+8PS09Mxc+ZMDB06FMOHD8fy5ctRXV2NWbNmAQBmzJiB2NhYZGZmAgCeeuopjB49GkuXLsWkSZOwbt067NmzB//4xz+k/BhERETkYyQPSdOnT0dpaSnmz5+PoqIiDBo0CJs3b7ZNzs7Pz4dc3tThNXLkSHz00Ud4/vnn8dxzz6FHjx7YuHGjU2skERERETlL8nWS2hrXSSIiIvI+Uvz99vmr24iIiIiuB0MSERERkQMMSUREREQOMCQREREROcCQREREROQAQxIRERGRAwxJRERERA4wJBERERE5IPmK223NunamXq+XuBIiIiJylvXvdluugd3uQlJlZSUAIC4uTuJKiIiIqKUqKyuh1Wrb5L3a3W1JLBYLLly4gODgYMhkMpe+tl6vR1xcHAoKCtr9LU94LJrwWDThsWjCY9GEx6IJj0WT3x4LIQQqKysRExNjd09Xd2p3PUlyuRydO3d263uEhIS0+5PbiseiCY9FEx6LJjwWTXgsmvBYNLn8WLRVD5IVJ24TEREROcCQREREROQAQ5ILqdVqLFiwAGq1WupSJMdj0YTHogmPRRMeiyY8Fk14LJp4wrFodxO3iYiIiJzBniQiIiIiBxiSiIiIiBxgSCIiIiJygCGJiIiIyAGGJBdZsWIFEhISoNFokJKSgl27dkldUqtkZmZi2LBhCA4ORkREBKZOnYrc3Fy7NmPGjIFMJrN7zJ49265Nfn4+Jk2ahICAAERERODPf/4zTCaTXZtt27ZhyJAhUKvVSExMxJo1a9z98VrsxRdfvOKz9u7d2/Z8XV0d5s6di44dOyIoKAh33303iouL7V7DV45FQkLCFcdCJpNh7ty5AHz7vNi+fTsmT56MmJgYyGQybNy40e55IQTmz5+P6Oho+Pv7Iy0tDSdOnLBrc/HiRdx///0ICQlBaGgoHnroIVRVVdm1OXjwIG666SZoNBrExcXh5ZdfvqKWTz75BL1794ZGo8GAAQOwadMml3/eq7nasaivr8e8efMwYMAABAYGIiYmBjNmzMCFCxfsXsPRubR48WK7Nt5+LADgwQcfvOJz3nrrrXZt2sN5AcDh7w6ZTIZXXnnF1sajzgtBrbZu3TqhUqnE6tWrxa+//ioeeeQRERoaKoqLi6Uu7bpNmDBBvPfee+Lw4cMiJydH3HbbbaJLly6iqqrK1mb06NHikUceEYWFhbaHTqezPW8ymUT//v1FWlqa2L9/v9i0aZMIDw8XGRkZtjanT58WAQEBIj09XRw5ckS8+eabQqFQiM2bN7fp572WBQsWiH79+tl91tLSUtvzs2fPFnFxcSIrK0vs2bNHjBgxQowcOdL2vC8di5KSErvjsHXrVgFAfP/990II3z4vNm3aJP7617+KDRs2CADi888/t3t+8eLFQqvVio0bN4oDBw6IKVOmiK5du4ra2lpbm1tvvVUkJSWJn3/+Wfz4448iMTFR3HvvvbbndTqdiIyMFPfff784fPiwWLt2rfD39xd///vfbW127twpFAqFePnll8WRI0fE888/L/z8/MShQ4fcfgysrnYsKioqRFpamli/fr04duyYyM7OFsOHDxfJycl2rxEfHy9eeuklu3Pl8t8xvnAshBBi5syZ4tZbb7X7nBcvXrRr0x7OCyGE3TEoLCwUq1evFjKZTJw6dcrWxpPOC4YkFxg+fLiYO3eu7Xuz2SxiYmJEZmamhFW5VklJiQAgfvjhB9u20aNHi6eeeqrZfTZt2iTkcrkoKiqybXvnnXdESEiIMBgMQggh/vKXv4h+/frZ7Td9+nQxYcIE136AVlqwYIFISkpy+FxFRYXw8/MTn3zyiW3b0aNHBQCRnZ0thPCtY/FbTz31lOjevbuwWCxCiPZzXvz2D4DFYhFRUVHilVdesW2rqKgQarVarF27VgghxJEjRwQAsXv3blubb775RshkMnH+/HkhhBBvv/226NChg+1YCCHEvHnzRK9evWzfT5s2TUyaNMmunpSUFPHoo4+69DM6y9Efw9/atWuXACDOnj1r2xYfHy9ee+21ZvfxlWMxc+ZMcccddzS7T3s+L+644w5x8803223zpPOCw22tZDQasXfvXqSlpdm2yeVypKWlITs7W8LKXEun0wEAwsLC7Lb/+9//Rnh4OPr374+MjAzU1NTYnsvOzsaAAQMQGRlp2zZhwgTo9Xr8+uuvtjaXHztrG088didOnEBMTAy6deuG+++/H/n5+QCAvXv3or6+3u5z9O7dG126dLF9Dl87FlZGoxEffvgh/ud//sfuhtHt6bywysvLQ1FRkV3dWq0WKSkpdudBaGgohg4damuTlpYGuVyOX375xdZm1KhRUKlUtjYTJkxAbm4uLl26ZGvjbcdHp9NBJpMhNDTUbvvixYvRsWNHDB48GK+88ordsKsvHYtt27YhIiICvXr1wpw5c1BeXm57rr2eF8XFxfj666/x0EMPXfGcp5wX7e4Gt65WVlYGs9ls9wsfACIjI3Hs2DGJqnIti8WCp59+GjfccAP69+9v237fffchPj4eMTExOHjwIObNm4fc3Fxs2LABAFBUVOTwuFifu1obvV6P2tpa+Pv7u/OjOS0lJQVr1qxBr169UFhYiIULF+Kmm27C4cOHUVRUBJVKdcUv/8jIyGt+TutzV2vjacfichs3bkRFRQUefPBB27b2dF5czlq7o7ov/1wRERF2zyuVSoSFhdm16dq16xWvYX2uQ4cOzR4f62t4mrq6OsybNw/33nuv3U1bn3zySQwZMgRhYWH46aefkJGRgcLCQixbtgyA7xyLW2+9FXfddRe6du2KU6dO4bnnnsPEiRORnZ0NhULRbs+L999/H8HBwbjrrrvstnvSecGQRNc0d+5cHD58GDt27LDb/oc//MH29YABAxAdHY1x48bh1KlT6N69e1uX6VYTJ060fT1w4ECkpKQgPj4eH3/8sUf+wW4r7777LiZOnIiYmBjbtvZ0XtC11dfXY9q0aRBC4J133rF7Lj093fb1wIEDoVKp8OijjyIzM9Onbsvx+9//3vb1gAEDMHDgQHTv3h3btm3DuHHjJKxMWqtXr8b9998PjUZjt92TzgsOt7VSeHg4FArFFVcyFRcXIyoqSqKqXOfxxx/HV199he+//x6dO3e+atuUlBQAwMmTJwEAUVFRDo+L9bmrtQkJCfHo8BEaGoqePXvi5MmTiIqKgtFoREVFhV2by88BXzwWZ8+exbfffouHH374qu3ay3lhrf1qvwuioqJQUlJi97zJZMLFixddcq542u8ca0A6e/Ystm7dateL5EhKSgpMJhPOnDkDwLeOxeW6deuG8PBwu5+J9nReAMCPP/6I3Nzca/7+AKQ9LxiSWkmlUiE5ORlZWVm2bRaLBVlZWUhNTZWwstYRQuDxxx/H559/ju++++6Krk1HcnJyAADR0dEAgNTUVBw6dMjuh9/6i7Jv3762NpcfO2sbTz92VVVVOHXqFKKjo5GcnAw/Pz+7z5Gbm4v8/Hzb5/DFY/Hee+8hIiICkyZNumq79nJedO3aFVFRUXZ16/V6/PLLL3bnQUVFBfbu3Wtr891338FisdjCZGpqKrZv3476+npbm61bt6JXr17o0KGDrY2nHx9rQDpx4gS+/fZbdOzY8Zr75OTkQC6X24aefOVY/Na5c+dQXl5u9zPRXs4Lq3fffRfJyclISkq6ZltJz4sWTfMmh9atWyfUarVYs2aNOHLkiPjDH/4gQkND7a7e8TZz5swRWq1WbNu2ze4yzJqaGiGEECdPnhQvvfSS2LNnj8jLyxNffPGF6Natmxg1apTtNayXet9yyy0iJydHbN68WXTq1Mnhpd5//vOfxdGjR8WKFSs84lLv3/rjH/8otm3bJvLy8sTOnTtFWlqaCA8PFyUlJUKIhiUAunTpIr777juxZ88ekZqaKlJTU237+9KxEKLhCs4uXbqIefPm2W339fOisrJS7N+/X+zfv18AEMuWLRP79++3XbG1ePFiERoaKr744gtx8OBBcccddzhcAmDw4MHil19+ETt27BA9evSwu9S7oqJCREZGigceeEAcPnxYrFu3TgQEBFxxebNSqRSvvvqqOHr0qFiwYEGbX+p9tWNhNBrFlClTROfOnUVOTo7d7xDrFUk//fSTeO2110ROTo44deqU+PDDD0WnTp3EjBkzfOpYVFZWij/96U8iOztb5OXliW+//VYMGTJE9OjRQ9TV1dleoz2cF1Y6nU4EBASId95554r9Pe28YEhykTfffFN06dJFqFQqMXz4cPHzzz9LXVKrAHD4eO+994QQQuTn54tRo0aJsLAwoVarRWJiovjzn/9stx6OEEKcOXNGTJw4Ufj7+4vw8HDxxz/+UdTX19u1+f7778WgQYOESqUS3bp1s72HJ5k+fbqIjo4WKpVKxMbGiunTp4uTJ0/anq+trRWPPfaY6NChgwgICBB33nmnKCwstHsNXzkWQgixZcsWAUDk5ubabff18+L77793+HMxc+ZMIUTDMgAvvPCCiIyMFGq1WowbN+6KY1ReXi7uvfdeERQUJEJCQsSsWbNEZWWlXZsDBw6IG2+8UajVahEbGysWL158RS0ff/yx6Nmzp1CpVKJfv37i66+/dtvnduRqxyIvL6/Z3yHW9bT27t0rUlJShFarFRqNRvTp00csWrTILjgI4f3HoqamRtxyyy2iU6dOws/PT8THx4tHHnnkiv9Et4fzwurvf/+78Pf3FxUVFVfs72nnhUwIIVrW90RERETk+zgniYiIiMgBhiQiIiIiBxiSiIiIiBxgSCIiIiJygCGJiIiIyAGGJCIiIiIHGJKIiIiIHGBIIiIiInKAIYmIJPfggw9i6tSpbf6+a9asgUwmg0wmw9NPP+3UPg8++KBtn40bN7q1PiKSllLqAojIt8lksqs+v2DBArz++uuQavH/kJAQ5ObmIjAw0Kn2r7/+OhYvXmy7OSkR+S6GJCJyq8LCQtvX69evx/z585Gbm2vbFhQUhKCgIClKA9AQ4qKiopxur9VqodVq3VgREXkKDrcRkVtFRUXZHlqt1hZKrI+goKArhtvGjBmDJ554Ak8//TQ6dOiAyMhIrFq1CtXV1Zg1axaCg4ORmJiIb775xu69Dh8+jIkTJyIoKAiRkZF44IEHUFZW1uKa3377bfTo0QMajQaRkZG45557WnsYiMgLMSQRkUd6//33ER4ejl27duGJJ57AnDlz8Lvf/Q4jR47Evn37cMstt+CBBx5ATU0NAKCiogI333wzBg8ejD179mDz5s0oLi7GtGnTWvS+e/bswZNPPomXXnoJubm52Lx5M0aNGuWOj0hEHo7DbUTkkZKSkvD8888DADIyMrB48WKEh4fjkUceAQDMnz8f77zzDg4ePIgRI0bgrbfewuDBg7Fo0SLba6xevRpxcXE4fvw4evbs6dT75ufnIzAwELfffjuCg4MRHx+PwYMHu/4DEpHHY08SEXmkgQMH2r5WKBTo2LEjBgwYYNsWGRkJACgpKQEAHDhwAN9//71tjlNQUBB69+4NADh16pTT7zt+/HjEx8ejW7dueOCBB/Dvf//b1ltFRO0LQxIReSQ/Pz+772Uymd0261VzFosFAFBVVYXJkycjJyfH7nHixIkWDZcFBwdj3759WLt2LaKjozF//nwkJSWhoqKi9R+KiLwKh9uIyCcMGTIEn332GRISEqBUtu5Xm1KpRFpaGtLS0rBgwQKEhobiu+++w1133eWiaonIG7AniYh8wty5c3Hx4kXce++92L17N06dOoUtW7Zg1qxZMJvNTr/OV199hTfeeAM5OTk4e/YsPvjgA1gsFvTq1cuN1RORJ2JIIiKfEBMTg507d8JsNuOWW27BgAED8PTTTyM0NBRyufO/6kJDQ7FhwwbcfPPN6NOnD1auXIm1a9eiX79+bqyeiDyRTEi1zC0RkcTWrFmDp59++rrmG8lkMnz++eeS3E6FiNoGe5KIqF3T6XQICgrCvHnznGo/e/ZsSVcIJ6K2w54kImq3KisrUVxcDKBhmC08PPya+5SUlECv1wMAoqOjnb7nGxF5H4YkIiIiIgc43EZERETkAEMSERERkQMMSUREREQOMCQREREROcCQREREROQAQxIRERGRAwxJRERERA4wJBERERE58P8BlaJRkOMydOMAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], "source": [ - "param_GrSi.update({\"SEI reaction exchange current density [A.m-2]\": 6e-07})\n", + "param_GrSi.update(\n", + " {\"Negative SEI reaction exchange current density [A.m-2]\": 6e-07}\n", + ") # 300% increase\n", "sim4 = pybamm.Simulation(\n", " model_with_degradation,\n", " parameter_values=param_GrSi,\n", @@ -297,14 +288,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaIAAAEGCAYAAAAnhpGXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABmi0lEQVR4nO2dd3xUxfqHn8mmVxICpEASeg+hCiJNqYLCVRQUCzZEwHLRi1h+iPWiogioKEqx4FXBhg0L0lQQCQSk14SEhADpfXez8/vjbEISQrIp25J57j2fPTtnZs53D3HfnZl33ldIKVEoFAqFwl642FuAQqFQKBo3yhApFAqFwq4oQ6RQKBQKu6IMkUKhUCjsijJECoVCobArrvYWYE+Cg4NlVFSUvWUoFAqFUxEbG3tBStmsvvpr1IYoKiqKXbt22VuGQqFQOBVCiIT67E9NzSkUCoXCrihDpFAoFAq7ogyRQqFQKOxKo14jUjg3BoOBpKQkCgsL7S1FUQM8PT1p2bIlbm5u9paicBCUIVI4LUlJSfj5+REVFYUQwt5yFBYgpSQtLY2kpCRat25tbzkKB0FNzSmclsLCQpo2baqMkBMhhKBp06ZqFKsohzJECqdGGSHnQ/2bKSqiDJFCoVA0IgznznFu0RsUnTxlbymlKEOkUNQBIQSPPvpo6fuFCxcyf/78er/PSy+9VO79lVdeWS/9vvjii3Tt2pXo6GhiYmL466+/ABg6dCgdO3YkJiaGmJgYJk6cCMD8+fNZuHBhvdxbYR/0J0+S9u67GM+l2ltKKcoQKRR1wMPDgy+//JILFy5Y9T4VDdGff/5Z5z63b9/Od999x+7du9m3bx+//vorrVq1Kr2+Zs0a4uLiiIuLY926dXW+n8IxMKScBcAtJMTOSi6iDJFCUQdcXV2ZNm0aixYtuuTa+fPnufHGG+nbty99+/bljz/+KC0fMWIEXbt25d577yUyMrLUkE2YMIHevXvTtWtXli9fDsDcuXMpKCggJiaGKVOmAODr6wvA5MmT+f7770vvOXXqVNatW0dxcTH/+c9/6Nu3L9HR0bz77ruX6EtJSSE4OBgPDw8AgoODCQsLq8eno3BEjGdTAHB1IEOk3LcVDYJnvz3AweTseu2zS5g/z1zXtdp6M2fOJDo6mjlz5pQrf/jhh/n3v//NVVddxenTpxk1ahSHDh3i2Wef5eqrr+aJJ55gw4YNrFixorTNypUrCQoKoqCggL59+3LjjTeyYMEC3nzzTeLi4i6596RJk/j8888ZO3Yser2ejRs3smzZMlasWEFAQAB///03RUVFDBw4kJEjR5ZzmR45ciTPPfccHTp0YPjw4UyaNIkhQ4aUXp8yZQpeXl4AjBgxgldffbWmj1DhgBhSzqILDMTF09PeUkpRhkihqCP+/v7ccccdLFmypPSLG+DXX3/l4MGDpe+zs7PJzc3l999/56uvvgJg9OjRBAYGltZZsmRJ6bXExESOHTtG06ZNL3vvMWPG8PDDD1NUVMSGDRsYPHgwXl5e/Pzzz+zbt690Si0rK4tjx46VM0S+vr7Exsaybds2Nm3axKRJk1iwYAFTp04FtKm5Pn361P0BKRwKw9kUXEMdZzQEyhApGgiWjFysySOPPEKvXr246667SstMJhM7duzA08Jfnps3b+bXX39l+/bteHt7M3To0Gr323h6ejJ06FB++uknPvvsMyZPngxoG0eXLl3KqFGjqmyv0+kYOnQoQ4cOpXv37nzwwQelhkjRMDGmnMWtzFqgI6DWiBSKeiAoKIibb7653DTbyJEjWbp0aen7kqm1gQMH8vnnnwPw888/k5GRAWijlsDAQLy9vTl8+DA7duwobevm5obBYKj03pMmTWLVqlVs27aN0aNHAzBq1CiWLVtW2ubo0aPk5eWVa3fkyBGOHTtWTl9kZGRtH4HCSTCcPetQjgqgDJFCUW88+uij5bznlixZwq5du4iOjqZLly688847ADzzzDP8/PPPdOvWjbVr1xISEoKfnx+jR4/GaDTSuXNn5s6dS//+/Uv7mjZtGtHR0aXOCmUZOXIkW7ZsYfjw4bi7uwNw77330qVLF3r16kW3bt24//77MRqN5drl5uZy55130qVLF6Kjozl48GA51/MpU6aUum8PHz68Ph+Vwk4U5+ZhysnBLSzU3lLKIaSU9tZgN/r06SNVYjzn5dChQ3Tu3NneMmpMUVEROp0OV1dXtm/fzgMPPFCpI0JDxln/7ZydouPHOTnuOsIWLiRg3Nha9yOEiJVS1tsColojUihszOnTp7n55psxmUy4u7vz3nvv2VuSopFQuodIOSsoFI2b9u3bs2fPHnvLUDRCDOY9RGqNSKFQKBR2wZhyFoTAtXlze0sphzJECoVC0UgwnD2La7NmCAdLSqgMkUKhUDQSjA64mRWsbIiEEKOFEEeEEMeFEHMrue4hhPjMfP0vIURUmWtPmMuPCCFGmctaCSE2CSEOCiEOCCEeLlM/SAjxixDimPk1sOL9FAqFojFjSDmLW4hjuW6DFQ2REEIHvAWMAboAtwghulSodg+QIaVsBywCXja37QJMBroCo4G3zf0ZgUellF2A/sDMMn3OBTZKKdsDG83vFQqrotPpiImJoVu3btx0003k5+fXqH1ycnJpioW4uDh++OGH0mvr169nwYIFddaYmprKuHHj6NGjB126dOHaa68FID4+Hi8vr9K9QjExMXz44YcAREVFWT2iuMK2SCkdcjMrWHdE1A84LqU8KaXUA58C4yvUGQ98YD5fB1wjtPSN44FPpZRFUspTwHGgn5QyRUq5G0BKmQMcAsIr6esDYIJ1PpZCcREvLy/i4uLYv38/7u7upZtWLSUsLKw0HlxFQ3T99dczd27df0/NmzePESNGsHfvXg4ePFjOuLVt27Y01UNcXBx33HFHne+ncExMWVnIgoJGNzUXDiSWeZ/ERaNxSR0ppRHIAppa0tY8jdcT+Mtc1EJKmWI+Pwu0qPMnUChqwKBBgzh+/Djp6elMmDCB6Oho+vfvz759+wDYsmVL6cijZ8+e5OTkEB8fT7du3dDr9cybN4/PPvuMmJgYPvvsM1avXs2sWbPIysoiMjISk8kEQF5eHq1atcJgMHDixAlGjx5N7969GTRoEIcPH75EV0pKCi1btix9Hx0dbZsHonAoDCklrtuONzXnlPuIhBC+wBfAI1LKS2L/SymlEKLSkBFCiGnANICIiAir6lTYkB/nwtl/6rfPkO4wxrKpMaPRyI8//sjo0aN55pln6NmzJ19//TW//fYbd9xxB3FxcSxcuJC33nqLgQMHkpubWy4Yqru7O8899xy7du3izTffBGD16tUABAQEEBMTw5YtWxg2bBjfffcdo0aNws3NjWnTpvHOO+/Qvn17/vrrL2bMmMFvv/1WTtvMmTOZNGkSb775JsOHD+euu+4qzTt04sQJYmJiSusuXbqUQYMG1eGhKRyV0s2s4Y6Xc8qahugMUDbEa0tzWWV1koQQrkAAkFZVWyGEG5oRWiOl/LJMnVQhRKiUMkUIEQqcq0yUlHI5sBy0ED+1/GwKBUBpwjrQRkT33HMPV1xxBV988QUAV199NWlpaWRnZzNw4EBmz57NlClTuOGGG8qNUqpj0qRJfPbZZwwbNoxPP/2UGTNmkJuby59//slNN91UWq+oqOiStqNGjeLkyZNs2LCBH3/8kZ49e7J//37g4tScouFjSEkGwC20cY2I/gbaCyFaoxmRycCtFeqsB+4EtgMTgd/Mo5n1wCdCiNeBMKA9sNO8frQCOCSlfP0yfS0wv35jnY+lcEgsHLnUNyVrRJYwd+5cxo4dyw8//MDAgQP56aefLE4Rcf311/Pkk0+Snp5ObGwsV199NXl5eTRp0sSi+wcFBXHrrbdy6623Mm7cOLZu3Urv3r0tureiYWBMSUG4u6MLCrK3lEuw2hqRec1nFvATmlPB51LKA0KI54QQ15urrQCaCiGOA7Mxe7pJKQ8AnwMHgQ3ATCllMTAQuB24WggRZz6uNfe1ABghhDgGDDe/VyhszqBBg1izZg2g5RgKDg7G39+fEydO0L17dx5//HH69u17yXqOn58fOTk5lfbp6+tL3759efjhhxk3bhw6nQ5/f39at27N2rVrAc0rau/evZe0/e2330q9+XJycjhx4oSalm6EGJK1PUTCxfG2j1p1jUhK+QPwQ4WyeWXOC4GbKrYzX3sReLFC2e+AuEz9NOCaOkpWKOrM/Pnzufvuu4mOjsbb25sPPtCcOd944w02bdqEi4sLXbt2ZcyYMaSkpJS2GzZsGAsWLCAmJoYnnnjikn4nTZrETTfdxObNm0vL1qxZwwMPPMALL7yAwWBg8uTJ9OjRo1y72NhYZs2ahaurKyaTiXvvvZe+ffsSHx9/yRrR3XffzUMPPVS/D0ThEBiSk3ELdbz1IVBpIFQaCCdGpRJwXtS/ne05NmQoPldeSdh/X6pzX/WdBsLxxmgKhUKhqFekwYDx3DncwhxzRKQMkUKhUDRwDKnnQEqHy8xawmXXiIQQ+yxof15KqdZlFAqFwoExOrDrNlTtrKADrq3iukBzmVYoFAqFA1MSVcHVCQ3R/VLKhKoaCyFm1LMehUKhUNQzhmRzeB8HNUSXXSMyu0pXiSV1FAqFQmFfDMnJ6IKCcLFwA7WtqdZZQQgx0Jzf56gQ4qQQ4pQQ4qQtxCkUjs6LL75I165diY6OJiYmhr/+0mLwDh06lI4dO5YGOS1J9TB//nwWLlxoT8kWo1JBNBwMKSkOOxoCyza0rgD+DcQCxdaVo1A4D9u3b+e7775j9+7deHh4cOHCBfR6fen1NWvW0KdPvW21qBNGoxFXV6eMcayoBwwpyXi0bm1vGZfFEvftLCnlj1LKc1LKtJLD6soUCgcnJSWF4OBgPDw8AAgODi6Nal1T4uPjufrqq4mOjuaaa67h9OnTAEydOpWHHnqIK6+8kjZt2pTmLqrIhx9+SHR0ND169OD2228vbTt9+nSuuOIK5syZw86dOxkwYAA9e/bkyiuv5MiRIwAUFxfz2GOP0a1bN6Kjo1m6dGm5vgsKChgzZgzvvfceeXl5jB07lh49etCtWzc+++yzWn1ehe2QUmJMTnHYPURQtft2L/PpJiHEq8CXQGlo35IEdQqFI/Dyzpc5nH5pLp660CmoE4/3e/yy10eOHMlzzz1Hhw4dGD58OJMmTWLIkCGl16dMmYKXlxcAI0aM4NVXX71sXw8++CB33nknd955JytXruShhx7i66+/BjSD9/vvv3P48GGuv/760mm+Eg4cOMALL7zAn3/+SXBwMOnp6aXXkpKS+PPPP9HpdGRnZ7Nt2zZcXV359ddfefLJJ/niiy9Yvnw58fHxxMXF4erqWq59bm4ukydP5o477uCOO+7giy++ICwsjO+//x6ArKwsyx+owi6YsrMx5ec7rMccVD0191qF92XnGCRwdf3LUSicB19fX2JjY9m2bRubNm1i0qRJLFiwgKlTpwI1m5rbvn07X36pZTW5/fbbmTNnTum1CRMm4OLiQpcuXUhNTb2k7W+//cZNN91EcHAwoEXaLuGmm25Cp9MBmtG48847OXbsGEIIDAYDAL/++ivTp08vnbor2378+PHMmTOHKVOmANC9e3ceffRRHn/8ccaNG6dyFzkBpQnxHDTOHFRhiKSUw2wpRKGoC1WNXKyJTqdj6NChDB06lO7du/PBBx+UGqL6omTqD7Rplprg4+NTev5///d/DBs2jK+++or4+HiGDh1abfuBAweyYcMGbr31VoQQdOjQgd27d/PDDz/w9NNPc8011zBv3rxq+1HYj1LXbQeNqgC1DPFTZtpOoWi0HDlyhGPHjpW+j4uLIzIyslZ9XXnllXz66aeANpKqyUjj6quvZu3ataSlaUu3ZafWypKVlUV4eDhwMfsraNOG7777Lkaj8ZL2zz33HIGBgcycOROA5ORkvL29ue222/jPf/7D7t1qht7RMSQ7dlQFqH2suQfqVYVC4YTk5uZy55130qVLF6Kjozl48CDz588vvT5lypRS9+3hw4dX2dfSpUtZtWoV0dHRfPTRRyxevNhiHV27duWpp55iyJAh9OjRg9mzZ1dab86cOTzxxBP07Nmz1OgA3HvvvURERJQ6O3zyySfl2i1evJiCggLmzJnDP//8Q79+/YiJieHZZ5/l6aeftlinwj4YUpIdNiFeCbVKAyGEcJNSGqygx6aoNBDOjUol4LyofzvbcWb2bAoOHKDdTz/VW592SwMhNK4RQqwAkupLgEKhUCishyE5xaEdFcCyyAr9hRBLgATgG2Ar0MnawhQKhUJRdwwpjr2HCKowREKIl4QQx9DSde8DeqKlffhASplhK4EKhUKhqB2lCfHKOCoYTUZW719NviHfjsrKU9WI6F4gFVgGfGSOptB484orFAqFk1FZQrzVB1bzWuxrbE/ebkdl5alqQ2soMAK4BXhDCLEJ8BJCuEopjVW0UzgZxgsXKNj3D/r4eHSBgbg2b4Zbixa4t2mDcFFJfBUKZ8WQfAa46Lp9NOMob8W9xYjIEVwd4TgxCara0FoMbAA2CCE8gHGAF3BGCLFRSnmrjTQqrICpqIicDRvI+N+nFMTFVVrHrWVLmtx0E4GTbkbXpIlN9SkUirpjLJMQz2Ay8PTvT+Pv7s/T/Z9GCGFndRex6OeulLJISvmFlHIi0B7NQCmclJxNmzg5dhzJj8+lOCODZrNnE7nmYzrs2E7bn38i8uOPCH3xBdzCwji/aBGnJt5E0UmV+aMyfH19Lyl75513+PDDDwFt42iyeUMhXD61wvr161mwYIH1hFYgPj6ebt26VVun7J6iXbt28dBDD1lbmqIeKbuZ9f1973Mo/RDz+s8jyNPB9hRJKSs9gHGXu1aTOo589O7dWzYmjDk5MvHhR+TBjp3k8WvHypwtW6SpuLjKNnm7d8sjVw6Uh/v2k3k7d9pIqWUcPHjQ3hKkj49PldeHDBki//7779L3kZGR8vz589aWVS2nTp2SXbt2rbLOpk2b5NixY61yf0f4t2sMnHnySXnkqqvk/gv7ZcwHMfLxrY/XS7/ALlmP38VVjYheFUL0FEL0utwBvGQDW6moBwxnzxI/eTI5v/xCs0ceoc1XX+I7eHC1a0DePXsS9dmnuAYHkzjrQQznztlIsfNSkvxu3bp17Nq1qzTCQkFBAaBFUejVqxfdu3fn8GEtYvjq1auZNWsWoKVvKJvuoWTUtXnzZoYMGcL48eNp06YNc+fOZc2aNfTr14/u3btz4sSJSrXcfvvtDBgwgPbt2/Pee+9dUic+Pp5BgwbRq1cvevXqxZ9//gnA3Llz2bZtGzExMSxatIjNmzczbty40n7vvvtuhg4dSps2bViyZElpf88//zwdO3bkqquu4pZbbnGaRIANEUPSGXShoTy+9XGaejXliX5P2FtSpVTlrJAKvF5N+2PVXFc4APqEBE7fdTfFWVlErFiBT/8ratTevWVLWr75Jqf+9S9Snn6aVu+843BODGdfeomiQ/WbBsKjcydCnnyy1u0nTpzIm2++ycKFC8tF4Q4ODmb37t28/fbbLFy4kPfff9/iPvfu3cuhQ4cICgqiTZs23HvvvezcuZPFixezdOlS3njjjUva7Nu3jx07dpCXl0fPnj0ZO3ZsuevNmzfnl19+wdPTk2PHjnHLLbewa9cuFixYwMKFC/nuu+8AzRCW5fDhw2zatImcnBw6duzIAw88QFxcHF988QV79+7FYDDQq1cvevfubflDU9QrhqQkjoW7cDr7LCtGrSDAI8DekiqlKmeFoTbUobASBfv2kThjJhQXE/HBB3h161qrfjzatKb543NIfe55zi96g+aPVh7PTFE9N9xwAwC9e/cuTf1gKX379iXU7AHVtm1bRo4cCWjpGTZt2lRpm/Hjx+Pl5YWXlxfDhg1j586dxMTElF43GAzMmjWLuLg4dDodR48etUjL2LFj8fDwwMPDg+bNm5Oamsoff/zB+PHj8fT0xNPTk+uuu65Gn09Rf0ijEX1KCrsjJdOiZ9A3pK+9JV0WlTu4AZP9ww8kP/EkrsHBtFr+Lh5t29apv8BbbqHo0GHS3n8f/3Hj8OzYoZ6U1p26jFxsTUlaB51OVy74aAmurq6YTCYATCZTufTjZVNCuLi4lL53cXGptC/gEu+oiu8XLVpEixYt2Lt3LyaTCU9Pzxp9jqo+i8J+JJ6IQ5hMeLSMZHqP6faWUyWONb+iqBekycT5pW9yZvajeHbrRtTaz+tshED7Amv+6GxcfHw4X2ZNQHF5/Pz8yMnJqVGbqKgoYmNjAc2briSBXW355ptvKCwsJC0tjc2bN9O3b/lfxllZWYSGhuLi4sJHH31EcXFxrbUPHDiQb7/9lsLCQnJzc0un9RS2pdBYyJs/aHmibh46C1cXxx5zKEPUwJAGAylPPMmFt94i4F//ImLVSlzrMfy7rkkTgu6aSu7GjRQeOlRv/Tor+fn5tGzZsvR4/fXyy6pTp05l+vTp5ZwVquO+++5jy5Yt9OjRg+3bt5dLblcboqOjGTZsGP379+f//u//CKsQd2zGjBl88MEH9OjRg8OHD5feLzo6Gp1OR48ePVi0aJFF9+rbty/XX3890dHRjBkzhu7duxMQ4JjrEg0VKSXP73iewsQEAELa97CzIguozq0OiAVmAoH16a7nCEdDc98uzs+Xp6fdLw927CTPvfWWNJlMVrmPMTNTHu7ZSybNftQq/VuKcgGunmeeeUa++uqrNr1nTk6OlFLKvLw82bt3bxkbG3tJHfVvZz3WHFwju63uJn+Ye7s82LmLNOn19X4PbOi+XcIkIAz4WwjxqRBilHCkLbkKAEyFhSQ+MIPcrVsJmT+fZjNmWG3ntC4ggCaTJ5P944/oExOtcg+F8zJt2jRiYmLo1asXN954I716qYTOtiI2NZZX/36VIS2H0N3YAreQEISbm71lVYvFifGEEC5oYX6WAcXAKmCxlLLyvMROQENJjGfS60maNYu8bb8T9vICAq6/3ur3NKSmcnz4CAJvmkjIvHlWv19lqORqzov6t6t/EnMSue2H2/Bz9+OTsZ+Qfud0hJsbkR9+UO/3sktiPCFENPAa8CrwBXATkA38Vl9CFLXDVFTEmYcfIW/rNkKee9YmRgjArUULAsZfT+YXX2JMt99vEUt/SCkcB/VvVv9kFWUxc+NMDCYDS65egr+7P4akJNxatrS3NIuwJDFeLLAI+BuIllI+JKX8S0r5GqACkNkRaTCQNHMWuZs2EfLMPAJvusmm9w+6/XZkURE5P/9i0/uW4OnpSVpamvpicyKklKSlpVnsIq6oHn2xnn9v/jeJOYksHraYNgFtMBUWYjx/HreW4faWZxFV+vSZp+O+kFJWGspHSnmDVVQpLCL1vwvI+/13Qp57lsCbb7b5/T06dMAtMoKcX34hcPIkm9+/ZcuWJCUlcf78eZvfW1F7PD09aekkv9QdHSkl8/+cz99n/+a/g/5bumm1JNipu5M85yoNkZTSJIS4ARVTzuHI/PprMj75hKC77rKLEQJtX5H/iBGkrf6A4uxsdP7+Nr2/m5sbrVu3tuk9FQpHQUrJK3+/wrcnv2VmzEzGtRlXes2QlATQcKbmgF+FEI8JIVoJIYJKDks6F0KMFkIcEUIcF0LMreS6hxDiM/P1v4QQUWWuPWEuPyKEGFWmfKUQ4pwQYn+FvuYLIc4IIeLMx7WWaHRGCo8c4ez8Z/Hu18/uoXb8hg8Ho5HcLVvsqkOhaGy8FfcWHx/6mNs638b90feXu6YvMUThDccQTULbR7QVbU9RLFCtq5kQQge8BYwBugC3CCG6VKh2D5AhpWyHtg71srltF2Ay0BUYDbxt7g9gtbmsMhZJKWPMxw8WfDanw5SXR9JDD6Hz8yP8tYUIV/vumPaMjsa1eXO7rRMpFI2RVftX8e6+d7mh/Q3M6Tvnkq0ahqQzCHd3XJsF20lhzajWEEkpW1dytLGg737AcSnlSSmlHvgUGF+hznigxLdwHXCNeY/SeOBTqSXkOwUcN/eHlHIr4LQu43Xl3OLFGBJOE7ZwIa7NmtlbDsLFBb/h15D7+++YLIwcoFAoas+HBz7k9djXGR01mnn951W6X9CQmIhbeLjDRcm/HJZ4zbkJIR4SQqwzH7OEEJbskAoHyu52TDKXVVpHSmkEsoCmFratjFlCiH3m6bvAy3yeaUKIXUKIXc62yJ2/Zw8ZH31M4K234HNFP3vLKcVvxAhkQQF5f/xhbykKRYNFSsnbcW/z6q5XGRE5gpcGvYTORVdpXf3p07hHRNhYYe2xxFwuA3oDb5uP3uYyR2MZ0BaIAVLQ9j1dgpRyuZSyj5SyTzMHGFFYikmvJ+Xp/8M1NIRmsx+1t5xyePfpg4ufHzkV8tUoFIr6ocQxYdneZYxvO55XBr+Cm0vl4wEpJfrTp3GLdB5DZMkCQ18pZdmoeb8JIfZa0O4M0KrM+5bmssrqJAkhXIEAIM3CtuWQUqaWnAsh3gMaVNjf9BUr0J84Qav3lqPzrVsQzPpGuLnhM3AgeVu2IqW0WmghhaIxUlRcxPw/5/Pdye+Y0nkKc/rOwUVcfgxhPH8eWVCAe2SkDVXWDUtGRMVCiNIcAkKINmghfqrjb6C9EKK1EMIdzflgfYU664E7zecTgd/MAfXWA5PNXnWtgfbAzqpuJoQILfP2X8D+y9V1NvRJZ7jwzrv4jR6N76BB9pZTKb5DhmA8f54iFZFboag3LhRc4O6f7ua7k98xK2YWj/d9vEojBGA4fRoA9wjnMUSWjIj+A2wSQpwEBBAJ3F1dIymlUQgxC/gJ0AErpZQHhBDPoUVuXQ+sAD4SQhxHc0CYbG57QAjxOXAQMAIzpZTFAEKI/wFDgWAhRBLwjJRyBfCKECIGkEA8UN6f0YlJ/e9/QaejxdzH7S3lsvgOugqA3K1b8exS0TlSoVDUlJ0pO5m7bS65hlxeH/o6IyJHWNROn2A2RA1sau53tBFJR/P7I5Z2bnah/qFC2bwy54Vocesqa/si8GIl5bdcpv7tlupyJnI2byZ340aaP/YobiEh9pZzWVyDg/Ho3Jm8P7cTPN2xs0EqFI6ModjAu/veZfm+5UT6R7Js+DI6BnWsvqEZ/enT4OqKW4W8U46MJVNz281u1PvMRxGw3drCFFpA09QXX8K9TRuC7rjD3nKqxad/fwr27FFu3ApFLTmYdpDJ30/m3X3vcl3b6/hs3Gc1MkIA+tMJuIWH2X2PYU24rFIhRAiay7SXEKIn2rQcgD/gbQNtjZ6099/HkJhIxKqVCHd3e8upFp8B/UlftYr83bvxHTjQ3nIUCqchozCDt+LeYu3RtTT1bMqSYUsYFjGsVn0ZEk471foQVD01NwqYiuaxVjb/cQ7wpBU1KQB9YiJpy9/D/9ox+AwYYG85FuHduze4uZG/Y4cyRAqFBWTrs/nk0Cd8ePBD8g35TOo4iZkxMwnwqF169RLX7YCePetZqXW5rCGSUn4AfCCEuFFK+YUNNSmA1BdfQuh0NH/ccR0UKuLi44NXly7k795jbykKhUOTUZjBmkNrWHNoDbmGXIa2HMrDvR6mXWC7OvVbnJGBKTfXqRwVwDJnhe+EELcCUWXrSymfs5aoxk7Ob5vI3byZ5nPm4Naihb3l1Aivnj3J+OQTpF7vFNOJCoUtOZx+mE8OfcL3J79Hb9IzInIE06Kn0SmoU730r09IAMDNiaIqgGWG6Bu00DuxQJF15ShMhYWkvvgi7u3aEnT7bfaWU2O8evYkffVqCg8exCsmxt5yFAq7Yyg28Fvib3xy6BN2n9uNl6sXE9pN4NbOt9K2SdvqO6jJvZxwDxFYZohaSikvF+1aUc+kLX8Pw5kzRHzwAcLNkpB+joVXzxgA8vfEKUOkaNQkZifyxbEv+Or4V6QXphPuG85jfR5jQrsJtV4Dqg59QgK4uODuJJlZS7DEEP0phOgupfzH6moaOcYLF0hbtUpzUHCgoKY1wa15c9xatqRg9264a6q95SgUNsVgMrDp9CbWHV3H9pTt6ISOwS0HM7HDRAaGDbxskNL6Qp9wGrewMKebFrfEEF0FTBVCnEKbmhOAlFJGW1VZIyTtvfeRRUUEP/igvaXUCa+ePcnbsV3FnVM0GhJzEvni6Bd8ffxr0grTCPEJYWbMTP7V7l+08LHdOq+zRd0uwRJDNMbqKhQYUs+R8emnBIwfj4eTp7/27tWT7G+/xXDmDO5OkqpYoagpufpcfkn4he9Pfs9fZ//CRbgwuOVgbupwk01GP5WhP30a/2ud7yu7WkMkpUwQQlwFtJdSrhJCNAN8rS+tcZH27rvI4mKCZ86wt5Q642Xew1Cwe7cyRIoGxdm8s2xP3s62M9vYmrSVouIiIvwi7DL6qUhxZiamrCync1QACwyREOIZoA9arLlVgBvwMaB2LNYThuRkMteupckNNzSIL26P9u1x8fEhf88eAq6/3t5yFIoaUVRcREZhBsm5ySTnJZOYncjBtIMcSDvA+QItmWZzr+ZMaDeB69peR3RwtENMQetPO1+w0xIsmZr7F9AT2A0gpUwWQvhZVVUj48KydwAIfqBhBAsVOh2e0d0p3Kf8W5wJg8lAVlEWmYWZZBRlkFmUSa4+l8LiQgqNhaWvRcVFFBoLMUkTJmlCIi+eS4mJMufm6xKpxcWH0vdSmsvNZdr/qygvKZMX25fWKVte8V5lykvaVLxWaCwk15BLjj4Hg8lQ7rkIBFEBUfQP7U/X4K70DelL+ybtHcL4lKU06nYDXSPSSymlEEICCCEcKyubk2NISSHzq68IvPlm3EJDq2/gJHh27ETG//6HNBqdKvhiQyPfkM/5gvOczz/PhYILXCi4wPmC86QVpJFZZDY4ZsOTo8+ptj83Fzc8dZ6469zRuehwES7ohA6BwEW44CJcEELggvYqhKD0f+bzEspeK/te+38l5eZz0K67uLhcrGfuttJ7icrLy97LU+eJr7svvu6++Ln5EeARQJhvGGE+YYT6huLl6lUv/x7WRH86AYTArVWr6is7GJZ8Q3wuhHgXaCKEuA8tF9F71pXVeMhYswZMJoLurjbFk1Ph0bEjsqgI/enTeLRpY285DRIpJVlFWSTmJJY7knKTOJ9/nvMF5ykwXhoJ3dXFlaaeTQnyDKKJRxPCg8MJ9AikiWeT8q8eTfBz98PT1RNPnSceOg+7LMArLMNw+jSuISG4eHjYW0qNscRZYaEQYgSQjbZONE9K+YvVlTUCTPn5ZHy+Fr8RI5xuA1p1eHbsAEDR4cPKENUDUkpOZZ/iUNohjqQf4XD6YY5kHCG9ML1cveZezQn3C6dL0y4EewUT7BVMM+9m2qtXM5p5NcPfw7/aLJ8K50Of4Jyu22CZs8Js4DNlfOqf7A0/YcrOdspQPtXh3q4d6HQUHjmK/7XX2luO02E0GTmQdoA9qXuIPRdL3Lk4MosyAW16rF2TdgxpOYS2TdoS4RdBK79WhPuFO8UUksI66BMS8Bs+3N4yaoUlU3N+wM9CiHTgM2CtlDLVurIaB5lr1+LeujVevXvbW0q94+Lujkeb1hQdsTihb6MnOTeZP5L/4M8zf/JXyl/kGLQ1m0j/SIa2Gkqv5r3oGtyV1gGtcXNxvvBPCuthzMigOCMDdyfdg2jJ1NyzwLNCiGhgErBFCJEkpXRO0+sgFB0/TsGePTT/z38czvumvvDo2In83bH2luHQnMg8wc8JP/NLwi8cyzgGQAvvFoyMGsmAsAH0btGbYK9gO6tUODr6U/EAuLdpoIaoDOeAs0Aa0Nw6choPmWvXgZsbARPG21uK1fDo2IHs776jOCsLXYB1gjw6I8cyjvFzws/8HP8zJ7NOIhD0bN6Tx/o8xlXhV9EmoE2D/XGisA76UycBnHY91pI1ohnAzUAzYC1wn5TyoLWFNWRMej1Z33yD39VX49q0qb3lWA3Pjh0BKDp6FO++fe2sxr5kFWXx46kf+er4VxxMO4iLcKF3i95M7jSZayKuobm3+m2nqD36U6cQbm64hTun05MlI6JWwCNSyjgra2k05P72G8WZmTSZONHeUqyKR0ct2VfhkcZpiEzSxF8pf/HV8a/YmLARvUlPp6BOzO03l1FRo9SUm6LeKDp5CveoSITOOd3rLVkjekIIoRNChFE+Q+tpqyprwGR+9RWuISH4XDnA3lKsimvzZuiaNKHoyGF7S7Epufpcvj7+NZ8c/oTEnET83f2Z2GEiE9pNoHPTzvaWp2iA6E+dwqNd3dKM2xNLpuZmAfOBVMBkLpaASgNRCwznzpG37Xea3nef0/56sRQhBB4dO1J45Ki9pdiEhOwE/nf4f3x9/GvyDHnENIthVswsrom8Bg+d820yVDgH0mBAn5iI38iR9pZSayyZmnsE6CilTLOylkZB9rffgsnUoJ0UyuLZqSMZn69FFhc3SMMrpWR7ynbWHFrDtqRt6Fx0jIkaw5TOU+ga3NXe8hSNAH1iEhiNuLeOsreUWmOJIUoEsqwtpDEgpSTzq6/w6tnT6XMOWYpHh47IggIt1E8D+szFpmI2nt7I+/+8z6H0QwR5BjG9x3Ru7nizWvtR2BRn95gDywzRSWCzEOJ7tAytAEgpX7eaqgZK4f796I+fIOS5Z+0txWZ4lHjOHTnaIAyRodjAdye/Y+X+lcRnxxPpH8mzVz7LuDbjcNc5V3pmRcNAf+oUgNNuZgXLDNFp8+FuPhS1JPv7HxBubviPcb4MirXFo307cHGh6OgRGD3K3nJqTb4hny+PfcnqA6tJzU+lU1AnFg5ZyPCI4SoQqMKuFJ08ha5ZMDo/583OY2lkBUU9kLt5M95XXOHUfzA1xcXDA/fWrZ3WYSHPkMcnhz7ho4MfkVGUQe8WvZl/5XwGhg1Um04VDoH+5Ek8WjvvtBxUYYiEEG9IKR8RQnxLaZqpi0gpVerNGlB06hT6+HgCb2t4AU6rw7NjBwr27rO3jBqRZ8jjf4f/x+oDq8kqymJQ+CDui76Pns172luaQlGKlJKiU6fwHz3a3lLqRFUjoo/MrwttIaShk7tlCwC+Q4fYWYnt8ejQkewffqQ4Nw+dr2PnVcw35JcaoMyiTAaFD2JGzAy6BXeztzSF4hKKMzIwZWXh4aQx5kq4rCGSUsaaX7fYTk7DJXfzFjzat8O9ZUt7S7E5Hu21jXb6E8fx6tHDzmoqJ9+Qz6dHPmX1/tVkFGUwMHwgM3rMILqZ2i6ncFwagqMC1CzoqaKWFOfkkL9rF03vmmpvKXbBo317AIqOHXM4Q1RgLOCzw5+x6sAq0gvTGRg2kOk9phPTPMbe0hSKaik6qbluuzux6zYoQ2QT8n7/HYxGfIcNs7cUu+DWsiXC05OiY8ftLaWUAmMBnx/5nJX7V5JemM6A0AHMiJmhDJDCqdCfike4u+MWGmpvKXVCGSIbkLtlK7qAAIcbDdgK4eKCR5s2FB23vyEqKi5i7ZG1vP/P+6QVpnFF6BXM6DGDXi162VuaQlFj9CdP4h4V5fRRSyyJNdcHeAqINNcXgJRSqslzC8nfuRPvfv2c/o+lLni0b0/ejh12u7/BZGD98fUs27uM1PxU+ob05bWY1+jdouFlx1U0HvSnTuHRqZO9ZdQZFwvqrAFWATcC1wHjzK/VIoQYLYQ4IoQ4LoSYW8l1DyHEZ+brfwkhospce8JcfkQIMapM+UohxDkhxP4KfQUJIX4RQhwzvwZaotHaGM6cwZCc3CjTIJTFo307jKmpFGdn2/S+Jmnih5M/MOHrCczfPp8W3i14b+R7rBy1UhkhhVMj9Xr0SUlOm5W1LJYYovNSyvVSylNSyoSSo7pGQggd8BYwBugC3CKE6FKh2j1AhpSyHbAIeNnctgswGegKjAbeNvcHsNpcVpG5wEYpZXtgo/m93cn7+28AvK/oZ2cl9sXdHKLeVtNzUko2nd7ExG8n8vi2x/Fw9WDp1Uv5+NqP6R/a3yYaFAprok9MhOJip44xV4Ila0TPCCHeR/tyLxtr7stq2vUDjkspTwIIIT4FxgNls7uOR0sxAbAOeFNo29XHA59KKYuAU0KI4+b+tkspt5YdOVXoa6j5/ANgM/C4BZ/PquT//Te6gIBSz7HGike7Es+543j3su56zI6UHSzZvYR/LvxDpH8krwx+hVFRo3ARlvzuUiicg1KPuSjnHxFZYojuAjoBbpTPR1SdIQpHi9xdQhJwxeXqSCmNQogsoKm5fEeFttXlwG0hpUwxn58FWlRWSQgxDZgGEBERUU2XdadgTxxePXsiXBr3l6BbWCgu3t4UHTtmtXvEnYtj6Z6l7Dy7kxCfEJ698lmub3s9ri7KJ0fR8NCfbBh7iMAyQ9RXStnR6krqESmlFEJcEpbIfG05sBygT58+ldapL4qzstCfPEnA9SoaknBxwb1dO6tMzR1JP8LSPUvZkrSFIM8g5vaby8QOE1UyOkWDRn/qFK7Nmzt8tBJLsMQQ/SmE6CKlPFh91XKcAVqVed/SXFZZnSQhhCsQAKRZ2LYiqUKIUCllihAiFDhXQ731TsG+fwDwimmcbtsV8WjXjtytW+utv1NZp3g77m02xG/Az92Ph3s9zK2dbsXbzbve7qFQOCpFp046/UbWEiyZL+oPxJm91/YJIf4RQlgSwfJvoL0QorUQwh3N+WB9hTrrgTvN5xOB36SU0lw+2exV1xpoD+ys5n5l+7oT+MYCjValYO9eEALPbt3tLcUh8GjXjuILFzBmZNSpn+TcZOb9MY8J30xgS9IW7ut+Hxtu3MC93e9VRkjRKJBSoj8V79RZWctiyYioVmFdzWs+s4CfAB2wUkp5QAjxHLBLSrkeWAF8ZHZGSEczVpjrfY7m2GAEZkopiwGEEP9Dc0oIFkIkAc9IKVcAC4DPhRD3AAnAzbXRXZ8U7N2LR7t2DWLoXB+UDfXj2q/mXoQXCi7w3r73WHt0LQC3drqVe7vfS1OvpvWqU6FwdIrT0jBlZzt9+ocSLDFEtV5HkVL+APxQoWxemfNC4KbLtH0ReLGS8lsuUz8NuKa2WusbKSWFBw7gO3SovaU4DCXBT4uOH8enBoYoqyiLVftX8cnhT9AX65nQbgLTe0wnxCfEWlIVCoemoQQ7LcESQ/Q9mjESgCfQGjiCtsdHcRmMqakUp6fj2bXi1qnGi2uLFrj4+qK30GGh0FjI/w7/j/f/eZ8cfQ5jWo9hZsxMIvyt7+2oUDgyRWaPuVqnf5ASHCixoyUZWsstcAghegEzrKaogVB4UPPt8OysDFEJQgg82rWrNvhpsamY9SfW81bcW6TmpzIofBAP93qYjkFO5bypUFgN/alTCE9PXGsT7PT8EVj/IPzrXQhyjBFVjTdYSCl3CyEq7gdSVKDwwEHNUaGT+vIsi0f79uT88gtSyktSbUsp2Zy4mSV7lnA88zjdg7vz30H/pW9I4w6PpFBUpOiUOdhpTfcn7v8SvpkF7t6Qd955DJEQYnaZty5ALyDZaooaCIWHDuHepg0u3sqLqywe7duRuXYtxWlpuAYHl5bvObeHRbGL2HNuD1H+Ubw+9HWGRwy/xFgpFAptM6tX9xpkDTYUwE9Pwa4V0LIf3PwB+IdZT2ANsWRE5Ffm3Ii2ZvSFdeQ0HAoPHcK7twqqWRGPkphzx47hGhzMicwTLN69mE2Jm2jm1Yx5A+Yxod0E3Fzc7KxUoXBMTEVFGM6cIeA6i2JPQ+pBWHc3nD8EA2bBNc+Aq7t1RdYQS9aInrWFkIZEcXY2xpQUPDp2sLcUh8OjozZVmbE/jkViI+uOrsPL1YuHej7ElM5T1D4ghaIa9AkJYDJVv5lVSm0E9NNT4OEPt30B7YbbRmQNuawhEkK8IaV8RAjxLZW4cEspVdyay1AST62xBzqtDBnoj76JDxt+fYd1HoKbO97MAz0eINDTIbJ2KBQOj/5UPEDVm1mzkuC72XDsJ2h7DfzrHfBtbhN9taGqEdFH5teFthDSkCgxRJ4d1IioLDtTdvL8jue5NTCf9mnerLvuU9oFtrO3LIXCqSg6fgyEqDz9g8kEsSvhl/kgi2H0Auh3Pzh40OXLGiIpZaz5dYvt5DQMio4excXXt3aulQ2QXH0ur8e+ztqja2nl14oO/Ubg8+Um2vpG2luaQuF06E+cwC08HBcvr/IXLhyD9Q/B6T+hzVC4bjEERtlDYo2xxGtuIFrOoIqpwhtGbAkrUHT0GB7t2yuPL2B78nb+74//43zBeaZ2ncqMmBno3TaS/NnPFJ08hadaR1MoakTR8ROlTj8AFGbB1ldhxzuaW/b4tyBmikNtWK0OS7zmVgD/BmKBYuvKcX6klBQdO4bfqFHVV27AFJuKWbZ3Gcv3Lad1QGteH/o60c2iAXAx760qOnxIGSKFogZIoxH9qVP4Dh4EpmLY/SH89gLkp2nG55p54FdpKjaHxhJDlCWl/NHqShoIxRkZFGdl4dGurb2l2I0LBRd4fOvj7Dy7k/Ftx/PkFU+W84Zzb90a4eVFwYEDBIwfb0elCoVzoT+diDQYcPcthHeHQOo/EDEARq+DsJ72lldrqvKaK8nnvEkI8SpaRtayqcJ3W1mbU1IajDAqyr5C7MSBtAM8uPFBcvQ5PD/weSa0m3BJHeHqimfnzhTuP2B7gQqFsyIlRb9/BYDHwTegTShMXAVd/+VU03CVUdWI6LUK7/uUOZfA1fUvx/lpaFFxa8KvCb/yxLYnCPIM4uNrP64yNpxnt65kfr4WaTQiXFUqb4XishQb4NB62P42+p8PA/543Pwi9L/L4Tam1paqvOaGAQgh2kgpT5a9JoRQjgqXQR8fj3Bzwy3MccJnWBspJasOrGJR7CKig6NZfPVigr2Cq2zj1b07GR9+RNGJk2qdSKGojKwzsPd/sGslZJ+BoLYU+fTFLTwHl6vut7e6esWSn6Lr0OLLlWUtoOLXVELRqXjcIiMQOp29pdgEkzTx6t+v8vGhjxkVNYoXBr6Ap6tnte08u2pxsgr3/6MMkUJRQkEmHP1JM0AnNwMSogbB2Neg/SiK/nUD7u0a3t67qtaIOqHlHAoQQtxQ5pI/Wl4iRSXoT53Co23jGDAaTUae+fMZ1p9Yz5TOU5jTdw4uwrKNc+5RkegCAsjfvZsmN95oZaUKhYMiJVw4qhmdw99Dwh9gMkJABAyZAz0mQ5D2fSKNRvQnT+Jz1UD7arYCVY2IOgLjgCZA2eh6OcB9VtTktEijEX1iIn7XOEyiWKtRVFzEf7b8h02Jm5gRM4Pp0dNrtG9KuLjg1acP+bt2WVGlQuFgFBvh/GFI3AHxv2tH3nntWtP2WlDSTmMhvM8l0RD0iZrHnEfbmo+Iik2SUxfyOJiSzaGUbA4mZ/PktZ3pGOJXfWMbUNUa0TfAN0KIAVLK7TbU5LQYzpwBg6HBe8zlGfJ46LeH2Hl2J3P7zWVK5ym16se7Tx9yN27EkHoOtxaOGwdLoagVUkJWIpyJhaRdcGY3pMSBIV+77h8Oba+GyIEQdRU0rXrLh/7ECUBLpVIVuUVGDqdklzM6R1JzKDSYAHB1EbRr7ktmvr7OH7G+qGpqbo6U8hXgViHELRWvSykfsqoyJ6SoEXjM5RvymfHrDPae38tLV73EdW0tDEVfCd59tGXGgthduF17bX1JVCjsQ346JO/WDM6ZWO0oGe3oPCA0GnrdAeG9oWVfLfxODWYRio5rmY3dW5un6qQkOauQg8kXDc6hs9kkpOWXtmni7UbnEH9u7RdJlzB/Oof60a65Lx6ujrWGXdXU3CHzq5o7sRB9fDxQTVRcJ6aouIhHNj1C3Pk4Xh70MqNbj65Tf56dO+Pi40Pejr/wV4ZI4SyUjHRSD0Dqfu01ZS+klzgXC2jWEdqPhPBemuFp3rVOrtZFxmLO7f4HffNQXtgUX2p8sguNpXWimnrTNcyfib1amo2OP6EBnk4Raqyqqblvza8f2E6Oc6M/FY8uIADXwIaX0sBgMvDY5sfYnrKd5wc+X2cjBNrGVu/+/cn7449KU4crHBApzYepmkMC8tLXkj4quyZLss1UUlan9hXvX1UdoLgICrOhKFt7LczU3Kezzlx8NeRdfCaBUdCi28XRTmgMePrX+hGn5RZxKCVHG+WYp9eOn8vl3di9nAwI49OdiXQM8WNcjzA6h/rTJdSfTiF++Hg47368qqbmKs1DVILKR3Qp+lOnGuS0XLGpmCe3PcnmpM08dcVTlUZLqC0+A68kd+NG9PHxeDTAZ2dzpNS+QItyoCgX9HmgLzk3H0VlX3O0OoZCMJoPQ0GZ80IwFoCxSDsu/5XQgBHg2wICwqFZJy25XNN2mvFp0QU8arfgX2ySxKflXZxaMxud1OzSADa08PegS6g/IyN9CPsyjVa33szd/x6FzqVh/WiryoSqPEQ1RB8fj8/AhuVaaZImnvnzGTbEb2B279lM7jS5Xvv3veoqUoG83/9QhuhySAkFGeV/lWefgdxz2rpEQXr5V2lJbGIB7r7g4QvuPuDmBa6e2uHbHFw9wNUL3Dy1V1cP7RA6EC7mQ5Q5r3gI7R4lo9yK70vPK3m9pH7FV6quY1H7smUV3uvctIymnv7aq4c/6Oo22sgtMnLkrLaOc9A82jlyNocCg/ZvVeJAMLBtsDbKMU+tBflo03l5O3dyGgjr06PBGSGoempO5SGqAcW5eRjPnWtQHnNSSl766yW+OfEND/R4gLu63VXv93CPiMA9MpLcTb8RdPtt9d6/02AyacYl7Tikn4C0E+bzk5rxMRaUry90msHwCgLvIGje6eK5V6D25enuo/1aLzU4vhfP3bydPj6ZIyKlJKWsA4F5lBNfxoEgwMuNzqF+TO7Xii6hmsFp36JqB4KiQ9qSvWeXLlb/DPbAeScVHQxD4mkA3CMbRrI3KSWLYhfx2ZHPmNp1Kg/0eMBq9/IbNYq0FSswpqfjGhRktfs4DHlpWtTks/vNi937taRmxsKLddy8IagtNO8CHUZrrr7+YRDQUjv3bQ4ujuX51NjQG00cO5fDoZSccoYnq8BQWieyqTddQv25oVdLzeiE+RNWCweCwoOH0DULxrVZs/r+GA6BMkT1hOHMGQDcWra0s5L64Z2977DqwComdZzE7N6zrepI4D9mNGnLl5Pzy68ETrrZavexC3lpZlde8z6S1P2Qk3Lxum8Lba2h9RBtH0nTdtrhF6pGLA5Eep6eQ2X25Rw0OxAYTdqamaebCx1D/Lm2eyhdQv3oHOpPp1B/fOvJgaDw0CE8O3eul74ckaqcFT6SUt4uhHhYSrnYlqKcEUNyMgBu4c4f7HT1/tW8vfft0lxC1vZm8+jUCffISLJ/+MG5DVGxEc7uhcS/NcOTtAsytL1lCBdtobv1EAjpZl7o7ga+DfMXrrNiMjsQHErJ4WBKVulo52z2xdFqcz8PuoT5M6xT89KptdbBPlZbuzEVFVF04gS+w4ZZpX9HoCpz3VsIEQbcLYT4kNJVQA0pZbpVlTkZhjNnEN7e6Jo0sbeUOvHp4U95LfY1RkWN4tkrn7U4dlxdEELgP/56LixZiuHMGdzCw61+z3rBqNc2MCb8AfF/QOJfmjcagF8YtOwNvadCyz6aS6+Hrz3VKiqQV2Tk8NnybtKHUy46EOhcBO2a+TKgbVM6m0c5nUP9Cfb1sKnOoqPHoLi4cY6IgHeAjUAbtDThZQ2RNJcrzOjPnME9PMyp98J8ffxrXvzrRYa2HMp/B/0XnQ3XIJqMH8+FJUvJ/Pprms2cabP71ghDgTbKSfhDOxL/vuhE0KyzFqAy8kpo1V9z9VU4BFJKzmYXXow+kJLDwZRs4tPySrcO+Xu60jnUn0l9W9ElTNub0665L55u9l+HKzx0EADPLo3QEEkplwBLhBDLpJTWW6luIBjOJOPqxDmINsRv4Jk/n2FA6AAWDl2Im4ubTe/vFh6O94D+ZK77guBp0xButr1/pRQbtdhgJzfBic2QtBOK9YDQptd6T4WogVqqZp+q8y8pbIPeaOL4udxyo5yDKdlk5l90IIgI0hwIJsSEl4a9CW/i5bA/IgsPHcLF17fBrD9XRrUraVLKB4QQPYBB5qKtUsp91pXlfBiSk/HuGWNvGbVic+Jmntj6BDHNYnhj2Bt46Gw79VBC0J13kjT9AbJ//JGA6+2wX1pKzW365CYtLP+pbVCUpV0LiYZ+07TcMBH9wauJ7fUpypGZr+dghVHO8XM5GIq1YY6HqwudQvwY3TWkdF9OpxA//Dwd4EdODSj8Zz+eXbogXKw/TW4vqjVEQoiHgGnAl+aiNUKI5VLKpVZV5kQU5+RgyspynrWNMmxP3s7szbPpGNSRt655C283b7tp8R08GI/27Uh77z38x42zzX94uefh1JaLo57sJK08IAK6joc2QzUHAzXisSsmk+TYuVxiEzLMR3q5vTnN/LQIBEM6NDNPrfkR1dQHV51zf3mb8vMpPHSIpvfea28pVsUS38J7gSuklHkAQoiXge2AMkRmSj3mnGxqbnfqbh7e9DBRAVG8O+JdfN3tu5guXFxoOn06yY8+RvZ331lnVKTPg4TtF0c9qfu1cs8m0HowDJoNbYdBYGvlPm1HcouM7E3MJDYhg10JGew5nUGOOcBnUx93ekcGMqlvBF3NI51mfvYZxVubgv37obgYLyedbbEUSwyRAMrGDCmmggddY8eQou0LcQsNtbMSy9l/YT8zNs6ghXcLlo9YToBHgL0lAeA/ZgxpK1Zw/o3F+I0YgYuXV906NJm0dZ4TG+HkFs2zrVgPOndtiu2aedqoJzRGbRC1E1JKkjIK2H06g13x2ojn8NlsTFL7LdCxhR/X9Qijd0QgvSMDiWzq7bDrOfVNwZ44ALx69LCvECtjiSFaBfwlhPjK/H4CsMJqipwQ49lUAFydxBAdST/C/b/cTxOPJrw38j2CvRxn2km4uNBi7lxO33EnF956i+aPPVbzTnLOwonf4PhGbeSTn6aVt+gOV9wPbYZpDgbu9puGbMzojSYOJGeVmWbL4FyOFujTx11Hz4hAZl3dnt6RgcS0akKAl3Ot6dQnBXv24N6mTYOM6F8WS5wVXhdCbAauMhfdJaXcY0nnQojRwGJAB7wvpVxQ4boH8CHQG0gDJkkp483XngDuQRuBPSSl/KmqPoUQq4EhgHl1malSyjhLdNYVQ+pZ0OlwDXacL/TLcTLrJNN+mYanqyfvj3yfEJ8Qe0u6BJ9+/QiYeCNpq1bjO2wY3r17V93AWASnt2uG58RvF6fbfJppkZLbXqNNt/mqLLD24EJuEbsTMog9ncHuhAz2JmWhN2rZQlsFeXFl26b0jgykd2QQHUP8GmRQz9ogpaQgLg7fa662txSrY1H8CSnlbmB3TToWQuiAt4ARQBLwtxBivZTyYJlq9wAZUsp2QojJwMvAJCFEF2Ay0BUIA34VQnQwt6mqz/9IKdfVRGd9YDybimuzZgidY0/tJOUkcd/P9wHw/sj3aennuO6gLebOJX/n35x59DFar1tb3shLqcVmO7FRMz7xv2v7eVzczNNtz0C7a7QRUAP2NHJEKjoV7D6dwakLWu4eN52gW3gAd/SPpE9UIL0iAmnu72lnxY6LPj6e4sxMvGJi7C3F6lgz1lw/4LiU8iSAEOJTYDxQ1hCNB+abz9cBbwpt8nc88KmUsgg4JYQ4bu4PC/q0OcbUs7i1aGFPCdVyNu8s9/58L4XGQlaOWknrAMdOuaDz9aXlG4uIn3IbiQ/MIOLtRejO7zKPejZBlhZklqA20PM2zfBEDVLRC2xMWaeCEsNT1qmgV2Qgk/u2ondkIN3CAxxig6izULI+5N2zp32F2ABrGqJwILHM+yTgisvVkVIahRBZQFNz+Y4KbUt8o6vq80UhxDy0iBBzzYasHEKIaWju6ERERNTwI1WO4WwqHu3b10tf1uBCwQXu+/k+MosyeX/k+3QM6mhvSdVjKsbTP5/wqQNIeuc3Eq4fQqvBabgF+ECbIXDVI9D2aghybIPakCjrVBCboDkWlHUq6NC88ToVWIOCPXtw8ffHvU3DD2JjyT4iH6BASmkyT491An6UUhqqaWprngDOAu7AcuBx4LmKlaSUy83X6dOnT53TTUopMZw9i++gq6qvbAcyCzOZ9ss0UvNTeWf4O3QL7mZvSZcnLw2O/wrHftLWegoy8EPQakJnkr7PJWFHV8KXvoVXdMP2IHIUlFOBfcnfsxuvHj0a9EbWEiwZEW0FBgkhAoGfgb+BScCUatqdAVqVed/SXFZZnSQhhCsQgOa0UFXbSsullCWx9YuEEKuAWrhb1RxTTg4yPx/XFo636J+rz2X6r9NJyErgzWvepFeLXvaWVB4pIWUvHPtFMz5JuwCpORl0GK05GrQZiq9PMJG37idpxgziJ99K0J130mzWTFx8fOz9CRoUablF7D6dya6EdHYnZLAvKYuiSpwKekUG0rGFn9NvFnVkjOfPoz9+goDx4+0txSZYtI9ISpkvhLgHeFtK+YoQIs6Cdn8D7YUQrdGMxWTg1gp11gN3om2QnQj8JqWUQoj1wCdCiNfRnBXaAzvR9i9V2qcQIlRKmWJeY5oA7LdAY50xnD0LgFuIY60R5RvymblxJkfSj/DGsDcYEDbA3pI09Pmak8HRnzQDlKs9P8J6wZDHocNICO15iZOBV/dutPn+O8699jrpq1aR+eWXBE6aROAtk51q/5ajYDJJjp/PLd23U5lTwe39I0sNTwvlVGBT8nb8BYBPfwf579bKWGSIhBAD0EZA95jLql1xNK/5zAJ+MtdfKaU8IIR4DtglpVyPth/pI7MzQjqaYcFc73M0JwQjMFNKWWwWc0mf5luuEUI0QzNWccB0Cz5bnTGmmvcQhTjOiKiouIiHNz1M3Pk4Xhn8CkNaDbGvIEOhNuV24Es4sgEMeVoq67ZXQ4dR2sjHAtdqnb8/oc/Op8mNN5D2/grS3nuPtOXL8erRA99hw/Dq2ROvbl3VSKkS8oqMxFXjVDDJ7FTQXTkV2J28Hdtx8fdv0BG3y2KJIXoEbf3lK7OBaANssqRzKeUPwA8VyuaVOS8EbrpM2xeBFy3p01xuF2d747nzALg2d4w9KgaTgcc2P8aOlB28MPAFRkWNso8QKbWMpLGr4MDXoM8BryCIvgm6/gsiB4KudmsKXtHRtFyyGH1iItk//Ej2Txs4/8Yb2kUXFzw6dMC7Vy882rfDPSoK96goXFu0aBRz7XCpU0FsQgaHUso7FYyLDqNPpHIqcESklORv34HPFf0cfktIfWHJhtYtwBYAIYQLcEFK+ZC1hTkLxvNmQ+QAm1mNJiNzt85lc9Jmnr7iaca3s8P8sqEA9v4P/l4Jqf+Am49meLrdoMVyq6XxqQz3Vq0Ivn8awfdPw5iRQeE//1AQt5eCuD1kfv01Mv9iUEzh4YF7ZKR2REXhHhVZaqR0QUFO/UVc1qmgxPikZl90KoiJaKKcCpwI/cmTGJKTaTrtPntLsRmWeM19gjbNVYy27uMvhFgspXzV2uKcAeOFC7j4+eHiad85dJM0Me+Pefyc8DOP9XmMSZ0m2VZA3gXY+R78/Z4WUickGsYtgm4TwdPf6rd3DQzEd/BgfAcPBkCaTBjPnUMfH48+PkF7TUig6PhxcjZvBsNFp08Xf388O3bENTQE12bN8IqJwWfAleh8HXOKr8SpIDahJFJBZqlTQctALwa0UU4Fzkzu5i0ApX/LjQFLpua6SCmzhRBTgB+BuWgZW5UhQhsR2Xs0JKXk+R3P8+3Jb5kVM4s7u95pu5tnnobf34C4NWAshA5j4MoHtUyldhxlCBcX3EJCcAsJwad//3LXpNGIITkZfUIC+lPxFJ04QdGRIxTE7sZ4/jzpK1aCqyvevXrhO3gQPoMG49GhvV1GTSVOBWVdqJVTQcMmd+tWPNq3d7po/nXBEkPkJoRwQ/NEe1NKaRBC1Hn/TUPBeOECrs2a2e3+Ukpe/vtl1h1dx33d7+P+Hvfb5sbZybB1Iez+UDM4PSbDgFnQzPE3ywpXV9wjInCPiIBBg8pdkwYD+Xv2kLdtG7lbt3Fu4Wuw8DVcQ0LwHTIE/1Ej8e7XD+Fqnb3geeZIBbuUU0GjpDg7m/zYWJreNdXeUmyKJf81vQvEA3uBrUKISCDbmqKcCeOF83h1tc8mUSkli3cvZs2hNdzW+TYe7Pmg9W+akwq/L4JdK0EWQ8/bYfBjEOC4cetqgnBzw6dfP3z69aP5o49iSE0tNUpZ335L5mefoQsMxG/0KJrecw/udUjfLKXkTGZBudFOZU4Fvc1OBVHKqaDBk/Pbb2A04jd8uL2l2BRLnBWWAEvKFCUIIYZZT5JzYTx/Addm9pmae2ffO6zYv4KbO9zMnL5zrPsllXcB/ngDdr6v5fOJuQUGz4HASOvd0wFwa9GCJhMn0mTiREyFheRu3UrOhp/I+vIrstZ9QZNbJhM8fTquQUHV9qU3mjiYks2u+PRLnAq83XX0jGjCrGHt6BUZSM+IQOVU0AjJ+fkXXEND8YyOtrcUm2KJs0IA8AxQsnK2BS10TtZlGzUSTHl5WlQFO0zNrdq/irfj3ub6ttfzVP+nrGeEDAWwYxlse13b/xM9CQb/B5q2tc79HBgXT0/8R47Ef+RIDKmpXHjzTTI+XkPWF18S/OAsgm67rdyUXXqe/uK+nUqcCvq3aVo62lFOBYri3Fzyfv+dwFtuaXQjX0um5laiRSm42fz+drRkeTdYS5SzYLxwAQCdjZ0VPjn0Ca/Hvs7oqNE8d+VzuAgrfIGZTPDP57DxechOgo7XwvD5TrEGZAvcWrQg9PnnCZo6ldRXXuHcgpc599U3HL79If6QQexOyOBkGaeCrmHKqUBRNdnf/4DU6/Efe629pdgcSwxRWynljWXeP2thiJ8Gz8U9RLYbEX157Ev+u/O/DGs1jJcGvYTOGumtT22Fn5/W4sCFxsC/3oHWg6pt1pjIK01/YCL2irtxN7Tmztgvaft/D/JP99G0u/YmblZOBYoakPnFF3i0b49n9+72lmJzLDFEBUKIq6SUvwMIIQYCBdaV5RyUjIhsNTX33cnvmP/nfAaGD2ThkIW4udTzGsL5I/DLPDi6AQJawQ3vafuAGklEgstR1qmgJNPooZQcik2y1Kmg17ixnLvjeoLXvstNG7/HSyQRvmQxbi2qXztSKAoPH6Zw3z6az3280U3LgWWGaDrwoXmtCCADLVBpo8d43myIgpta/V6/JPzC078/Td+Qvrwx9A3cde7113nuOdj8X4j9ANx9tCm4K6aDm1f93cOJKHEqKDE8uxLSL3EqmDm0beVOBUMXk/X996T83zzib7qZiFUr8Wjb+NbTFDUjbeVKhLc3TSZMsLcUu2CJ19xeoIcQwt/8PlsI8Qiwz8raHJ7ijHQQAl2TJla9z+bEzczZMofuwd1ZevVSPF3raX1Bnw873tI2pBoLoe89WgRsH/uHK7Il6Xn60pFObPzlnQp6RQTSKaR6p4KAsWPxaNee0/feQ8JttxOx4n08u3SxxUdROCH6pDNkf/8DQbfdZvXvEkfF4l15Usqye4dmA2/Uuxonw5ieji4gwKqBCTcnbubfm/9Np6BOvD38bbzdvOveqckE+z7VHBFykqHTOG0UFOy4WWbrC5NJcsIcqWCXecRT0angNrNTQe86OBV4duxA1EcfkXD33STcOZVW776Ddy8HywelcAjOvbYQ4epKUCPbxFqW2m4Pb3yTmJVQnJ6Brqn1puW2JG7RjFBgJ94d+S5+7n517/TkFvj5KTj7j5YD6Mb3IWpg3ft1UPKKjOxNyiQ2Xhvx7E7IINscqSDIx51eEYHc1EdzKohuWb9OBe5RUUR9/DGn77qb0/fcS8s3l+I7sOE+a0XNyd32Ozk/biD4wVm4OVAqGVtTW0OkQvwAxenpuAYGWqXvEiPUMbAj7458F3/3OgYOPX8Efv4/LRNqQATc8D50u7FBOSJU5VQA0KGFL2OjQ+kdGWSzSAVuYWFErvmY03ffQ9L0Bwh/YxF+11xj1XsqnAN9UhLJjz2GR/t2NL3nnuobNGAua4iEEDlUbnAE0DhXsStgzMiwykL01qSt/Hvzv+kQ2IHlI5fXzQjlnjc7Iqwu44jwALg5/z6Wik4FsQkZnM0uBDSngphWZZwKWgUS4G2fSAWuwcFEfvgBp6fdT9JDDxO24L8EXHedXbQoHAN9YiKnp96FlJKWS5faPXq/vbmsIZJS1sM8UMOmOD0dXd8+9drn1qStPLLpEdoHtufdEXUYCRkKYMfbsG0RGPKhz90wdK5TOyKUcypIyGBv4kWngvAmXlzRJqhGTgW2RNekCRErV5I0YwbJcx7HlJdP4GQbp+pQ2B0pJTk//8LZefOQQMTKlbhHRdlblt2xTgjhRoAsLqY4M9OiGGOWUtYILR+xnACPgOobVcRkgv3rYONzkJWopWUY8Rw061BvOm1BWaeCkuNyTgW9IgIJCXD8X5Q6Xx9aLX+XpIcf5uz8+Zjy8mh6z932lqWwAVJKCnbv5tyiRRTsisWjc2davrEI98iGHavRUpQhqiXFWVkgJbrA+jFE25K21d0IJfwJPz0Fybu1xHQT3tayojoB+XojcYmZ5n07tnUqsCUunp60WrqUM3Me59yrr2IqKKDZrJn2lqWwEqa8PDI+X0vm2rXoT55E17QpIfPn02TijVZLJeKMqCdRS4rT0wHQBdXdWWHT6U08uuVR2jVpVzsjlHZCi4hw+DvwC4MJ72jBSR3UEUFKSXJWoTbSiU+/rFNBrwjNhbp1sE+D2m0u3N0Jf20hKZ6eXHjzTZCSZg/OsrcsRT1i0utJX/0B6StXUpyZiVdMDKEvPI//mDG4+Dhm5l97ogxRLTGaDVFdp+Z+iv+JuVvn0rlpZ5YNX1YzI5R3Aba+Cn+/DzoPGPY0DJgJ7vWw16geMRSbOJicXTrSqcypYIbZqaCXHZ0KbInQ6Qh98QUQggtvvQWgjFEDofDoUZLnPE7R4cP4DBlMswcewCsmxt6yHBpliGpJcXoGALo6GKJvT3zL0388TUyzGN665i183X0ta6jPg+1vwx+LtdQMPW+HYU+BX4taa6lPMkrSH5idCvYlZVJouOhU0K91UOmGUUdzKrAlQqcj9IXnlTFqQGRv2EDynMdx8fOj5dtv43e1St1mCcoQ1ZLiDPPUXC33Ea09upbntz9Pv9B+LBm2xLKICcVG2PMhbF4AuanQcSwMf8auqRkucSo4ncHJ85pTgauLoGt4AFOucC6nAltSaoxAGSMnJ3vDBs7MfhSvnj1puWQxrlbc7N7QUIaolpROzdXCEK05tIYFOxcwKHwQi4YtwkPnUXUDKbX1n1+fhbRj0OoKuPlDiOhfG+l1oqxTQWxCBrtPZ5JVYADKOBX0dn6nAlsiXFzKGyNpIvjBBxvUulhDJ3/3bpL/MwevmBgi3luOi7djTY87OsoQ1ZLirCxcfH0RbjVbz1jxzwre2P0GwyOG88rgV3DTVdM+YbvmiJC0E4I7wKQ10Gks2OhLqlykgoQMDqZkl3MquLZ7SIN1KrAlpcZIwIW3l1GcnUOLJ59AOKjDieIixrQ0zjzyb1zDQmn19lvKCNUCZYhqiSkrC12A5Y4FUkqW7V3Gsr3LGNN6DC9d9RKuLlU8/nOHYeOzcOQH8A2B6xZDzG2gs94/WYlTQckU2+6EDFKyGrdTgS0RLi6EPv88Oj9/0levpjg9nbAF/0W412PKD0W9c3b+fIozM4la/lmjjZ5dV5QhqiXFmZYbIikli3YvYtX+VUxoN4H5A+ZfPrNq5mnY8jLEfQJuPnD109B/hhaep57JyNOz+7S2b6cyp4K+UcqpwNYIFxeaPz4H1+CmnFv4GsWZmYQvWYzO10JHFoVNydm8mZxffqXZ7Nl4dupkbzlOizJEtaQ4MxNdk+oNkUmaWLBzAf87/D8mdZzEk1c8iYuo5As95yxsXajFhBMC+t0Pg/8DPvWz4GkySU5eMKc/iK/cqeDWfhfTHyinAvshhKDpvfeiCwwiZd484idNpuWbS/Fo3dre0hRlMBUWkvrCi7i3aUPTqSpXaF1QhqiWFGdl4RYeVmUdg8nAU78/xY+nfmRq16nM7j370jWUvDT4YxHsfA9MRuh5m2aAAlrWSV++3sjexCxiE9IvcSoI9Hajd2QgE3u3pE9kkHIqcFCa3HgDbuHhnHnkEeJvnkT4wlfxHTLE3rIUZtKWL8eQlETE6tVq+rSOKENUS4qzsnCpYmquwFjA7M2z+f3M7zzS6xHu6V4hzHthFmx/S9sPpM+F6Ju1oKRBbWqlJzmzoNyG0bJOBe2b+zKmW0jpaEc5FTgPPv2vIGrdOpIefJDE6Q8QPGsmwdOnWzUZo6J6ik6dIu299/G/7jp8+l9hbzlOjzJEtUCaTBRX4ayQrc9m1sZZ7D2/l2cGPMPEDhMvXizKhZ3Ltc2ohZnQZTwMfRKaWz6/rJwKGhfuLcOJ+mQNKc88w4Wlb5K/82/CXnkFtxbN7S2tUSJNJs4++xzC05MWc/5jbzkNAmWIaoEpLw9MJnQBTS65dj7/PNN/nc6prFO8OvhVRkaN1C4UZsPf78Gfb0JBOrQfqUVDCIup9n4lTgUlm0b3KqeCRoeLlxdhL7+MzxX9OfvCC5yaMIGwlxfgO9g5gto2JDLWfEL+jh2EzJ+Pa7Nm9pbTIFCGqBYUZ2UBXDIiSsxJZNrP00grTOOta95iQNgAKMiEv97VcgMVZmoGaPAcaNW30r7LOhWUHCcu41TQK7IJoQEqR2FjQQhBkxtvwCumB2f+PZvEafcTdOcdBD/4EDpfFUjTFuTt+Itzr7yCz5DBNJl0s73lNBiUIaoFxRmZAOW85o5mHOX+X+7HYDKwYuQKuvuEw28vwl/vQFE2dLxWc0II71WurxKngpIRz+7TGWTml3cquLF3S3pHBBLdsgle7mptoLHj0bYtUZ9/xrlXXiH9gw/J+uEHmj/6KAHXXafWjqxI3p9/kvTgQ7hHRRL+yitqnbUeUYaoFpSOiMyb1+LOxTFj4wy8XL34YMhi2u79UlsH0udC5+s0AxTaA9CcCsqOdio6FYzuGkKvyED6KKcCRRW4eHoSMm8eAePHc/aFF0mZ+wQXli2j6b33EjB2rNrdX89kfvElKc88g0ebNrR6b3mNNrMrqkdIKe2twW706dNH7tq1q8btsr7/nuRHH6PN99+x0yOZ2ZtnE+IVzLtenQnb86mWmrvrvzAMnM0hUytt705CeacCLzfNqaB3ZCC9o5RTgaL2SJOJnF9/5cI771B08BDC2xv/EcPxueoqvGJicGvZUv2gqSXGjAzOvbqQrC+/xOfKK9XmYjNCiFgpZZ/66s+qIyIhxGhgMaAD3pdSLqhw3QP4EOgNpAGTpJTx5mtPAPcAxcBDUsqfqupTCNEa+BRoCsQCt0sp9db4XCUjok2Zu3jiwH9pr/Nl2ZE4ggw7SIkYx/dNbuWXc03YuyyJQsNpQHMq6BMVRO+IJvSJClJOBYp6Q7i44D9yJH4jRlCwaxdZ69eTveEnsr5Zr1338MAtJARdUBAuXl4Iby9cvLxx8fbGxcsLFx8fXHx9cfHxRufri4uPD7qAAHRBQVobn8Y1Mpd6PflxceRs+Ims777DlJtL02nTaPbgrBrHllRYhtVGREIIHXAUGAEkAX8Dt0gpD5apMwOIllJOF0JMBv4lpZwkhOgC/A/oB4QBvwIdzM0q7VMI8TnwpZTyUyHEO8BeKeWyqjTWdkR0Ydkyzi9ewq1zdPQwGFh89gLbdYNZkDeWeBmqORWE+Zun2IKUU4HC5sjiYoqOHaMgLg59wmkMKSkUZ2Viys9H5hdgKjAf+fnIgoIq+xLu7majFIhroGacdIFNEG5uWlBWFx1CV+a1xGiV+W4p9z1T7pzLlJe7UA/9VN5OSokpLw9TdjbFWdkYkpPRJyaC0Yjw9MR32FCazZiBR/v2FR9Lo8aZRkT9gONSypMAQohPgfHAwTJ1xgPzzefrgDeF9tNrPPCplLIIOCWEOG7uj8r6FEIcAq4GbjXX+cDcb5WGqLZs++NjIt1hYGEhV6R0YYrr04S06sTNkYHKqUDhEAidDs9OnSyKfyaLizHl52tfyLm5mHJzKc7KwpieQXF6Osb0NIpLzjMy0MfHU5yZiTQawWRCmkxQXGzlDyRqfS6que7i7Y3O3x+XgAA82rXFb+RIPDt3xnfQVSqtt42wpiEKBxLLvE8CKm5BLq0jpTQKIbLQptbCgR0V2oabzyvrsymQKaU0VlK/HEKIacA0gIiIiJp9IjMyPIyThfmM6LqCbjdFc5tyKlA4MUKnQ+fnh87Pr079SJMJSo6S/x5qajTUf0eNkkbnNSelXA4sB21qrjZ93PDy2nrVpFA0BLRpOrXuqag51vyrOQO0KvO+pbms0jpCCFcgAM1p4XJtL1eeBjQx93G5eykUCoXCAbGmIfobaC+EaC2EcAcmA+sr1FkPlMRPnwj8JrXVyPXAZCGEh9kbrj2w83J9mttsMveBuc9vrPjZFAqFQlFPWG1qzrzmMwv4Cc3VeqWU8oAQ4jlgl5RyPbAC+MjsjJCOZlgw1/sczbHBCMyUUhYDVNan+ZaPA58KIV4A9pj7VigUCoWDoza01sJ9W6FQKBoz9e2+rVYWFQqFQmFXlCFSKBQKhV1RhkihUCgUdkUZIoVCoVDYlUbtrCCEOA8k1LJ5MHChHuXYAmfUDM6pW2m2Hc6o29k1R0op6y09baM2RHVBCLGrPr1GbIEzagbn1K002w5n1K00l0dNzSkUCoXCrihDpFAoFAq7ogxR7VlubwG1wBk1g3PqVppthzPqVprLoNaIFAqFQmFX1IhIoVAoFHZFGSKFQqFQ2BVliGqBEGK0EOKIEOK4EGKunbW0EkJsEkIcFEIcEEI8bC6fL4Q4I4SIMx/XlmnzhFn7ESHEqDLlNvtcQoh4IcQ/Zm27zGVBQohfhBDHzK+B5nIhhFhi1rVPCNGrTD93musfE0Lcebn71YPejmWeZZwQIlsI8YgjPmchxEohxDkhxP4yZfX2bIUQvc3/dsfNbeucVvUyml8VQhw26/pKCNHEXB4lhCgo88zfqU7b5T6/FTTX29+D0NLd/GUu/0xoqW+sofmzMnrjhRBx5nLbPWcppTpqcKClnzgBtAHcgb1AFzvqCQV6mc/9gKNAF2A+8Fgl9buYNXsArc2fRWfrzwXEA8EVyl4B5prP5wIvm8+vBX4EBNAf+MtcHgScNL8Gms8DbfQ3cBaIdMTnDAwGegH7rfFs0XKD9Te3+REYYyXNIwFX8/nLZTRHla1XoZ9KtV3u81tBc739PQCfA5PN5+8AD1hDc4XrrwHzbP2c1Yio5vQDjkspT0op9cCnwHh7iZFSpkgpd5vPc4BDQHgVTcYDn0opi6SUp4DjaJ/JET7XeOAD8/kHwIQy5R9KjR1o2XhDgVHAL1LKdCllBvALMNoGOq8BTkgpq4rKYbfnLKXcipbfq6KeOj9b8zV/KeUOqX3bfFimr3rVLKX8WUppNL/dgZZ5+bJUo+1yn79eNVdBjf4ezCOMq4F1ttJsvufNwP+q6sMaz1kZopoTDiSWeZ9E1V/8NkMIEQX0BP4yF80yT2usLDNEvpx+W38uCfwshIgVQkwzl7WQUqaYz88CLcznjqK5hMmU/4/VkZ9zCfX1bMPN5xXLrc3daL+8S2gthNgjhNgihBhkLqtK2+U+vzWoj7+HpkBmGUNsi+c8CEiVUh4rU2aT56wMUQNBCOELfAE8IqXMBpYBbYEYIAVtyO1IXCWl7AWMAWYKIQaXvWj+peVwewvM8/TXA2vNRY7+nC/BUZ/t5RBCPIWWqXmNuSgFiJBS9gRmA58IIfwt7c/Kn9/p/h7KcAvlf2DZ7DkrQ1RzzgCtyrxvaS6zG0IINzQjtEZK+SWAlDJVSlkspTQB76FNAcDl9dv0c0kpz5hfzwFfmfWlmof9JcP/c46k2cwYYLeUMhUc/zmXob6e7RnKT5FZVb8QYiowDphi/mLDPL2VZj6PRVtj6VCNtst9/nqlHv8e0tCmSV0r+Sz1jvk+NwCflZTZ8jkrQ1Rz/gbamz1a3NGmadbbS4x5XncFcEhK+XqZ8tAy1f4FlHjJrAcmCyE8hBCtgfZoC482+1xCCB8hhF/JOdqi9H7z/Uq8s+4Evimj+Q6h0R/IMg//fwJGCiECzVMgI81l1qTcr0ZHfs4VqJdna76WLYTob/7bu6NMX/WKEGI0MAe4XkqZX6a8mRBCZz5vg/ZsT1aj7XKfv74118vfg9nobgImWluzmeHAYSll6ZSbTZ+zpd4W6ijnMXItmnfaCeApO2u5Cm34uw+IMx/XAh8B/5jL1wOhZdo8ZdZ+hDIeT7b6XGgeQnvNx4GSe6HNi28EjgG/AkHmcgG8Zdb1D9CnTF93oy38HgfusvKz9kH7pRpQpszhnjOaoUwBDGjz9/fU57MF+qB9wZ4A3sQcocUKmo+jrZ+U/F2/Y657o/nvJg7YDVxXnbbLfX4raK63vwfzfyc7zc9hLeBhDc3m8tXA9Ap1bfacVYgfhUKhUNgVNTWnUCgUCruiDJFCoVAo7IoyRAqFQqGwK8oQKRQKhcKuKEOkUCgUCruiDJFCoVAo7IoyRApFPSCEaFomXP5ZcTEVQK4Q4m0r3G+1EOKUEGJ6FXUGCS09yP7L1VEoHAG1j0ihqGeEEPOBXCnlQiveYzXwnZRyXTX1osz1ullLi0JRV9SISKGwIkKIoUKI78zn84UQHwghtgkhEoQQNwghXhFagrEN5piBJUnHtpgjk/9UIWzM5e5zkxBivxBirxBiq7U/l0JRnyhDpFDYlrZoeWauBz4GNkkpuwMFwFizMVoKTJRS9gZWAi9a0O88YJSUsoe5b4XCaXCtvopCoahHfpRSGoQQ/6Bl59xgLv8HLSNmR6Ab8IsWTxIdWmyw6vgDWC2E+Bz4sr5FKxTWRBkihcK2FAFIKU1CCIO8uEhrQvvvUQAHpJQDatKplHK6EOIKYCwQK4ToLc0h/BUKR0dNzSkUjsURoJkQYgBouaaEEF2raySEaCul/EtKOQ84T/kcNwqFQ6NGRAqFAyGl1AshJgJLhBABaP+NvoEWjr8qXhVCtEcbUW1ES7GhUDgFyn1boXBClPu2oiGhpuYUCuckC3i+ug2twLfABZupUihqgRoRKRQKhcKuqBGRQqFQKOyKMkQKhUKhsCvKECkUCoXCrihDpFAoFAq78v97Jqotx7tJdwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAGwCAYAAADlimJhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACiuUlEQVR4nOzdd3hU1dbA4d/09EJ6QhoQQouAICUoWMCoqCAKKChgw4IV29WrYEGxXhFFsWK5oHw2xGtBQIoU6U06oSSB9N6nne+PSYaEJJCEJJNJ1uszz0zm7DlnTQyZlV3WVimKoiCEEEIIIRxC7egAhBBCCCHaM0nGhBBCCCEcSJIxIYQQQggHkmRMCCGEEMKBJBkTQgghhHAgScaEEEIIIRxIkjEhhBBCCAfSOjqAtsxqtXLq1Ck8PT1RqVSODkcIIYQQ9aAoCoWFhYSGhqJWN3+/lSRjzejUqVOEh4c7OgwhhBBCNEJycjIdO3Zs9utIMtaMPD09Adv/TC8vLwdHI4QQQoj6KCgoIDw83P453twkGWtGlUOTXl5ekowJIYQQTqalphjJBH4hhBBCCAeSZEwIIYQQwoEkGRNCCCGEcCCZMyaEsLNYLJhMJkeHIdognU6HRqNxdBhCtEqSjAkhUBSFtLQ08vLyHB2KaMN8fHwIDg6WuotCnEGSMSGEPRELDAzEzc1NPixFk1IUhZKSEjIyMgAICQlxcERCtC6SjAnRzlksFnsi5ufn5+hwRBvl6uoKQEZGBoGBgTJkKUQVMoFfiHauco6Ym5ubgyMRbV3lz5jMSxSiOknGhBBAyxU3FO2X/IwJUTtJxoQQQgghHEiSMSGEEEIIB5JkTAghmllUVBRz5sxxdBhCiFZKkjEhhNOaMmUKKpWKV199tdrzS5Ysccj8pM8//xwfH58az2/ZsoWpU6c267WPHTvGhAkTCA0NxcXFhY4dOzJq1CgOHDhgb6NSqWq9ffPNNwCsXr0alUol9eaEUyg/fBhzbi6Kojg6lPMmpS2EEE7NxcWF1157jXvuuQdfX19Hh1OrgICAZj2/yWRixIgRxMbG8sMPPxASEkJKSgq//fZbjcRqwYIFXHXVVdWeqy2BFKI1sxqNHL3uegC6/r0RjZP/DEvPmBCiBkVRKDGaW/zWmL9whw8fTnBwMLNnzz5ru3Xr1nHJJZfg6upKeHg4Dz30EMXFxfbjqampjBw5EldXV6Kjo1m0aFGN4cX//Oc/xMXF4e7uTnh4OPfffz9FRUWArVfp9ttvJz8/397j9PzzzwPVhyknTJjA+PHjq8VmMpnw9/fnyy+/BMBqtTJ79myio6NxdXWld+/efPfdd3W+t71795KYmMj777/PoEGDiIyMZMiQIcyaNYtBgwZVa1tZBb/qzcXF5azfOyFaG3NGJgAqvR61t7eDozl/0jMmhKih1GShx4xlLX7dfS8m4KZv2K8ljUbDK6+8woQJE3jooYfo2LFjjTaJiYlcddVVzJo1i88++4zMzEweeOABHnjgARYsWADApEmTyMrKYvXq1eh0OqZPn26vGF9JrVYzd+5coqOjOXr0KPfffz9PPvkk77//PvHx8cyZM4cZM2Zw8OBBADw8PGrEMnHiRMaOHUtRUZH9+LJlyygpKeGGG24AYPbs2fz3v/9l/vz5xMTEsHbtWm699VYCAgIYNmxYjXMGBASgVqv57rvveOSRR6SgqmjzzJm2f5vagIA2UTJFesaEEE7vhhtuoE+fPsycObPW47Nnz2bixIk88sgjxMTEEB8fz9y5c/nyyy8pKyvjwIEDrFixgo8//piBAwdy4YUX8sknn1BaWlrtPI888giXXXYZUVFRXH755cyaNYv/+7//A0Cv1+Pt7Y1KpbL3ONWWjCUkJODu7s6PP/5of27RokVcf/31eHp6Ul5eziuvvMJnn31GQkICnTp1YsqUKdx66618+OGHtb6/sLAw5s6dy4wZM/D19eXyyy/npZde4ujRozXa3nLLLXh4eFS7JSUl1ft7LURrYM609YxpAwMdHEnTkJ4xIUQNrjoN+15McMh1G+u1117j8ssv5/HHH69xbNeuXezevZuFCxfan1MUBavVyrFjxzh06BBarZYLL7zQfrxLly415qCtWLGC2bNnc+DAAQoKCjCbzZSVlVFSUlLvHQy0Wi3jxo1j4cKF3HbbbRQXF/PTTz/ZJ9EfOXKEkpISRowYUe11RqORvn371nneadOmMWnSJFavXs3ff//Nt99+yyuvvMLSpUurnevtt99m+PDh1V4bGhpar9iFaC0qhym1zTwfs6VIMiaEqEGlUjV4uNDRhg4dSkJCAk8//TRTpkypdqyoqIh77rmHhx56qMbrIiIiOHTo0DnPf/z4ca699lruu+8+Xn75ZTp06MC6deu48847MRqNDdpOauLEiQwbNoyMjAyWL1+Oq6urfVJ95Ry0X375hbCwsGqvMxgMZz2vp6cn1113Hddddx2zZs0iISGBWbNmVUvGgoOD6dKlS71jFaI1kp4xIYRopV599VX69OlDbGxstecvvPBC9u3bV2cSEhsbi9lsZseOHfTr1w+w9VDl5uba22zbtg2r1cpbb72FWm2b4VE5RFlJr9djsVjOGWd8fDzh4eEsXryY3377jbFjx6LT6QDo0aMHBoOBpKSkWueH1ZdKpaJbt25s2LCh0ecQorUyZ5yeM9YWSDImhGgz4uLimDhxInPnzq32/FNPPcWgQYN44IEHuOuuu3B3d2ffvn0sX76c9957j27dujF8+HCmTp3KBx98gE6n47HHHsPV1dU+ObhLly6YTCbeffddrrvuOtavX8/8+fOrXScqKoqioiJWrlxJ7969cXNzq7PHbMKECcyfP59Dhw6xatUq+/Oenp48/vjjPProo1itVi6++GLy8/NZv349Xl5eTJ48uca5du7cycyZM7ntttvo0aMHer2eNWvW8Nlnn/HUU09Va5uXl0daWlq15zw9PXF3d6//N1oIB2trPWMootnk5+crgJKfn+/oUISoU2lpqbJv3z6ltLTU0aE02OTJk5VRo0ZVe+7YsWOKXq9Xzvz1tnnzZmXEiBGKh4eH4u7urlxwwQXKyy+/bD9+6tQp5eqrr1YMBoMSGRmpLFq0SAkMDFTmz59vb/Of//xHCQkJUVxdXZWEhATlyy+/VAAlNzfX3ubee+9V/Pz8FECZOXOmoiiKEhkZqbz99tvV4tm3b58CKJGRkYrVaq12zGq1KnPmzFFiY2MVnU6nBAQEKAkJCcqaNWtq/T5kZmYqDz30kNKrVy/Fw8ND8fT0VOLi4pQ333xTsVgs9nZArbfZs2criqIoq1atqvF+mpIz/6yJ1iXxuuuVfbHdlMK/1jXL+Vv681ulKG2gdG0rVVBQgLe3N/n5+Xh5eTk6HCFqVVZWxrFjx4iOjpZ6U1WkpKQQHh7OihUruOKKKxwdTpsgP2uiqRwaHI8lN5fon37CJbZrk5+/pT+/ZZhSCCGAP//8k6KiIuLi4khNTeXJJ58kKiqKoUOHOjo0IUQVitGIpWI+pzZQ5owJIUSbYTKZeOaZZzh69Cienp7Ex8ezcOFC+8R6IUTrYM7KAkCl0zn9NkiVJBkTQghsxVgTElq+tpoQomGqrqRsC9X3QSrwCyGEEMKJmDLbVsFXkGRMCCGEEE7E3jPWVspaIMmYEEIIIZyIWXrGhBBCCCEcx74vpfSMCSGEEEK0POkZE0KIdmL16tWoVCry8vLO2i4qKoo5c+a0SExCCJkzJoQQrcqUKVNQqVSoVCr0ej1dunThxRdfxGw2n/e54+PjSU1NxdvbG4DPP/8cn1pqGm3ZsoWpU6ee9/XO5tixY0yYMIHQ0FBcXFzo2LEjo0aN4sCBA/Y2ld+HM2/ffPMNUP/kUojW7vS+lG2nZ0zqjAkhnNpVV13FggULKC8v59dff2XatGnodDqefvrp8zqvXq8nODj4nO0CmnmoxGQyMWLECGJjY/nhhx8ICQkhJSWF3377rUZitWDBAq666qpqz9WWQArhrBSTCUtODiA9Y0II0WoYDAaCg4OJjIzkvvvuY/jw4SxduhSA3NxcJk2ahK+vL25ublx99dUcPnzY/toTJ05w3XXX4evri7u7Oz179uTXX38FqvckrV69mttvv538/Hx7j9Pzzz8PVB+mnDBhAuPHj68Wn8lkwt/fny+//BIAq9XK7NmziY6OxtXVld69e/Pdd9/V+f727t1LYmIi77//PoMGDSIyMpIhQ4Ywa9YsBg0aVK2tj48PwcHB1W6yB6RoSyqr79OGqu+D9IwJIWqjKGAqafnr6tzgPCtqu7q6kp2dDdiGMQ8fPszSpUvx8vLiqaee4pprrmHfvn3odDqmTZuG0Whk7dq1uLu7s2/fPjw8PGqcMz4+njlz5jBjxgwOHjwIUGu7iRMnMnbsWIqKiuzHly1bRklJCTfccAMAs2fP5r///S/z588nJiaGtWvXcuuttxIQEMCwYcNqnDMgIAC1Ws13333HI488gkajOa/vjxDO7PTkff82U30fJBkTQtTGVAKvhLb8dZ85BXr3Rr1UURRWrlzJsmXLePDBB+1J2Pr164mPjwdg4cKFhIeHs2TJEsaOHUtSUhI33ngjcXFxAHTq1KnWc+v1ery9vVGpVGcdukxISMDd3Z0ff/yR2267DYBFixZx/fXX4+npSXl5Oa+88gorVqxg8ODB9muuW7eODz/8sNZkLCwsjLlz5/Lkk0/ywgsv0L9/fy677DImTpxYI95bbrmlRrK2b98+IiIi6vldFKJ1q7oVUlsiw5RCCKf2v//9Dw8PD1xcXLj66qsZP348zz//PPv370er1TJw4EB7Wz8/P2JjY9m/fz8ADz30ELNmzWLIkCHMnDmT3bt3n1csWq2WcePGsXDhQgCKi4v56aefmDhxIgBHjhyhpKSEESNG4OHhYb99+eWXJCYm1nneadOmkZaWxsKFCxk8eDDffvstPXv2ZPny5dXavf322+zcubPaLTTUAUm1EM2ksmdM14bmi4H0jAkhaqNzs/VSOeK6DXTZZZfxwQcfoNfrCQ0NRaut/6+1u+66i4SEBH755Rf++OMPZs+ezVtvvcWDDz7Y4DgqTZw4kWHDhpGRkcHy5ctxdXW1T6ovKioC4JdffiEsLKza6wwGw1nP6+npyXXXXcd1113HrFmzSEhIYNasWYwYMcLeJjg4mC5dujQ6diFaO1Mb7RmTZEwIUZNK1ejhwpbm7u5eawLSvXt3zGYzmzZtsg9TZmdnc/DgQXr06GFvFx4ezr333su9997L008/zccff1xrMqbX67FYLOeMJz4+nvDwcBYvXsxvv/3G2LFj0el0APTo0QODwUBSUlKtQ5L1pVKp6NatGxs2bGj0OYRwRm2x4Cu0kmHKefPmERUVhYuLCwMHDmTz5s1nbf/tt9/SrVs3XFxciIuLs69+qqQoCjNmzCAkJARXV1eGDx9ebQXV8ePHufPOO+2rmTp37szMmTMxGo3VzrN7924uueQSXFxcCA8P5/XXX2+6Ny2EaFYxMTGMGjWKu+++m3Xr1rFr1y5uvfVWwsLCGDVqFACPPPIIy5Yt49ixY2zfvp1Vq1bRvXv3Ws8XFRVFUVERK1euJCsri5KSuhc4TJgwgfnz57N8+XL7ECXYercef/xxHn30Ub744gsSExPZvn077777Ll988UWt59q5cyejRo3iu+++Y9++fRw5coRPP/2Uzz77zP4+KuXl5ZGWllbtVlxc3NBvnRCtVlss+AqA4mDffPONotfrlc8++0zZu3evcvfddys+Pj5Kenp6re3Xr1+vaDQa5fXXX1f27dunPPvss4pOp1P27Nljb/Pqq68q3t7eypIlS5Rdu3Yp119/vRIdHa2UlpYqiqIov/32mzJlyhRl2bJlSmJiovLTTz8pgYGBymOPPWY/R35+vhIUFKRMnDhR+eeff5Svv/5acXV1VT788MN6v7f8/HwFUPLz8xv53RGi+ZWWlir79u2z//twJpMnT1ZGjRpV5/GcnBzltttuU7y9vRVXV1clISFBOXTokP34Aw88oHTu3FkxGAxKQECActtttylZWVmKoijKqlWrFEDJzc21t7/33nsVPz8/BVBmzpypKIqiREZGKm+//Xa16+7bt08BlMjISMVqtVY7ZrValTlz5iixsbGKTqdTAgIClISEBGXNmjW1vofMzEzloYceUnr16qV4eHgonp6eSlxcnPLmm28qFovF3g6o9TZ79uw6309Lc+afNdE6JI6+QdkX200prOPfS1Np6c9vhydjAwYMUKZNm2b/2mKxKKGhofZfIGcaN26cMnLkyGrPDRw4ULnnnnsURbH9ogsODlbeeOMN+/G8vDzFYDAoX3/9dZ1xvP7660p0dLT96/fff1/x9fVVysvL7c899dRTSmxsbL3fmyRjwhnIB6RoKfKzJs7Xwfghyr7Ybkrp/v3Nep2W/vx26DCl0Whk27ZtDB8+3P6cWq1m+PDhbNy4sdbXbNy4sVp7sC0nr2x/7Ngx0tLSqrXx9vZm4MCBdZ4TID8/nw4dOlS7ztChQ9Hr9dWuc/DgQXJzc2s9R3l5OQUFBdVuQgghhDh/1arvy5yxppOVlYXFYiEoKKja80FBQaSlpdX6mrS0tLO2r7xvyDmPHDnCu+++yz333HPO61S9xplmz56Nt7e3/RYeHl5rOyGEEEI0jDk721aQWqtF4+vr6HCaVKuYwO9IJ0+e5KqrrmLs2LHcfffd53Wup59+mvz8fPstOTm5iaIUQggh2jf7Skp/f1TqtpW+OPTd+Pv7o9FoSE9Pr/Z8enp6nVWug4ODz9q+8r4+5zx16hSXXXYZ8fHxfPTRR/W6TtVrnMlgMODl5VXtJoQQQojz12ZXUuLgZEyv19OvXz9Wrlxpf85qtbJy5Ur7ViFnGjx4cLX2AMuXL7e3j46OJjg4uFqbgoICNm3aVO2cJ0+e5NJLL6Vfv34sWLAA9RlZ9uDBg1m7di0mk6nadWJjY/FtY92jQgghRGvXVmuMQSsYppw+fToff/wxX3zxBfv37+e+++6juLiY22+/HYBJkybx9NNP29s//PDD/P7777z11lscOHCA559/nq1bt/LAAw8AtmKIjzzyCLNmzWLp0qXs2bOHSZMmERoayujRo4HTiVhERARvvvkmmZmZ9po8lSZMmIBer+fOO+9k7969LF68mHfeeYfp06e33DdHCCGEEEDVnrG2l4w5vAL/+PHjyczMZMaMGaSlpdGnTx9+//13+2T5pKSkar1W8fHxLFq0iGeffZZnnnmGmJgYlixZQq9evextnnzySYqLi5k6dSp5eXlcfPHF/P7777i4uAC2Hq4jR45w5MgROnbsWC0eRVEA2wrMP/74g2nTptGvXz/8/f2ZMWMGU6dObe5viRBCCCHO0JZ7xlRKZfYhmlxBQQHe3t7k5+fL/DHRapWVlXHs2DGio6Ptf7AI0RzkZ02cj+R77qVozRpCZr2Ez003Neu1Wvrz2+HDlEIIIYQQ52LKbJubhIMkY0II0a5MmTLFPn9WCGdiH6aU1ZRCCNF6ZGZmct999xEREYHBYCA4OJiEhATWr19vbxMVFYVKpapxe/XVVwE4fvw4KpWKnTt3OuhdCCHORTGbsWRlA22zZ8zhE/iFEKKxbrzxRoxGI1988QWdOnUiPT2dlStXkp2dXa3diy++WKOos6enZ0uGet6MRmO17dmEaE/M2Tm26vsaDZoqWxe2FdIzJoRwSnl5efz111+89tprXHbZZURGRjJgwACefvpprr/++mptPT09CQ4OrnZzd3ev97Vyc3OZNGkSvr6+uLm5cfXVV3P48GH78c8//xwfHx+WLVtG9+7d8fDw4KqrriI1NfWs5927dy/XXnstXl5eeHp6cskll5CYmAicHk58+eWXCQ0NJTY2FoCvvvqK/v3729/ThAkTyKhY8l+f855py5YtBAQE8NprrwGwa9cuLrvsMjw9PfHy8qJfv35s3bq13t8rIZqDvaxFG6y+D9IzJoSohaIolJpLW/y6rlpXVCpVvdp6eHjg4eHBkiVLGDRoEAaDodnimjJlCocPH2bp0qV4eXnx1FNPcc0117Bv3z50Oh0AJSUlvPnmm3z11Veo1WpuvfVWHn/8cRYuXFjrOU+ePMnQoUO59NJL+fPPP/Hy8mL9+vWYzWZ7m5UrV+Ll5cXy5cvtz5lMJl566SViY2PJyMhg+vTpTJkyhV9//bXe5630559/MmbMGF5//XV72Z6JEyfSt29fPvjgAzQaDTt37rS/RyEcpS2XtQBJxoQQtSg1lzJw0cAWv+6mCZtw07nVq61Wq+Xzzz/n7rvvZv78+Vx44YUMGzaMm2++mQsuuKBa26eeeopnn3222nO//fYbl1xyyTmvU5mErV+/nvj4eAAWLlxIeHg4S5YsYezYsYAtSZo/fz6dO3cG4IEHHuDFF1+s87zz5s3D29ubb775xp7sdO3atVobd3d3Pvnkk2rDk3fccYf9cadOnZg7dy4XXXQRRUVFeHh41Ou8AD/++COTJk3ik08+Yfz48fbnk5KSeOKJJ+jWrRsAMTEx5/weCdHc2vJWSCDDlEIIJ3bjjTdy6tQpli5dylVXXcXq1au58MIL+fzzz6u1e+KJJ9i5c2e1W//+/et1jf3796PVahk48HRy6ufnR2xsLPv377c/5+bmZk/EAEJCQmoMH1a1c+dOLrnkkrP2OsXFxdWYJ7Zt2zauu+46IiIi8PT0ZNiwYYAtiarveTdt2sTYsWP56quvqiViYNsV5a677mL48OG8+uqrdQ5vCtGSpGdMCNHuuGpd2TRhk0Ou21AuLi6MGDGCESNG8Nxzz3HXXXcxc+ZMpkyZYm/j7+9Ply5dmjDSms5MflQqFWerqe3qeu73eua8tuLiYhISEkhISGDhwoUEBASQlJREQkICRqOx3uft3Lkzfn5+fPbZZ4wcObJa7M8//zwTJkzgl19+4bfffmPmzJl888033HDDDec8rxDNpS1vhQTSMyaEqIVKpcJN59bit/rOFzubHj16UFxc3ATfBZvu3btjNpvZtOl0cpqdnc3Bgwfp0aNHo897wQUX8Ndff2Eymer9mgMHDpCdnc2rr77KJZdcQrdu3Wr0vtXnvP7+/vz5558cOXKEcePG1WjbtWtXHn30Uf744w/GjBnDggULGvbmhGhi9mSsjfaMSTImhHBK2dnZXH755fz3v/9l9+7dHDt2jG+//ZbXX3+dUaNGVWtbWFhIWlpatVtBQUG9rhMTE8OoUaO4++67WbduHbt27eLWW28lLCysxnUa4oEHHqCgoICbb76ZrVu3cvjwYb766isOHjxY52siIiLQ6/W8++67HD16lKVLl/LSSy816ryBgYH8+eefHDhwgFtuuQWz2UxpaSkPPPAAq1ev5sSJE6xfv54tW7bQvXv3Rr9PIZpCZfV9XcW+1W2NJGNCCKfk4eHBwIEDefvttxk6dCi9evXiueee4+677+a9996r1nbGjBmEhIRUuz355JP1vtaCBQvo168f1157LYMHD0ZRFH799dfzWmXo5+fHn3/+SVFREcOGDaNfv358/PHHZz1nQEAAn3/+Od9++y09evTg1Vdf5c0332z0eYODg/nzzz/Zs2cPEydORK1Wk52dzaRJk+jatSvjxo3j6quv5oUXXmj0+xSiKZjTK3rG2mgyJhuFNyPZKFw4A9m8WbQU+VkTjaEYjRy4oDcAMRvWo22Boq+yUbgQQgghRAVzVhYAKp0Oja+vg6NpHpKMCSGEEKLVMqWnA7YaY02xyKc1kmRMCCGEEK2WOaOixlgbLfgKkowJIYQQohUzV/aMtdHJ+yDJmBBCCCFaMXNm2y74CpKMCSGEEKIVq5wz1lZrjIEkY0IIIYRoxew1xmTOmBBCCCFEyzu9L6X0jAkhhBBCtDj7BH6ZMyaEEM5HpVKxZMmSs7aZMmUKo0ePPmubqKgo5syZ02RxNaXnn3+ePn36tJrzCNGULEXFWEtKANDJMKUQQrQ+50qkUlNTufrqqwE4fvw4KpWKnTt3Nvg6W7ZsYerUqY2MsvWpLUl9/PHHWblypWMCEqIO5gxbr5jawwO1u7uDo2k+WkcHIIQQzSU4OLhJzhMQ0HaHRyp5eHjg4eHh6DCEqMY+X6wNr6QE6RkTQrRhVXuAoqOjAejbty8qlYpLL720Wts333yTkJAQ/Pz8mDZtGiaTyX6s6jBlbT1seXl5qFQqVq9eDcDq1atRqVQsW7aMvn374urqyuWXX05GRga//fYb3bt3x8vLiwkTJlBSMQRTm88//xwfHx+WLFlCTEwMLi4uJCQkkJycXOdrtmzZwogRI/D398fb25thw4axffv2au8F4IYbbkClUtm/PnOYsrLX8Wzfl9TUVEaOHImrqyvR0dEsWrSoVQ/pCudjtpe1aLtDlCA9Y0KIWiiKglJa2uLXVbm6Ntvec5s3b2bAgAGsWLGCnj17otfr7cdWrVpFSEgIq1at4siRI4wfP54+ffpw9913n9c1n3/+ed577z3c3NwYN24c48aNw2AwsGjRIoqKirjhhht49913eeqpp+o8R0lJCS+//DJffvkler2e+++/n5tvvpn169fX2r6wsJDJkyfz7rvvoigKb731Ftdccw2HDx/G09OTLVu2EBgYyIIFC7jqqqvQaDR1Xvtc35dJkyaRlZXF6tWr0el0TJ8+nYyKngwhmoKpsmcsQJIxIUQ7o5SWcvDCfi1+3djt21C5uTXLuSuHGv38/GoMX/r6+vLee++h0Wjo1q0bI0eOZOXKleedjM2aNYshQ4YAcOedd/L000+TmJhIp06dALjppptYtWrVWZMxk8nEe++9x8CBAwH44osv6N69uz25PNPll19e7euPPvoIHx8f1qxZw7XXXmv/Pvj4+JxzGPds35cDBw6wYsUKtmzZQv/+/QH45JNPiImJqed3R4hzs9cYk2FKIYRo23r27FmthygkJKRJenguuOAC++OgoCDc3NzsiVjlc+e6jlar5aKLLrJ/3a1bN3x8fNi/f3+t7dPT07n77ruJiYnB29sbLy8vioqKSEpKanD8Z/u+HDx4EK1Wy4UXXmg/3qVLF3x9fRt8HSHqcrqshfSMMWbMmAafeP78+QS28W+eEG2VytWV2O3bHHJdR9DpdNXjUKmwWq21tlWrbX/DKopif67qPKq6zqtSqRp0ncaaPHky2dnZvPPOO0RGRmIwGBg8eDBGo7HB52qJeIU4m9MT+Nt2PlGvZGzJkiWMGzcO13r+oqycDyHJmBDOSaVSNdtwoaNUzhGzWCzndZ7KYb7U1FT69u0L0KhyGfVlNpvZunWrfUjy4MGD5OXl0b1791rbr1+/nvfff59rrrkGgOTkZLKysqq10el05/19iI2NxWw2s2PHDvr1sw1pHzlyhNzc3PM6rxBVVc4Za8s1xqABc8bmzp1b7+Tqu+++a3RAQgjREPn5+TWSIT8/P8LDw6s9FxgYiKurK7///jsdO3bExcUFb2/vBl/P1dWVQYMG8eqrrxIdHU1GRgbPPvvs+byFs9LpdDz44IPMnTsXrVbLAw88wKBBg2qdLwYQExPDV199Rf/+/SkoKOCJJ56o8Yd0VFQUK1euZMiQIRgMhkYNLXbr1o3hw4czdepUPvjgA3Q6HY899hiuzbgIQ7QvitWKOTMTkDljgG1FTYcOHep90t9++42wsLBGByWEEPW1evVq+vbtW+32wgsv1Gin1WqZO3cuH374IaGhoYwaNarR1/zss88wm83069ePRx55hFmzZp3PWzgrNzc3nnrqKSZMmMCQIUPw8PBg8eLFdbb/9NNPyc3N5cILL+S2227joYceqvGH9FtvvcXy5csJDw+39+41xpdffklQUBBDhw7lhhtu4O6778bT0xMXF5dGn1OISpacHDCbQaVC6+fn6HCalUqpOvFBNKmCggK8vb3Jz8/Hy8vL0eEIUauysjKOHTtGdHS0fIi2Mp9//jmPPPIIeXl5jg6lXlJSUggPD2fFihVcccUVNY7Lz5poiLJ9+zg25kY0Af50/euvFr12S39+N6q0hdVq5ciRI2RkZNSYzDl06NAmCUwIIUTr9ueff1JUVERcXBypqak8+eSTREVFyeeAaBKmyoKvgW17iBIakYz9/fffTJgwgRMnTnBmp5pKpTrvSaFCCCGcg8lk4plnnuHo0aN4enoSHx/PwoULa6zCFKIx7DXG2vjkfWhEMnbvvffSv39/fvnlF0JCQmSiphBCNJMpU6YwZcoUR4dRp4SEBBISEhwdhmij2ktZC2hEMnb48GG+++47unTp0hzxCNHkrGVllB86RMn27RSvW4+1tBR9xzBcevbE0KULaLS4xHZF4+Pj6FCFEEJUMGW0j4Kv0IhkbODAgRw5ckSSMdHqGVNOkrNgAXnff49SVlbtWOm2beT/tNT+tUqvx2vkSPzuuhND584tHWqrIGt5RHOTnzHREJU9Y7o2XtYC6pmM7d692/74wQcf5LHHHiMtLY24uLgacwOqbv8hhCOYTp0i8513yP/fL1Axh1HToQMuPXvicfEQNP7+mJKSKNm5E9PJkyilZZhOniT/xx/JX7IEn5tuIvi5Z1FV2Ui6Lav8N1xSUlLvws5CNEZJSQlQs7K/ELWROWNn6NOnDyqVqtpfNXfccYf9ceUxmcAvHElRFAp+/pm0F1/CWlQEgHv8YPymTsVt4MA65zcqikLZrl1kffIJRStWkvftt5hzc+j4n/+0i4RMo9Hg4+Nj33PQzc1N5oKKJqUoCiUlJWRkZODj41Ntv0sh6mJOSwNAK6spbY4dO9bccQhxXsy5uaQ9/wKFy5YB4Nq7N0HPPotrXK9zvlalUuHapw/h771H0Zo1pDz4EEUrVpLyyKN0nPN2u0jIgoODAZpkc2wh6uLj42P/WRPibKylpVjy8wHQhbT9nxkp+tqMpOhryzAmJ5N0112YTiSBVkvAA9Pwu+suVNpGldGjaN16UqZNQykvx+Oyy+g49x1U7WRYxWKx1LnptRDnQ6fTSY+YqLfyY8c4evU1qN3c6Lpta4v31jtF0dfapKamYjKZiIiIaKpTCnFOZYcOkXTHnViystCFhRH2zju49up5Xuf0uHgIHd+fR8r90yhatYqcr/6L3x23N1HErZtGo5EPTCGEw9mHKNtJCa167U1ZH5dffjnR0dFNdTohzqn8yBGSptyOJSsLQ2wskV8vOu9ErJLHkCEEP2fb/Dlr3jxMMnwnhBAtxpRqS8Z07WRYu8mSsS+//JI///yzqU4nxFmZTp4k6fY7sOTkYOjRncgvPkfXxCtuvMeMweWCC7AWF5Px+htNem4hhBB1M6WlAqANbvuT96EJk7GLLroIvza+q7poHSx5eSTdPRVzZiaGmBgiPv20WQq2qtRqW++YWk3B//5Hwa+/Nvk1hBBC1GROq9iXMjjEwZG0jPNOxgoLC/noo48YMGAAvXv3boqYhKiTpaCApLunYjx6FG1wMOEff4TW17fZrucaF4ffPVMBSJ35PKaTJ5vtWkIIIWwqe8baw0pKOI9kbO3atUyePJmQkBDefPNNLr/8cv7++++mjE2Iaiz5+STdfTdle/ag8fEh4uOPWmQ+QcD99+PauzfWwkIy35vX7NcTQoj2zlwxZ0wrPWM1paWl8eqrrxITE8PYsWPx8vKivLycJUuW8Oqrr3LRRRc1V5yinTOlZ3DitkmU7dqNxtubiM8XYIiJaZFrq3Q6gp55GoD8//0PU2pqi1xXCCHaK1Na5QR+mTNWzXXXXUdsbCy7d+9mzpw5nDp1infffbc5YxMCsE3WP3HrrZQfOoQ2IICIL7/ApVu3Fo3BtXdv3AYMAJOJnM+/aNFrCyFEe2IpKsZaWAhIz1gNv/32G3feeScvvPACI0eOlFpEokUYT5zg+K23YUpORhceTuTXi3CJjXVILH533wVA7rffYqn4RSGEEKJpmdNtvWJqT080Hu4OjqZl1DsZW7duHYWFhfTr14+BAwfy3nvvkZWV1ZyxiXauPDGRE7fehjk1FX2nTkT+9yv0HTs6LB73iy9G36UzSkkJBb/84rA4hBCiLTtdY6x9DFFCA5KxQYMG8fHHH5Oamso999zDN998Q2hoKFarleXLl1MoPQWiCRlPnODE5Cm28hVduxL55Rfoghz7D1OlUuFz000A5H33vUNjEUKItspsrzHWPoYooRGrKd3d3bnjjjtYt24de/bs4bHHHuPVV18lMDCQ66+/vjliFO2MKSODpLvutlXW79aNiC8+R+vv7+iwAPAeNQp0Osr++Yey/fsdHY4QQrQ5JnuNsfZR1gLOs85YbGwsr7/+OikpKXz99ddNFZNoxywFBSRPvcc2RywigohPPm7WOmINpfX1xXP4FQDkffutg6MRQoi2x159v53UGIMmqsCv0WgYPXo0S5cubYrTiXbKajSScv80yg8cQBPgT8Snn7SaHrGqfMeOBSB/yU9YioocHI0QQrQtlTXGdEGSjFUzZswYCgoK6n3SiRMnkiEbK4sGUBSFtBdfpGTrVtQeHkR8/DH68HBHh1Urt8GD0XfqhLWkhPwflzg6HCGEaFPsNcakZ6y6n376iczMTAoKCs55y8/P5+eff6ZIegxEA+QtXkz+d9+DWk3Y22+3eB2xhlCpVPhOnABA7sKFKFargyMSQoi2w5zWvqrvA2jr00hRFLp27drcsYh2qnDFCtJefAmAgEceweOSix0c0bl5jxpN5n/exnj8OCWbt+A+aKCjQxJCCKdnKSzEWlwMtK/SFvVKxlatWtXgE4eFhTX4NaL9Kdm2jZOPTgerFe8xY+yFVVs7jYc7nldeSf6PP1K0Zo0kY0II0QQqt5tTe3ujdnNzcDQtp17J2LBhw5o7DtEOmXNzOTn9MRSTCY/hVxDy4guoVCpHh1VvHpdcTP6PP1K8bh089aSjwxFCCKdntu9J2X7mi0ETraYUoqEURSH1389iTk9HHxlJ2GuvodLW62+DVsNt8GBQqSg/fNg+4VQIIUTjmSQZE6Ll5P/wA0V//olKpyPs7f+gdne+/ce0vr64XBAHQPH69Q6ORgghnN/pyfuSjAnRrEynTpH+ymwAAh5+CJcePRwcUeN5DLEtNij6a52DIxFCCOdn35eyHZW1AEnGRAtTFIXUZ5/FWlyMa58+dLj9dkeHdF7cK1Z+Fm/ciGI2OzgaIYRwbvbq+9IzdnYzZ87kxIkTTRbAvHnziIqKwsXFhYEDB7J58+aztv/222/p1q0bLi4uxMXF8euvv1Y7rigKM2bMICQkBFdXV4YPH87hw4ertXn55ZeJj4/Hzc0NHx+fWq+jUqlq3L755pvzeq8C8r75huING1EZDITMfgWVRuPokM6La1wcai8vrPn5lO7Z4+hwhBDCqZnt+1K2nxpj0Ihk7KeffqJz585cccUVLFq0iPLy8kZffPHixUyfPp2ZM2eyfft2evfuTUJCQp3V+zds2MAtt9zCnXfeyY4dOxg9ejSjR4/mn3/+sbd5/fXXmTt3LvPnz2fTpk24u7uTkJBAWVmZvY3RaGTs2LHcd999Z41vwYIFpKam2m+jR49u9HsVYEw5SfobbwIQOP1RDNHRDo7o/Km0Wtzj4wEoXifzxoQQorEURakygb/91BgDQGmE7du3Kw8++KDi7++v+Pj4KPfee6+yefPmBp9nwIAByrRp0+xfWywWJTQ0VJk9e3at7ceNG6eMHDmy2nMDBw5U7rnnHkVRFMVqtSrBwcHKG2+8YT+el5enGAwG5euvv65xvgULFije3t61XgtQfvzxxwa9n7KyMiU/P99+S05OVgAlPz+/Qedpq5Lun6bsi+2mHJs4UbFaLI4Op8nkfvut7X2NG+/oUIQQwmmZc3OVfbHdlH2x3RRLaalDY8nPz2/Rz+9GzRnr27cvc+fO5dSpU3z66aekpKQwZMgQLrjgAt555x3y8/PPeQ6j0ci2bdsYPny4/Tm1Ws3w4cPZuHFjra/ZuHFjtfYACQkJ9vbHjh0jLS2tWhtvb28GDhxY5znPZtq0afj7+zNgwAA+++wzFEU5a/vZs2fj7e1tv4W30r0VHaFo7VqKVq4ErZaQmTNRqdvOdEX3i23zxkr37MGSl+fYYIQQwkmZTp0CQNOhA2oXFwdH07LO6xNRURRMJhNGoxFFUfD19eW9994jPDycxYsXn/W1WVlZWCwWgoKqd0UGBQWRVkfNprS0tLO2r7xvyDnr8uKLL/J///d/LF++nBtvvJH777+fd99996yvefrpp8nPz7ffkpOTG3TNtkoxmeyrJzvceiuGmBgHR9S0dMHBGGK6gNVKcSOSfiGEEKeTMV073MGnUVU2t23bxoIFC/j6668xGAxMmjSJefPm0aVLFwDeffddHnroIcaPH9+kwbak5557zv64b9++FBcX88Ybb/DQQw/V+RqDwYDBYGiJ8JxK3nffYTx+HE2HDvg/MM3R4TQL9yEXU374CMUbNuB19dWODkcIIZyOPRkLDXVwJC2vwT1jcXFxDBo0iGPHjvHpp5+SnJzMq6++ak/EAG655RYyMzPPeh5/f380Gg3p6enVnk9PTye4jiWtwcHBZ21fed+Qc9bXwIEDSUlJOa8FC+2RtbiYzHnvA+B///1oPDwcHFHzcKvYm7J409lXAwshhKid6aQkY/U2btw4jh8/zi+//MLo0aPR1FKawN/fH6vVetbz6PV6+vXrx8qVK+3PWa1WVq5cyeDBg2t9zeDBg6u1B1i+fLm9fXR0NMHBwdXaFBQUsGnTpjrPWV87d+7E19dXer4aKPuzBViystBFROA7bqyjw2k2bv37g0aDKSnJ/tedEEKI+mvPPWMNGqY0mUx8/vnn3HTTTYQ1wZju9OnTmTx5Mv3792fAgAHMmTOH4uJibq8oBDpp0iTCwsKYPds23+jhhx9m2LBhvPXWW4wcOZJvvvmGrVu38tFHHwG22mCPPPIIs2bNIiYmhujoaJ577jlCQ0OrlaVISkoiJyeHpKQkLBYLO3fuBKBLly54eHjw888/k56ezqBBg3BxcWH58uW88sorPP744+f9ntsTU0YG2Z99BkDgo4+g0usdHFHz0Xh44NKzJ2W7d1O8aTM+N4x2dEhCCOFUTCdPAqALk2TsrHQ6XbV6Xedr/PjxZGZmMmPGDNLS0ujTpw+///67fQJ+UlIS6iqr7uLj41m0aBHPPvsszzzzDDExMSxZsoRevXrZ2zz55JMUFxczdepU8vLyuPjii/n9999xqbIyY8aMGXzxxRf2r/v27QvAqlWruPTSS9HpdMybN49HH30URVHo0qUL//nPf7j77rub7L23B1nvvotSWopr7954XnWVo8Npdu4DB1C2ezclmzZJMiaEEA3UnnvGVMq56jWc4ZVXXuHQoUN88sknaLWNmv/fbhQUFODt7U1+fj5eXl6ODqdFlR06xLHRN4DVSuSiRbhd2NfRITW7onXrSb7rLrShIXRZuRKVSuXokIQQwilYS0o4eGE/ALpu3oTGwZ+ZLf353eBsasuWLaxcuZI//viDuLg43N3dqx3/4Ycfmiw44bwy3nwTrFY8r7yyXSRigO196nSYT6ViSklBL3XmhBCiXip7xdSeng5PxByhwcmYj48PN954Y3PEItqIovXrKV77F2i1BD423dHhtBi1mxsuPbpTtms3pdu3SzImhBD11J6HKKERydiCBQuaIw7RRigWCxkV+0/6TrgFfWSkgyNqWW59L6Rs125Ktu/Ae9QoR4cjhBBOob0nY42uwJ+Zmcm6detYt27dOWuKifYjf+nPlB84gNrTE/9zbMTeFrn2uxCA0u3bHRyJEEI4j/ZcYwwakYwVFxdzxx13EBISwtChQxk6dCihoaHceeedlJSUNEeMwklYS0vJnDMHAP9770Hr6+vYgBzArWJlbvmRI1gKChwcjRBCOAfpGWug6dOns2bNGn7++Wfy8vLIy8vjp59+Ys2aNTz22GPNEaNwErmLvsacno4uNBTfW291dDgOofX3RxcZAYpCaUX9OiGEEGfXnmuMQSOSse+//55PP/2Uq6++Gi8vL7y8vLjmmmv4+OOP+e6775ojRuEErCUlZH/6KQD+DzyAuh3vVODW1zZUWSJDlUIIUS/teZNwaEQyVlJSYi/KWlVgYKAMU7Zjud8sxpKTgy48HO/rr3N0OA7lWlHKo3THTscGIoQQTkAxGjFXzD2XYcp6Gjx4MDNnzqxWib+0tJQXXnjhvPd/FM6pWq/YvfeiaufFgF0vuACAsn37aGBNZSGEaHdMaWmgKKhcXNB06ODocByiwZ+ac+bM4aqrrqJjx4707t0bgF27duHi4sKyZcuaPEDR+uV+/Q2W7GzpFatg6NwZlV6PtbAQU1JSuyvvIYQQDWEfogwJabc7lzQ4GYuLi+Pw4cMsXLiQAwcOAHDLLbcwceJEXF1dmzxA0brV6BXT6RwckeOpdDoM3bpRtns3ZXv3SjImhBBn0d7LWkAjkrG1a9cSHx9fY9Nss9nM2rVrGTp0aJMFJ1q/3EWLbHPFIiLwHnW9o8NpNVx69qBs925K/9mL1zXXODocIYRotdp7WQtoxJyxyy67jJycnBrP5+fnc9lllzVJUMI5WIuLyf70MwD877uv3c8Vq8q1Z08AyvbudXAkQgjRup1eSSnJWL0pilLrmG52dnaNTcNF25azcBGW3Fz0kZF4X3eto8NpVVwqkzGZxC+EEGd1usZY+yxrAQ0YphwzZgwAKpWKKVOmYKhSR8pisbB7927i4+ObPkLRKlmLi8n5rKJX7H7pFTuToUsXmcQvhBD1IMOUDUjGvL29AVvPmKenZ7XJ+nq9nkGDBtWYRybartxvv8WSl4cuMgKvkSMdHU6ro9LpMMTGUrZnj0ziF0KIOigWi620BZKM1cuCBQsAiIqK4vHHH5chyXZMMZnI+fwLAPzuvFN6xerg0rMHZXv2ULpXJvELIURtzJmZYDaDVos2MNDR4ThMg+eMzZw5UxKxdq7g118xp6Wh8ffHe9QoR4fTarn26gVA2d59Do5ECCFaJ/sQZVAQKo3GwdE4ToOTsfT0dG677TZCQ0PRarVoNJpqN9G2KYpC9me2XtIOt93WrvegPBeZxC+EEGcnk/dtGjy+NGXKFJKSknjuuecIacfVcturkk2bKD94EJWrK77jxzk6nFbNPom/oABTcjL6iAhHhySEEK2KKSUFAF3Hjg6OxLEanIytW7eOv/76iz59+jRDOKK1q5wr5nPDaDQ+Po4NppWrMYlfkjEhhKjGaE/G2nfPWIOHKcPDw2XIpZ0qP3aMotWrAfC97TbHBuMkXHr2AKD0n38cHIkQQrQ+phTbMKW+nfeMNTgZmzNnDv/61784fvx4M4QjWrPcr/4LgMell2KIjnZwNM7BPm9MJvELIUQN9mFKmTPWMOPHj6ekpITOnTvj5uaG7oyNoWvbKkk4P0t+Pnk//ghAhymTHRyN83A9YxK/zLEUQggbxWw+XWOsnfeMNTgZmzNnTjOEIVq7vG+/RSktxRAbi9vAgY4Ox2nou3QBtRprQQHmjEx0Qe23jo4QQlRlSksDiwWVXo82IMDR4ThUg5OxyZOlV6S9USwWchYuAqDDpEnSu9MAar0efXg4xhMnMB5NlGRMCCEq2IcoQ0NRqRs8a6pNadS7T0xM5Nlnn+WWW24hIyMDgN9++429e/c2aXCidShetw5zaioaHx+8rpWtjxpK36ULAOVHEh0ciRBCtB5S1uK0Bidja9asIS4ujk2bNvHDDz9QVFQEwK5du5g5c2aTBygcL++77wHwuv46KfLaCIZOnQAoPyrJmBBCVJKyFqc1OBn717/+xaxZs1i+fDl6vd7+/OWXX87ff//dpMEJxzPn5FC4ahUAPjfe5OBonJOhS2cAjIlHHRyJEEK0HlLW4rQGJ2N79uzhhhtuqPF8YGAgWVlZTRKUaD3yly4FsxmXuDhcYrs6OhynpO9kS8bKE6VnTAghKskw5WkNTsZ8fHxITU2t8fyOHTsIa+d1Qtqigp//B4DPmJoJuKgfQydbTTZLdjbm3FwHRyOEEK2D8WRljTFJxhqcjN1888089dRTpKWloVKpsFqtrF+/nscff5xJkyY1R4zCQYzHj1O2dy9oNHgmJDg6HKeldndHGxoCgPGoDFUKIYS1rAxLpm00TeaMNSIZe+WVV+jWrRvh4eEUFRXRo0cPhg4dSnx8PM8++2xzxCgcpOC33wBwHzwYbYcODo7GuRlkqFIIIexMJ23zxdTu7rLPMY2oM6bX6/n444957rnn+OeffygqKqJv377ExMQ0R3zCgQp+/RUAr2uucXAkzs/QuTPF69ZhlGRMCCGqzReT2pWNSMbWrVvHxRdfTEREBBEREc0Rk2gFyg4dovzwEVQ6HZ7Dr3B0OE5P37mivIWsqBRCiCplLWS+GDRimPLyyy8nOjqaZ555hn37ZPPjtso+RHnJJWi8vBwcjfMzVBZ+lZ4xIYSoUtZC5otBI5KxU6dO8dhjj7FmzRp69epFnz59eOONN0ipyHKF81MURYYom1hl4VdzaiqWomIHRyOEEI5lH6aUlZRAI5Ixf39/HnjgAdavX09iYiJjx47liy++ICoqissvv7w5YhQtrGzvPkwnklC5uOB52aWODqdN0Pj4oPH3B8B4TIYqhRDtm72shQxTAo3cm7JSdHQ0//rXv3j11VeJi4tjzZo1TRWXcKDKXjGPSy9F7e7u4GjaDvu2SDJUKYRo5yqHKaWshU2jk7H169dz//33ExISwoQJE+jVqxe//PJLU8YmHEBRFAp+t80X87r6agdH07ac3hZJkjEhRPtlKSjAWlAAgF6KxQONWE359NNP880333Dq1ClGjBjBO++8w6hRo3Bzc2uO+EQLK/vnH8ynUlG5ueExbKijw2lTTm+LJMOUQoj2q3K+mKZDBxl9qdDgZGzt2rU88cQTjBs3Dv+KOTCi7ShctgwAj2FDUbu4ODiatkV6xoQQQspa1KbBydj69eubIw7RCiiKQsGyPwDwku2Pmpy+Ys6YMTkZa3k5aoPBwREJIUTLk7IWNTU4GQM4fPgwq1atIiMjA6vVWu3YjBkzmiQw0fLKDxzAlJyMysUFj0sucXQ4bY42IAC1lxfWggKMx0/gEtvV0SEJIUSLk7IWNTU4Gfv444+577778Pf3Jzg4uNo2BiqVSpIxJ1ZQOUR5ySUyjt8MVCoV+ugoynbtxnj8uCRjQoh2yZicDIAuItzBkbQeDU7GZs2axcsvv8xTTz3VHPEIB1EUhcLfbcmYpwxRNhtD1OlkTAgh2iNTUhIA+nDZUrFSg0tb5ObmMnbs2OaIRThQ+eHDGI8fR6XX43HpMEeH02bpo6IAJBkTQrRLisWC8dQpAPThMkxZqcHJ2NixY/njjz+aIxbhQIUVE/fdhwxB4+Hh4GjaLknGhBDtmTktDUwm0OnQBgc7OpxWo8HDlF26dOG5557j77//Ji4uDp1OV+34Qw891GTBiZZT+EflEOWVDo6kbbMnY8eOOTYQIYRwgMr5YvqwMFQajYOjaT0anIx99NFHeHh4sGbNmhrbH6lUKknGnJAxJYXyw0dAq8XzssscHU6bpo+wzZGw5OVhzs1F6+vr4IiEEKLl2Cfvh8vk/aoanIwdk7/o25zidbbaca59eqPx9nZwNG2b2t0dbVAQ5vR0TCdOSDImhGhXTEkVPWOSjFVzXhuFi7ahuKKQr8eQIQ6OpH2oHKosl3ljQoh2Rspa1K5ePWPTp0/npZdewt3dnenTp5+17X/+858mCUy0DMVspnjTJgDc4+MdHE37oI+KomTTJpnEL4Rod0zJ0jNWm3olYzt27MBkMtkf16VqAVjhHMr++QdrQQFqLy9cevVydDjtgj46CgDj8ROODUQIIVqYzBmrXb2SsVWrVtX6WDi/ooohSvfBg2VlSwuR8hZCiPbIkpeHtaAAkJ6xM8mcsXau5O+KIcrBgx0cSfthqEzGTpxAOWNvVyGEaKuMybY9KTUB/qhdXR0cTesiyVg7Zi0vp3TXLgDcBg5wcDTthy4sDLRalNJSzBkZjg5HCCFahClZtkGqiyRj7Vjprl0oRiOaAH/70JlofiqdDn1H2zYgMlQphGgvjFLWok6SjLVjJVu2AOB+0UWy+KKFSSV+IUR7Y0yRyft1kWSsHSvZbEvG3C66yMGRtD8yiV8I0d7YC75KjbEaGlyBH+DUqVOsW7eOjIwMrGdMQJbtkJyD1WikdOdOANwGyHyxliaFX4UQ7Y2Utahbg5Oxzz//nHvuuQe9Xo+fn1+14S3Zm9J5lP3zD0p5OZoOHdB36uTocNod6RkTQrQnVqMRc1oacHqPXnFag5Ox5557jhkzZvD000+jVssop7Mq3bETANcL+8p8MQeoLPxqSjmJYjSi0usdG5AQQjQjU8pJUBRUbm5oOnRwdDitToOzqZKSEm6++WZJxJxc6e7dALhe0NvBkbRP2sBAVK6uYLFgTDnp6HCEEKJZnS5rES4dALVocEZ155138u233zZHLKIFnU7GLnBwJO2TSqWSoUohRLtRWfBVJu/XrsHJ2OzZs1mzZg2XXnopDz74INOnT692a6h58+YRFRWFi4sLAwcOZPPmzWdt/+2339KtWzdcXFyIi4vj119/rXZcURRmzJhBSEgIrq6uDB8+nMOHD1dr8/LLLxMfH4+bmxs+Pj61XicpKYmRI0fi5uZGYGAgTzzxBGazucHvrzUyZWRgTk0FlUr2o3Qgg32PyuMOjUMIIZpbZc+YrqMkY7VpVDK2bNky0tPT2bNnDzt27LDfdlaszquvxYsXM336dGbOnMn27dvp3bs3CQkJZNRRlXzDhg3ccsst3HnnnezYsYPRo0czevRo/vnnH3ub119/nblz5zJ//nw2bdqEu7s7CQkJlJWV2dsYjUbGjh3LfffdV+t1LBYLI0eOxGg0smHDBr744gs+//xzZsyY0aD311qVVfSKGbp0QePh7uBo2i/pGRNCtBdGKWtxdkoD+fj4KAsWLGjoy2o1YMAAZdq0afavLRaLEhoaqsyePbvW9uPGjVNGjhxZ7bmBAwcq99xzj6IoimK1WpXg4GDljTfesB/Py8tTDAaD8vXXX9c434IFCxRvb+8az//666+KWq1W0tLS7M998MEHipeXl1JeXl7v95efn68ASn5+fr1f0xLS33xL2RfbTTn57387OpR2Le+nn5R9sd2U47dNcnQoQgjRrBKvvVbZF9tNKfxrnaNDqZeW/vxucM+YwWBgyJAh550EGo1Gtm3bxvDhw+3PqdVqhg8fzsaNG2t9zcaNG6u1B0hISLC3P3bsGGlpadXaeHt7M3DgwDrPWdd14uLiCAoKqnadgoIC9u7dW+frysvLKSgoqHZrjWS+WOsgPWNCiPZAUZTTc8bCOzo4mtapwcnYww8/zLvvvnveF87KysJisVRLeACCgoJIq6hFcqa0tLSztq+8b8g5G3KdqteozezZs/H29rbfwlthYTvFaqWsIqGUZMyx9JGRAJgzMrAUFTs4GiGEaB7mjEyUsjLQaNCFhjo6nFapwXXGNm/ezJ9//sn//vc/evbsiU6nq3b8hx9+aLLgnM3TTz9dbRFDQUFBq0vITCkpWIuKUOl0GDp3dnQ47ZrG2xtNhw5YcnIwnjiOa8+ejg5JCCGanH3yfkgIqjNyBmHT4GTMx8eHMWPGnPeF/f390Wg0pKenV3s+PT2d4ODgWl8THBx81vaV9+np6YSEhFRr06dPn3rHFhwcXGNVZ+V164oNbEO4BoOh3tdxhLL9BwAwxMTIP4pWQB8VRWlODsbjkowJIdqmyiFKnQxR1qnBydiCBQua5MJ6vZ5+/fqxcuVKRo8eDYDVamXlypU88MADtb5m8ODBrFy5kkceecT+3PLlyxk8eDAA0dHRBAcHs3LlSnvyVVBQwKZNm+pcOVnXdV5++WUyMjIIDAy0X8fLy4sePXo0/M22ImX79wFg6NHdwZEIqEjGtm+XeWNCiDbrdMFX2QapLo3aKLypTJ8+ncmTJ9O/f38GDBjAnDlzKC4u5vbbbwdg0qRJhIWFMXv2bMA2X23YsGG89dZbjBw5km+++YatW7fy0UcfAbZCmo888gizZs0iJiaG6OhonnvuOUJDQ+0JH9hqiOXk5JCUlITFYrGX5OjSpQseHh5ceeWV9OjRg9tuu43XX3+dtLQ0nn32WaZNm9bqe77OpWz/fgBcuksy1hqcnsR/wrGBCCFEM5GyFufW4GQsOjr6rFsZHD16tN7nGj9+PJmZmcyYMYO0tDT69OnD77//bp8sn5SUVG3bpfj4eBYtWsSzzz7LM888Q0xMDEuWLKFXlcKlTz75JMXFxUydOpW8vDwuvvhifv/9d1xcXOxtZsyYwRdffGH/um/fvgCsWrWKSy+9FI1Gw//+9z/uu+8+Bg8ejLu7O5MnT+bFF1+s93trrcr3VSZjzt3D11boo2yT+KVnTAjRVpmSbcmYFHytm0pRFKUhL3jnnXeqfW0ymdixYwe///47TzzxBP/617+aNEBnVlBQgLe3N/n5+Xh5eTk6HMxZWRy++BJQqYjdugW1uxR8dbSyQ4c4dv0o1B4edN2yWfZsE0K0OYfih2DJySH6h+9xcZKpPi39+d3gnrGHH3641ufnzZvH1q1bzzsg0XwqJ+/rIyMlEWsl9JGRoFJhLSrCkpOD1s/P0SEJIUSTsRQVY8nJAUDXyqoLtCYNrjNWl6uvvprvv/++qU4nmkHZgYohSpm832qoDQZ0FSt/ZahSCNHWmFJsQ5QaHx80np4Ojqb1arJk7LvvvqNDhw5NdTrRDMorNkw3dO3q4EhEVVKJXwjRVhmTKmqMRchKyrNp8DBl3759q81rURSFtLQ0MjMzef/995s0ONG0yg8fAWw1xkTroY+KonjDBknGhBBtTuXkfb0MUZ5Vg5OxqiUiwLafZEBAAJdeeindunVrqrhEE1MsFowVK10NXbo4OBpRlZS3EEK0VcbKlZRS8PWsGpyMzZw5szniEM3MlJyMUl6OysUFXUf5R9Ga6KOjABmmFEK0PabKGmNS8PWs6pWMFRQU2Jd2FhQUnLVtayjhIGoqq5wv1qkTKo3GwdGIqio3DDeeOIFitaJSN9lUTiGEcKjKnjEp+Hp29UrGfH19SU1NJTAwEB8fn1prISmKgkqlwmKxNHmQ4vwZj1TOF5MhytZGFxoKOh2K0Yg5NRVdWJijQxJCiPOmmM2YTp0CpKzFudQrGfvzzz/tKyVXrVrVrAGJ5iGT91svlVaLPjwc49GjGE+ckGRMCNEmmFJTwWJBpdejrdjnWdSuXsnYsGHDan0snEdlWQu9TN5vlfRRURiPHqX8+HHc4+MdHY4QQpw3e1mL8HCZfnEOjdooPC8vj82bN5ORkYHVaq12bNKkSU0SmGg6islEecXkcEMX6RlrjewrKo8dd2gcQgjRVEzJKQDoZdHYOTU4Gfv555+ZOHEiRUVFeHl5VZs/plKpJBlrhYzJKWAyoXJzQxca4uhwRC3sKyqPHXNsIEII0USMyVLwtb4a3G/42GOPcccdd1BUVEReXh65ubn2W07F/lOidTEet33A66Mipau4lTJ06gRA+dFEB0cihBBN43RZC5m8fy4N/mQ+efIkDz30EG5ubs0Rj2gGlb0thqhoB0ci6qKvSMbMp1KxlpQ4OBohhDh/xhTbMKVOylqcU4OTsYSEBLZu3docsYhmUn6ssmcsyrGBiDppfX3R+PoCp/9/CSGEs1IUBVPFBH7pGTu3es0ZW7p0qf3xyJEjeeKJJ9i3bx9xcXHodLpqba+//vqmjVCct8rK7vpo6RlrzfSdO1G6dRvGo0dx7dnT0eEIIUSjWbKzsRYXg0olu77UQ72SsTP3owR48cUXazwnRV9bp8oVepKMtW6GTp0p3bqN8oo9RIUQwlkZT9j22tWFhKA2GBwcTetXr2TszPIVwnlYCgqwZGcDMkzZ2uk72ZJlY6IkY0II52Y8bkvG9FGRDo7EOTR4ztiXX35JeXl5jeeNRiNffvllkwQlmk7l5H1tQAAaD3cHRyPOxtC5MyArKoUQzs/eMxYpyVh9NDgZu/3228nPz6/xfGFhIbfffnuTBCWajswXcx6V5S2MJ5JQzGYHRyOEEI1XmYzpJRmrlwYnY5Ubgp8pJSUFb2/vJglKNB37SkpJxlo9bUgIKldXMJkwJic7OhwhhGg0ScYapt4V+Pv27YtKpUKlUnHFFVeg1Z5+qcVi4dixY1x11VXNEqRoPPvkfZkv1uqp1GoM0dGU7dtH+ZEjGCSBFkI4IUVR7PtS6iOjHBuMk6h3Mla5onLnzp0kJCTg4eFhP6bX64mKiuLGG29s8gDF+Tn9D0L+OnEGhthYWzJ28BCMGOHocIQQosHMGZkoJSWgVqPvGObocJxCvZOxmTNnAhAVFcX48eNxcXFptqBE06hWdC9S9gZzBoauXQEoP3TIwZEIIUTjGE8cB0AXFoZKr3dsME6iwRuFT548uTniEM3AkpsrRfecjEtsRTJ28KCDIxFCiMaR+WINV69krEOHDhw6dAh/f398fX1rncBfSTYLbz0qe8W0QUFSdM9JVPaMGZOSsJaWonZ1dXBEQgjRMCZJxhqsXsnY22+/jaenp/3x2ZIx0XpUrsiTfcGch9bfH02HDlhycig/kohrXC9HhySEEA0iPWMNV69krOrQ5JQpU5orFtHEKifv6yIkGXMmhtiulGz8m/JDByUZE0I4Ham+33D1SsYKCgrqfUIvL69GByOalimpsmdMJu87E5eulcmYTOIXQjgXxWqVVfyNUK9kzMfH55xDk5XFYGWj8NbD/g9CesaciqFrLABlByUZE0I4F3N6Okp5OWi16MKkrEV91SsZW7VqVXPHIZpB5ZwxnfSMORVDt4pkbP/+One8EEKI1sg+XywsDJW2wQUb2q16faeGDRvW3HGIJmYtLsaSlQVIz5izcYmJQaXXY83Px5SUJF39QginUTlfTCfzxRqkwXtTCudgTEkBQOPtjUb2DHUqKr0eQ/duAJTu+cfB0QghRP215EpKRVHILTY2+3VagvQhtlEm+xCl9Io5I9e4CyjbtZuyPbvxvnako8MRQoh6ac5krKDMxO7kfHal5LEjKY9dKXmYLFZ2PDfC6adzSDLWRlX2jOnCpfK+M3K9II5coHT3HkeHIoQQ9XY6GYs6v/OYrRxIK2BXch47kvPYlZxHYmZxjXZatYrU/DJCfZy7QHa9krGlS5dy9dVXo9Ppmjse0URMJ08BtkmUwvm49IoDoGzfPhSTCZX82xNCtHKKxXJ6P+QGzBlTFIUT2SXVerz2nirAaLbWaBvRwY3e4T707uhN3wgfeoZ646LTNNl7cJR6JWM33HADaWlpBAQEoNFoSE1NJTAwsLljE+fBVNkzJntSOiV9VCRqT0+shYWUHzmCS/fujg5JCCHOypSaZv/jURcSUme77KJydqfk23u8dqXkkVdiqtHOx01H744+9Am33S7o6I2fR9vc2q9eyVhAQAB///031113nSy1dxKmkycBpM6Lk1Kp1bj06knJxr8p3bVbkjEhRKtnPHYUAF1EBCqNrbeqzGRh76n8ih6vfHYl55GUU1LjtXqtmp6hXvbEq3dHHyL93NpNvlGvZOzee+9l1KhRqFQqVCoVwcHBdbaVoq+OpyjK6Z4xScaclmufPpRs/JuS7dvwvXm8o8MRQoizKku0JWOZHUL47Mc97ErJ40BqIWarUqNt5wB3+oT70ifcm97hPnQL9kKvbb8FHuqVjD3//PPcfPPNHDlyhOuvv54FCxbg4+PTzKGJxrLk5WEtsf3loQsNdXA0orHc+vcnGyjdus3RoQghRA3pBWX2OV47k/IYvGQNI4Bf8w0s3JRkbxfgaajW43VBuDdeLjIPtqp6r6bs1q0b3bp1Y+bMmYwdOxY3N7fmjEucB1OKbYhSE+CP2sXFwdGIxnLr0wc0GkynTmE6dUoSayGEwxSVm9mdkseu5Hx2JueyKzmftIKyam1uyE8DQN+pE/cM7UTvigQsxNul3Qw3NlaDS1vMnDkTgMzMTA4ePAhAbGwsAQEBTRuZaLTK+WL6MJm878zU7u649OhB2Z49lGzbhrckY0KIFmCyWDmYVmjv8dqVksfhjCKUM0Yb1SqIDfayDTV29CFuVS4Aj92VgGsvmefaEA1OxkpKSnjggQf46quv7PPDNBoNkyZN4t1335Ues1ZAJu+3HW79+9uSsS1b8b7uOkeHI4RoYxRFISW3lJ3JeeysWN34z6l8ykw1y0qE+bieHm4M96FXmBduelsaYc7N5XB+HgCGTtEt+RbahAYnY48++ihr1qxh6dKlDBkyBIB169bx0EMP8dhjj/HBBx80eZCiYUwnpaxFW+F2UX9yFiygZJvMGxNCnL+8EiO7UvLtPV67kvPIrmVLIU8XbY15XoGedU97MR61Td7Xhoaglk6ZBmtwMvb999/z3Xffcemll9qfu+aaa3B1dWXcuHGSjLUCRnvPmAxrOTu3Cy8ElQpjYiKmjAx0Ut9PCFFPZSYL+1JtVex3VfR8Hc+uWVZCp1HRI8TL3uPVO9yHaD931Or6z/MqT0wEwNCpc5PF3540apgyKCioxvOBgYGUlNT8nyxaXuUEfr30jDk9jY8PLr16UbZnD8V/rcPnxjGODkkI0QpZrQpHs4rtRVR3JuexP7UAk6VmWYlof/eKHi9bWYkeoV4YtOdXxd5YUdbC0LnTeZ2nvWpwMjZ48GBmzpzJl19+iUvFSr3S0lJeeOEFBg8e3OQBioZRFAVTaioA2rNUQBbOw2PoUMr27KFozRpJxoQQAGQUlrErOd/e47UrJY/CMnONdn7u+mo9Xr07euPjpm/yeMorCr7qpWesURqcjL3zzjskJCTQsWNHevfuDcCuXbtwcXFh2bJlTR6gaBhrYSFKZY2xsxTnFc7DY9hQsubNo3j9etmnUoh2qLjczD8n8+09XruS8zmZV1qjnYtOTVyYbWVjZVmJjr6uLVJWovzwEUB6xhqrwclYr169OHz4MAsXLuTAgQMA3HLLLUycOBFXV+feNb0tMKXZ6rxovL1Ry/+PNsGlVy80HTpgycmhZPsO3AcOcHRIQohmYrZYOZxRZF/ZuDM5j0PphZxZxF6lgq6BnvSuqGDfJ9yHrkGe6DQtX8XeUlCAuWJExtC1a4tfvy1ocDIG4Obmxt13393UsYgmYE7PAEBby7w+4ZxUajUel1xC/k8/UbRmjSRjQrQRiqJwKr/MvrJxZ3Iee1LyKTXV3FYwxNvFtml2hG11Y1xHbzwMjfoIb3Llhw8DtqkxGi8vB0fjnFrH/0nRZMzptp4xbbAkY22Jx2WXkv/TTxSuWEHgE49LNWshnFB+qamiin0eO5Pz2ZmcR1ZReY12HgYtF3T0ts/16hPuQ5BX691NpfzQIQAMXWMcHInzkmSsjTGlpQOgC5L5Ym2JxyWXoDIYMCUlUX7wIC7dujk6JCHEWRjNVvanFtir2O9MyeNoZnGNdlq1im4hnvZ6Xn3Cfegc4NGgshKOVlaRjLnIEGWjSTLWxpjTbcmYDFO2LWp3d9wvuZiiFSspWLZMkjEhWhFFUTieXWKf47UzOY99pwowWmpWsY/o4Fatx6tnqBcuuvMrK+Fo5Ydsw5QyX6zxJBlrY0wVw5Q6GaZsc7yuvJKiFSsp/GM5gQ8/7OhwhGi3sovKq/R42cpL5JeaarTzcdOd7vGqmOvVwb3py0o4kqIoVYYpJRlrrAYnY8nJyahUKjpWFBTdvHkzixYtokePHkydOrXJAxQNc3oCvwxTtjUel10GOh3GxETKDx/GECPzM4RobqVGC3tP5Z/euzElj+ScmmUl9Fo1vUK97D1efcJ9iOjg1ubnd5rT0rAWFoJWiyFa9qRsrAYnYxMmTGDq1KncdtttpKWlMWLECHr27MnChQtJS0tjxowZzRGnqCdzRWkLbZBsm9PWaDw98bj4YopWrSLvhx8JeupJR4ckRJtisSokZhbZ53jtTMrjYHohljPrSgBdAj3sPV59OvoQG+yJXtvyZSUcrezgQQAM0VGo9G2r168lNTgZ++effxgwwLa0/v/+7//o1asX69ev548//uDee++VZMyBrGVlWPLzASn42lb5jB1L0apV5P/4IwGPPoJafvkJ0Whp+WXsTM5lZ0Ul+z0n8ykqr1nFPsDTYO/t6hNuKyvh5SLFlwHKD1YMUcbIEOX5aHAyZjKZMBgMAKxYsYLrr78egG7dupFaUfRNOEbl5H2VmxtqT08HRyOag8fQS9AGB2NOS6Nw+XK8R450dEhCOIXCMhN7UvLZmXK6mGp6Qc2yEm56DXFh3vYer97hPoR4u7T54cbGKjuwHwCXHt0dHIlza3Ay1rNnT+bPn8/IkSNZvnw5L730EgCnTp3Cz8+vyQMU9WcvaxEYKL842iiVVovPjTeSNW8eed8slmRMiDpkFZWzMTGbDYlZbD2ey5HMIpQzRhs1ahVdgzwrerxslexjAj3ROFFZCUcr32dLxgzdJBk7Hw1Oxl577TVuuOEG3njjDSZPnmzfn3Lp0qX24UvhGOaMirIWMkTZpvncdCNZ8+dTsmULpf/sxbVXT0eHJITDFZaZ2Hwsh/VHbAnYgbTCGm3CfFyr9Xj1CvPCTS9FBRrLUlSMMSkJAJfuUm7nfDT4p/DSSy8lKyuLgoICfH197c9PnToVNze3Jg1ONEzlvpQ6qTHWpulCQvAaeQ0FS38m+5NP6DjnbUeHJESLKzNZ2J6Uy4Yj2axPzGJ3Sn6NifbdQ7yI7+zHoE5+9An3IcDT4KBo26byQ4dAUdAGBqKVkbHz0uBkrLS0FEVR7InYiRMn+PHHH+nevTsJCQlNHqCoP3NGJgDaQFlJ2db53XkXBUt/pvCPPzCeOIE+MtLRIQnRrMwWK/+cKmD9kSz70GO5uXpR1Sg/NwZ39mdIFz8Gd/LDz0OSr+ZUtn8fAC7dZYjyfDU4GRs1ahRjxozh3nvvJS8vj4EDB6LT6cjKyuI///kP9913X3PEKerBnFmRjAUEODgS0dxcYrviPvQSitf+Rdb7HxD62quODkmIJqUoCoczilh/JIv1R7LZdCybwrLqKx0DPA0M6exHfBd/4jv70dFXRmdaUvmBAwAYZIjyvDU4Gdu+fTtvv20bFvnuu+8ICgpix44dfP/998yYMUOSMQcyZ1X2jEky1h4EPPggxWv/In/pUjpMmSx/nQqnl5xTwobErIp5X9k1NtH2ctEyqJMfQ7rYer86B3jIYiUHKquYvO/SvYeDI3F+DU7GSkpK8Kwom/DHH38wZswY1Go1gwYN4sSJE00eoKg/e8+Yv7+DIxEtwTUuDq9rrqHg11/JeONNwj/9RD6YhFPJKipnQ2I2G45ksSExm6SckmrHXXRqLorqQHzF0GPPUG9Z6dhKKCYT5Ydte1LK5P3z1+BkrEuXLixZsoQbbriBZcuW8eijjwKQkZGBl5dXkwco6s+SmQVIMtaeBDz6CAXLl1O8YQOFy5bhddVVjg5JiDoVlpnYdDTHloDVsuJRo1bRJ9zHPvTYN8IHg9a5N9Fuq8oPH0YxGlF7eqILD3d0OE6vwXs3zJgxg8cff5yoqCgGDBjA4MGDAVsvWd++fRsVxLx584iKisLFxYWBAweyefPms7b/9ttv6datGy4uLsTFxfHrr79WO64oCjNmzCAkJARXV1eGDx/O4YoMvlJOTg4TJ07Ey8sLHx8f7rzzToqKiuzHjx8/jkqlqnH7+++/G/Uem5u1uBhrie2vSpkz1n7ow8Pxv/tuANJemoU5N9fBEQlxWpnJwoYjWby57CA3vL+ePi8u564vt/LZ+mP2RKx7iBd3XRzNZ1P6s2vmlXx/XzzTr4xlUCc/ScRasdJ//gHApVdP6ZFvAg3uGbvpppu4+OKLSU1NtdcYA7jiiiu44YYbGhzA4sWLmT59OvPnz2fgwIHMmTOHhIQEDh48SGAtqwI3bNjALbfcwuzZs7n22mtZtGgRo0ePZvv27fTq1QuA119/nblz5/LFF18QHR3Nc889R0JCAvv27cPFxQWAiRMnkpqayvLlyzGZTNx+++1MnTqVRYsWVbveihUr6NnzdB2n1lrY1pxl6xVTubmhdnd3cDSiJfndew8FfyzDeCSR9JdmEfrWm/LLUTiE2WJlz8l8e89XXSseKyfcy4pH51W2x5aMufaKc3AkbYNKUc6sSVx/KSkpAHTs2LHRAQwcOJCLLrqI9957DwCr1Up4eDgPPvgg//rXv2q0Hz9+PMXFxfzvf/+zPzdo0CD69OnD/PnzURSF0NBQHnvsMR5//HEA8vPzCQoK4vPPP+fmm29m//799OjRgy1bttC/f38Afv/9d6655hpSUlIIDQ3l+PHjREdHs2PHDvr06VOv91JeXk55+ekJpwUFBYSHh5Ofn9/sQ7glW7dy4tbb0EVG0GXZsma9lmh9Snft4viEiWCxEPzCC/iOH+fokEQ7UGPF49FsCs/Y2zHQ00B8xbDjkC7+hPm4Oiha0ZSOjhlD+b79hM19B68rr3R0OE2uoKAAb2/vFvn8hkYMU1qtVl588UW8vb2JjIwkMjISHx8fXnrpJaxW67lPUIXRaGTbtm0MHz78dEBqNcOHD2fjxo21vmbjxo3V2gMkJCTY2x87doy0tLRqbby9vRk4cKC9zcaNG/Hx8bEnYgDDhw9HrVazadOmaue+/vrrCQwM5OKLL2bp0qVnfT+zZ8/G29vbfgtvwXH0yp4xrb8MUbZHrr17E/joIwCkv/wypbt2OTYg0WYl55SweEsSD329g4teXsmVb6/lhZ/3sWJ/OoXlZrxctFzZI4gXru/JiulD2fTMFcy5uS/j+odLItZGWMvLKT9km/rjWjEiJc5Pg4cp//3vf/Ppp5/y6quvMmTIEADWrVvH888/T1lZGS+//HK9z5WVlYXFYiHojIrxQUFBHKioX3KmtLS0WtunVVSfr7w/V5szh0C1Wi0dOnSwt/Hw8OCtt95iyJAhqNVqvv/+e0aPHs2SJUvsm6Of6emnn2b69On2ryt7xlqCveCrzBdrtzrccQcl27ZTtGoVyVPvIfK/X2GIiXF0WMLJVV3xuD4xi+Sc0mrHZcVj+1O+fz+YzWj8/NCGhDg6nDahwcnYF198wSeffFItIbngggsICwvj/vvvb1Ay1pr5+/tXS6wuuugiTp06xRtvvFFnMmYwGDAYHDP/QcpaCJVaTdibb5B0x52U7trFiTvuIPLzzzF07uzo0IQTqVzxuD4xi42J2TVWPGrVKnrLisd2rfSfvYBM3m9KDU7GcnJy6NatZk2Rbt26kZOT06Bz+fv7o9FoSE9Pr/Z8eno6wXVsdh0cHHzW9pX36enphFTJ2NPT0+1zv4KDg8nIyKh2DrPZTE5OTp3XBdv8tuXLl9fvzbUw+zCl9Iy1a2p3d8I/nM+JSZMpP3SIE7dNIvzDD3GNk6EEUbsyk4XtJ3JZn2ir9VXXHo9DOtuKrV4U3QEPg2yu3Z6V7dkNyOT9ptTgOWO9e/e2T7av6r333qu2urI+9Ho9/fr1Y+XKlfbnrFYrK1eutJfMONPgwYOrtQdYvny5vX10dDTBwcHV2hQUFLBp0yZ7m8GDB5OXl8e2bdvsbf7880+sVisDBw6sM96dO3dWS/BaE+kZE5U0Pj5EfPE5hh7dseTkcHzCBLIXfI7SwDmdom0yW6zsSMpl3qojTPzkb3q/8AcTPtnEvFWJ7EjKw2JViPJzY8LACOZNuJBtzw7nt4cv4dlre3BZt0BJxAQlO3YC4FrPxW3i3Br8r+r1119n5MiRrFixwp7cbNy4keTk5Br1vupj+vTpTJ48mf79+zNgwADmzJlDcXExt99+OwCTJk0iLCyM2bNnA/Dwww8zbNgw3nrrLUaOHMk333zD1q1b+eijjwBQqVQ88sgjzJo1i5iYGHtpi9DQUEaPHg1A9+7dueqqq7j77ruZP38+JpOJBx54gJtvvpnQ0FDANhyr1+vttdN++OEHPvvsMz755JMGv8eWcLpnTJIxAVpfXyI//5zUfz9L4fLlZLz2GsV/byT05ZclYW9nFEXhUHpRxQbbda94HFJRbiJeVjyKszBnZWFKSgKVCtc+DeuAEXVrcDI2bNgwDh06xLx58+yT7MeMGcP9999vT2QaYvz48WRmZjJjxgzS0tLo06cPv//+u30CflJSEmr16Q68+Ph4Fi1axLPPPsszzzxDTEwMS5YssdcYA3jyyScpLi5m6tSp5OXlcfHFF/P777/ba4wBLFy4kAceeIArrrgCtVrNjTfeyNy5c6vF9tJLL3HixAm0Wi3dunVj8eLF3HTTTQ1+jy1BNgkXZ9J4eRE29x3yFi8m/ZXZFK9ZS+KVCfhOnoTf7bejkR0z2qz67PE4uLOffdK97PEo6qtkxw4ADDExaCq2RhTn77zqjFWVkpLCiy++aO+hEi1Xp0QxmzkQdwEoCjF/rZWETNRQdvAQqf/+N2UVVbPVXl50uPVWvMeMQd8xzMHRifOVWVjOxqOy4lE0v/TX3yDns8/wGT+ekBeed3Q4zaal64w12eB/dnY2n376qSRjDmDOzgFFAbUaTYcOjg5HtEIusV2J+vb/KFyxgqy5cyk/fISs998n6/33cRs4EO/rr8fj0mFoW+kOE6K6gjITmytWPG44ks3B9JorHvuE+9iHHWXFo2gqpdu3A+Dat49jA2ljZCZmG2DJyQZA4+uLSiO/cEXtVCoVXiNG4Hn55RQuW0but99S8vcmSjbZbgAucXG4XzwE1549cYmLQ3dGvT7hGFVXPK4/ks2ek7LiUbQ8a3k5ZXttZS3cLrzQwdFARkkGh3MPMyRsiKNDOW/yr7UNMGfbSopopVdM1INKo8HrmmvwuuYaTCdPkr90KYXLV1C2bx9le/ZQtmePva0hpgsuPXth6NIZfafOGLp0RhcWJkl/M6u6x+P6I1lsPZGLsY49Hod09mdwZz86uOsdFK1oL8r++QfFZELj54euBXeYqUpRFHZk7ODrA1+z4sQK3HRurBi7Aletcy86kWSsDbDk2pIxGaIUDaULC8P/vvvwv+8+TBkZFP+1jpLNmyk7dIjygwcpP3yE8sNHqr1Gpdej79QJQ6dO6Dt3wtC5C4bOndBHRqLSS0LQGNVXPGax6WiOrHgUrU5xRQ+6W//+Lb7go9Rcyu/HfmfRgUUcyDm9Q08Xny5klWYR7umY5LCp1DsZGzNmzFmP5+XlnW8sopEsOZXJmK+DIxHOTBcYiM+NY/C50fZv3ZKXR/GWLZQfPowx8SjliYkYjx1DKS+n/MABys/cskyjQR8RYe9Fc4ntimvfvuhaaW0+R0vOKbGXmzjbisfKBExWPApHK9m0GQC3gQNa7Jr7s/fz/eHv+fXorxSabHMjDRoDIzuN5JZut9CtQ80i9M6o3smYt7f3OY9PmjTpvAMSDWfOyQVA20EmX4umo/HxwWvECBgxwv6cYrFgOnnSlpgdPUr5kUTKjyZiPJKItbgY47FjGI8dA1bYX6MNCcE1Lg5dSAjaoCB0IcG49uuH7oz9Ydu6zMJyNlRsMXS2FY9DKoYee4R6yYpH0WpYy8sprShr4X6W4uhNocBYwK9Hf+WHwz+wP2e//fkwjzDGxY5jTJcx+Lj4NGsMLa3eydiCBQuaMw5xHqRnTLQUVUXvlz4iAi67zP68oiiYMzIoP3LE3otWtncvZfv3Y05NpTA1tca5XHr2xOPSS/G49FJcevZApW7whiCtWkHFHo8bzrXisaLnS1Y8itasdOcuFKMRTYA/+k6dmvz8JouJjakb+fXYr6w4sYJyi62nWKfWcUXEFYyJGcPAkIGoVW3r90QlmTPWBphzZQK/cCyVSoUuKMi2+nLI6ZVN1pISSnfvofzgAUzpGZjT0zEeP25L1CpuWfPmoQnwx2PoUDyHD8fjkktQaZ3vV1OZycK2E7n2Yqu1rXjsEeLFkC62Yquy4lE4k8oV1+4DBjbZcLnFamFb+jZbApa0gvzyfPuxLj5duDHmRq7tdG2b6wWrjfwmaAMsFaspNb6SjInWRe3mhvuggbgPqj6sYc7KomjNWorWrKF43TosmVnkf/8D+d//gCbAH+/rr8dnzBgMnTs7KPJzq8+Kx2h/d9u8L1nxKJxc8eaKyfvnOV/MbDWzM2MnK5NWsuz4MjJLM+3H/Fz8SIhKYGSnkcT5x7WrOZKSjLUBMkwpnI3W39++WMBqNFK6dSuFf66i4NdfsWRmkfPpZ+R8+hmuvXvjPWYMXtdc7fCtV2TFo2ivLIWFlFZsDu5esSd1Q5SYSthwagOrklexNmUteeV59mNeei9GRI7gquiruCjoIjTq9jlUL8lYG2DOrZjAL9XThRNS6/W4x8fjHh9P0JNPULR2LXnf/0DR2rWU7tpF6a5dpM+ejeeVI/C9+RbcLuzbYrFVrnhcn5jNxsQssoqM1Y5XX/HoT+cA93b117xoH4o3bASLBX10NPp61hdLLkhmY+pG1qSs4e9Tf2O0nv63423wZmjYUK6MupIhoUPQaXTNFbrTkGTMySkmE9aCAkDqjAnnp9Lr8Rw+HM/hwzFnZpK/9GfyfvgBY2IiBUt/pmDpz3hddx1BTz7RLHuwVq543HAkmw1HZcWjEABFf60FwGPoJXW2yS3LZWv6Vjac2sDGUxs5WXSy2vEwjzAuC7+MyyMup29gX7RqST+qku+Gk6vsFUOtRnOO8iNCOBNtQAB+d95Bhztup2z3bnIX/x/5P/5Iwc8/U7R6NQGPPIzvzTef124AlSse1x+xlZw424rHIZ396CMrHkU7oygKxWv/AsD9kqEAWBUrJwpOsDNjJzsydrAjYwfHC45Xe51WpaV3YG/iQ+O5LPwyuvh0kV7js5BkzMnZ54v5+LS50gBCgG2lpmvv3rj27o3vLbeQ9vzzlO3dS/pLs8j//geCX3wR114963WuyhWPlcVWd6fkccaCx9MrHrv4c1GUrHgU7VvRvn8wZ2RgNej4gNXs/f1jDuYcpMhUVKNtJ+9ODA4dzOCQwfQP7o+7zt0BETsn+S3j5CqTMa2fDFGKts81rhdR/7eY3MWLyXx7DmX79nHillsI+ve/8Rk/rsZf3maLld0n89lQkXzVteIxvmLe16BOsuJRtD9WxUpmSSbJhckcLzjOsfxj9vuLliVxM7Cjo5kvE7+xv0av1tPLvxd9AvvQN7AvfQL6tIsSFM1FkjEnV1l9X8paiPZCpdHQYcIEvK68ktTnn6doxUrSnn+eks2bCZrxHEfK1LY5X3WseAzyMthLTQzp4k+orHgUbZzRYiStOI1TxadILUrlVPEpThWdsj1XdIq0kjTMVnOtr31wvwWA9IuimNh9KN07dKe7X3eivaPRqWXifVORZMzJnS5rIcmYaF+0/v50fPddEud+gPHDeRT8+itHV2/k9b7j2RPQxd7O21XH4E5+xFcUW5UVj6ItURSF/PJ80kvSayRcqUWppBanVqvlVReNSkOwezBR3lFEe0UT7R1Npzw97hlPg1bLI48sQuPj0/xvqJ2SZMzJna6+LzXGRPuQUVjGxsRsNhyx7fGYkhtJ7MXTeGLb14QVZ/Hq+g/ZOPg6zJPuZEhMkKx4FE5JURSKTcXkleeRW5ZLRkkG6SXp9ltGSQbpxbbHlVsHnY2LxoUQjxBC3G23UI9Q+32oeygBbgE1Vjhmvv8+WYB7/GBJxJqZJGNOTqrvi7au6orHDYlZHEqvPnFYq1bh2bcPe68fQsCKheh//5khG5firs8j7K23JBGjYu9QqxmT1WS/Vf268rHZakZRFBQUrIrV/rjacyiggJXajwO2NrYH9sf2+4q2dbZTTh878zn7+6m45pnnrXq8rmtVa3fmOWo5b63tqpy3tja1vZdKVsVKuaWcMnOZ7WYpo9RcSqm5lCJjEfnGfPLLbTeLYqG+Orh0IMgtyJ5gBbsH2xOtEI8QfA2+De4RLvztdwC8rrq6Qa8TDSfJmJOzVPSMaWQCv2gjqq54XJ+YzZ5zrHgcENUB98oVj9f2Jn/pxaQ+N4PiNWs5cdskIj76sFlqkjWEoiiUW8opNhVTYi6hxFRCsamYYlMxpeZSyi3lGC1G+32Zpcz+dW3HTJa6E6ozkyuTxYRZqX0+kGj9XDQueBu8CXILIsg9iEC3QNtjt4rHFc8ZNIYmvW7p3r2UHz4MOh2eV1zepOcWNUky5uTs1fd9ZZhSOKeqKx7XH8lmW9L5rXj0vv569NGdSL7nHsr37+f4xFuJ/OpL2ybm56nEVEKBsYD88nzyyvPs9wXGAvLK8qr1ahQYCygyFdkSMFNJg3o5WoJOrUOr1qJT6+yPtWotapUatUqNChUqlQr7f6rTX1ceB+yP1So1qLA/b7+veE1VVZ+r7K2pvE7FFzWeq9quss3ZrnWudvbzn9FbVPW5aq+rElNd16p6rrqupUKFQWPAReuCi9YFV40rBq0BF40LHnoPfAw+eOm98DH44G3wxkXrUuv/v+aWt/j/APC68kqpYdkCJBlzcpa8PAAZzxdOQ1EUDqYXsv6IbYuhs614jK/Y57GhKx5d43oR9c3XJN1xJ6akJJJuv4PIL79A6+9fo63JaiKnNIessiyyS7PJKs0iqzSLzJJMsstOf51VmkWpubSWqzWMq9YVd507blo33HXuuGpdMWgMGDQG9Bq9/d5F62L/2qAxoFefPqbT6NCr9aeTKY0OrUqLTqOrNck6s41WpZVFDKJOlqIi8v/3PwB8xo9zcDTtgyRjTs6Snw9IMiZat6TsEtYn2mp91bbHY+WKxyFd/BjcRCse9RERdFzwKSduuw3j0aPsvXUc/8wcS4qmgNTiVNKK00gtTiW3LLfG/J+z0aq0eBu88TZ423oxDBW9GHpvfFxO92p4Gbzw0HngpnPDXetuT7za60bIwnkU/PwzSkkJ+k6dcLvoIkeH0y5IMubEFEXBmleRjEk3smhFaq54rN6j5KrTcFF0B4Z0tpWbaOyKR6tiJaMkg5TCFFKKUuz3qUWptlVnxen4jzLx/ELocDwVn3/NZe4EDSUu1a+lUWnwc/HDz9UPf1d/+83P1Y8A1wD71x1cOuCuk9IYou1STCayP1sAgO/N4+VnvYVIMubElJISFJMJkJ4x4Vj1WfHYN8KHwZ1tezz2jfBFr63f9l3FpuLqyVaVxyeLTmKyms76+gw/DR/c4c8jn2XTKd3MnKUdOPHi7QQGRBLiHkKAWwC+Bl/psRICyFuyBFNyMho/P3xuusnR4bQbkow5scohSpVOh8pVqoiLlnOuFY8qlW3FY3znWlY81qLAWEBSQRInCk6QVJDE8YLj9qQrpyznrLFoVBpC3EPo6NmRjp4dCfMII8wjjGD3YELcQ/B39Uer1lJ2xSGSJk/GJzGTkDeXE/HJx6jdZe88ISpZjUay3v8AAP+pd6N2c3NwRO2HJGNOrDIZU/t4S1eyaFYNXfE4uJMfvmeseCwxlZBUaEu0qiZeSYVJ50y4fAw+dPToaE+4Kh9XJl1nFqusjUtsVyI++5QTU26ndMcOku+9j/CPPkQtf8gIAUDWe/Mwp6aiDQzE5+abHR1OuyLJmBOrXEmplSFK0cSqrnjccCSLTcdyKKrHiscycxnJhclsz9rHiWOne7mSCpLOuSWLv6s/kV6RRHpFEuEZQYRXBOGe4YR5hOGp92yS9+XSowcRn3xM0u13ULJlCykPP0z4e++h0svm4KJ9K9m+nexPPgEg6Nl/ozY0bd0ycXaSjDkxe8+YTN4XTaByxeP6I1lsTMwmu7j2FY+DOnvRKcSIVZvJiYJd7C9I4vfNtsQrrTjtrCsTfQ2+RHhF2BOuSO9IIj0jifCKwF3XMkOGrhdcQPjHH5F0x50Ur/2LU08/Q+gbr6NS128OmxBtjSk9g5OPPQ5WK96jR+N15ZWODqndkWTMiVnsKyl9HBuIcEqVKx5tk+6zz1jxaMXVtZDY8DJCAwpxc8+jyJLKiYIT/H0kFcvhuguYeuo8ifCy9WxFeUXZkq+KhMvb0Dr+cHC78EI6vjuX5PunUfDLL+hCQwl8bLqjwxKixVkKC0m+5x7Mqanoo6II+vczjg6pXZJkzImdLvjaOj7gROuWX2pi09FsNiRmn17xqC5BbchErc/EJTAbX588tIYsiizpmBUjiUBiDnDGlC5XrautZ6tyWNHr9OPG7IHnCB6XXELISy+S+q+nyf74Y3ThHfEdJwUuRfthSs8g+d57KT9wAI2/P+GffIzGs2mmBIiGkWTMidkLvkrPmKhFmcnC1uO5rD2Syl/HDnAk9ygqfRZqfSZqlyw8YjJRaUuqvaYIoGJqmE6tqzPhCnANcIqE61x8Ro/GlJxC1rx5pL3wIrrQMDwuHuLosIRodsWbNnPqqacwp6Wh8fMj4uOP0Hfs6Oiw2i1JxpzY6WRMesbaO0VRSC1KY2XiXjYk7Wd/5lEyypNR6TJR6XJRuSu41DElK8gtiCivKKK8o4jyiiLSK5Io7yhC3UPbRe0t/wemYUpJJv+npZx8+GEiFy3EJTbW0WEJ0SwseXlkzp1L7tffgKKgj44m/KMP0YeHOzq0xjGXg9b5FxtIMubEZF/K9qfEVMKxgmMczz/O8fzj7M44wuGco2SXn8SqKj/dUAuaKv+69WpXIj0jienQiSjvKKK9ou29XG669l1LSKVSEfLSS5hS0yjZvJnke+4lavFidEGBjg5NiCZjSs8g9+tF5H79DdaKP+R9xo0j6KknnafentUCWYfg5DZI2QopW6AkG6bvtxU3dGKSjDkx6Rlru3LLcjmaf9R2yzt9n1aSVvsLVKAoalTmDvjqwujsG81FYbH0D+1KtHc0/q7+bWJYsbmo9Ho6vjuX47dMwHj0KMn33UvUV185z4eUEHUoT0wk64P5FPz+O5htcxAMMTEE/fvfuA8a6ODozkJRID/Flnid2g4nt8OpHWAsqtk2Pxl8Ilo+xiYkyZgTs+TnATKB35nll+ezP2c/R3KPVEu+cstz63yN1eyO1RiA1eiPxhxEjG8nBofHclW3nlwQ5oe6EXs8CtsfNeEffcjx8TdTvm8/J6c/Rsd576HSyq9J4XzMublkvfseuYsXg8W2+tmtf398J92G5xVXoNK0oikIFhNkHYb0vZC+B9L+gbQ9UJxRs63OHUL7QlhfCB8IHQeAZ1DLx9zE5LeME7OXtpBhSqeQUZLB/uz97MvZx4HsA+zP2U9qcWqd7dWWDhhL/bGWB2I1BmItD0RlCqJvx1Diu/gzpIs/fcJ96r3Hozg3fceOhL8/jxOTJlO0Zg1pL80i+PmZ0qsonIaiKOQt/j8y3noLa2EhAB6XX47/tPtx7dnTscFZrVBw0jbUmHkQ0iuSrswDYDHWbK/SQFBPCOt3+hYQC21wLqskY05KURQZpmzFzFYzh3MPsyNjBzszdrIjcwdpxbUPMfobQnEljMICP9KyvbGUB2AtDwDFYN/jcUg3W5X7i86xx6M4f669exP65hucfOhh8hYvRhcSgv+99zg6LCHOyVJUROrTz1C4fDkAhm7dCPrXU7gPGtSygZQXQd4JW9KVdfh08pV9BEwltb9G72FLvIJ6QXAv231QL9C3jzmt8lvdSSklJWAyAZKMtQYmq4l/sv5hU+omtqVvY3fmbkrM1X/pqFVqor2iCXLpgrUslLRMPw4me3LMWH0lUCd/d+L7+DGksz+DatnjUTQ/rxEjMP/736TPmkXmnDlog4LwuWG0o8MSok6m1FSS77mX8kOHQKcj8NFH6TB5UtMPRyoKlBdCYRrkJUHecdt97omKr0/YJtXXRa2FDp3BP6Yi4eppS758oqAd74IhyZiTqlxJqdLrUclGxy3Oqlg5lHuITamb+Dv1b7alb6PUXFqtjYfOgwsCLqCjaw/MJZGcOOXH1h0l7Dxjj8dgLxfiu/hV7PPoR4i3/P9sDTrcOhFzWirZn3xK6nPPoQ0IkBpkolUypaZyfMJEzKmpaAL8CZ83D9cLLqjfi61WKC+Asjwoy4fSPNvj0lwoyoCi9Ipbhi0BK8qAM37X1crFG/y7VtxiKu5jwTcSNLrzeLdtkyRjTqrqEKXMZ2kZhcZCNpzawJrkNaw7ua7GJHsfgw8DggfQxbM3xuJIDiW78/ffuSyz7/FYYGvnZtvjsXKD7U7+7vL/sJUKmD4dU3oGBT//zMmHHiLiqy8dP+9GiCoseXkk3XWXbTuj8FAiXn0cnWs67P62IsHKq0iw8msmXGX5UFYAZ9lPtk56T9sKRt9I271P5OmvvcPB1afp3mQ7IMmYk7InY7KSslklFSSxJmUNa5LXsC19G2bldK+Wq9aV/kH96dmhH5ryGBJTPNnwdy7f55Viq2VvW4LtqtMwILoD8Z39GNLFnx4hXrLi0Umo1GpCX56FOSuTko1/k3zvvUR9/XXbqFSuKBU3i61+k2IBxVrxuMq9Usc+pMrZPsDrONYcr7EfV2q2r3qs1nZnvuZ82p0rpjPOYTWDpRzMxor7ipvFCOay04+Nxbaeq/LCGjeltICTf2gxphnQulqI6LMD3c83n+X7dRZaV1tvlqtPxb0veASCR1DFLRA8givuA0EvZV+akiRjTqpymFIt88WalNlqZmfGTlsClrKGY/nHqh2P8opiUPAl+NKbtIxgNu7O49eMIqCw4gY6jYq+4b4Mrki+ZMWjc1Pp9XScO5cTt95G+cGDJN89lciF/0XrYQBTmW3IxlRW8QFaBqbS6vfmstPtzOW2ZfxWU8W9+fS9/fGZx0xgMdvureYqSZL1dBJ11ucstqGoaslWxWPh1LL+8aA4zR2Vxkr4sFx0fh7g4nM6oXLxqZ5gufhUOX7GsTZQxd6ZSTLmpCwFtg9+2Zfy/OWX57P+5HrWpNiGHwuMBfZjWpWWPoEXEuXaH2NhN/45ruPTzflYFTOQAnB6xWPFsOOA6A646eWfVqtjMVcZqsmzPS4vsvU8GItsvQ3Goorniqo91pQXET6ggOMpCsZjx0i57iIiLstC3db/N6vUtht19OSedXi9BV9jP646o72qyimrHqulXZMdq+f1VGrQuoBWb7vX6G0JkdYAGoPteY0BDB5g8ASDV8W97VZy6BRZi2cBCiEvvoTLmLFOX4W+PWvrv0raLGuhLWHQeHo6OBLnoygKxwuOsybZ1vu1I2MHlipDMd56b3r4DsTNFMfJ1HDW/2VklcUKnF4d2cnf3T7pXlY8tiBTGZTmVJ/zUnU+TK1zYyq+rq1ydwPogIihWo6v8Kc0W8/Jjb50HJKLSqsDnavtA1XnYhvu0RqqPFflXqOvuOlsq8rU2orHOtv+VWrd6WP2589oq9LYVp2pNLYPdLWm4jmN7cPY/rjqcXUtz9XjNfLh3ipZy8pIvW80KAreY8bgfeM4R4ckzpMkY06qsmdM7SXJWH2YrCa2p2+3z/9KKkyqdjzcPZpAbV+K82LZf8CXP8orh3DKAFnx2CyMJbbEqiQbSqrcn/lcaU7F4xwwFZ//dfWeFUM23rZeB71Hxb2nbR6M/bmKr6scNxg8CB91lKSHnqHoJKSaJxDy/CxU7XhJvmh5We+9h/HECbSBgQT96ylHhyOagCRjTspS2TPmIclYXfLK8vjr5F+sSVnD+pPrKTKd7hnRqrR0dI1DW9aTE8mR7CvwZJ/9qLXaischnf2IlhWPdVMUWyHHkuwqSVRdSVWV4/VZHl8bleb0nJezzo3xPmNujK9tqEdzfr/23AK7E/qGjpOPPkr+Dz+i0umlSr9oMcaUk2R/8SUAwc/PROPl5eCIRFOQZMxJWaVnrAZFUUjMS2RNyhrWpqxlZ+ZOrFUmKbtrvPHhAnKyYsjIiCTXenrCauWKxyFd/Ijv3I5XPCqKbTjvbEnVmb1VJdm21WCNodaBWwdw87PdXH0rHlc851rlmFvFMYOXw4fPvBKuRHntNU49+SR5ixej0moJevbfkpCJZpf17rtgMuE2eBCel1/u6HBEE5FkzElZiiom8Hu277+KjBYjW9O32ud/nSw6We24tzoCc1F3MtI7U1jWkTRsw0k6jYq+Ub7EVyRfbXbFo8VsS5yKsyoSqayKxzlVHlckWMVZtra17RFXHxp9w5Iq1w62oUAnTWC8r7sWxWwm9ZlnyF24EFQqgp55WoYsRbMpO3SI/KVLAQicPt3B0YimJMmYk2rPPWPZpdn8dfIv1qasZf3J9dW2HVKjw2DuSl5WF0yF3Sk0+wC2z/teYV4M6ezPYGde8WgsqZJUVdxXJlIlFUmW/XG2rYp2Y2gM4O5fkUR1OHdS5eZnm1/lpIlVY/ncMBosZlKffY7c//4Xa1ERIbNeQqV1wp8t0eplznkHFAXPhARc4+IcHY5oQvIbw0nZ54y1g54xRVE4lHuItSlrWZ2ymj2Ze1CqFIjUKl6UF3TDWBCLuTgGFNvKxk4B7rZCq615xaPVauuNqrrlSOV9ZVJVtSerrk12z0p1uqfK3f90MuXuD24VX7tXJlj+tsRL59buEqvG8rnpJlR6Paeefob8JUuwFBUS9p//oNa3wp834bRKtu+g6M8/QaMh4OGHHR2OaGKSjDmpyp4xTRvtGSu3lLM5dbN9/ldqcWq140p5GMaCbpiLumMtCwXUthWPfVvRikerBQpOQX4y5CVDfpLtvuBUlYQrs+4K53VR604nUu5+VRKqOhItV9/znrQuzs77+utRu7tz8pFHKVqxkuSp99Dx3blSekY0CUVRyPjPWwD4jLkBQ6doB0ckmpr8hnZSlsLKYcq20zOWUZLBXym21Y8bUzdSZi47fdCqw1zcBXNRN8xF3VDM3rYVj10cvOKxvAiyD0PWYcg+AnlJpxOv/JP1T7Tc/KpsORIE7gG2x5W9Ve4VPVZu/k49z6ot87ziCsI//oiU+6dR8vffnJh4K+EffYguONjRoQknV7x2LaVbt6EyGPCfNs3R4YhmIMmYE1KMRpRSW1kAjYeHg6NpPKtiZW/WXnvv1/6c/dWPm7wwF3XHXNQdS3EnXLWuxEd3YEh8C694VBQoTIWsQ7akK+vQ6ccFJ8/+WrUWvMIqNtKNsG2g6xUKnsHVEy+Nrvnfh2h27oMGEfHVlyTfey/lhw5xfPzNhH/0IS6xsY4OTTgpxWol4z9vA+B760RJ7tsoScackKXodL0stZMlY0XGIjambmRN8hrWpvxFbnmO/ZiiqLCWdcRcaOv90pjD6Bvegfhetj0ee3ds5hWP5nLIOVo92aq8P1v1dvcA8O8Kfl3ANxK8I8An3JZ4eQbbqpmLdsO1Z0+ivv6G5HvuwZiYyImJt9Jx7ju4x8c7OjThhAp++YXygwdRe3rif/fdjg5HNBNJxpyQtXKI0t3dKVZtJRUksSZlDauT1rAtYxsWxWw/plgMmIu7Yi7qhrU4lh5BoQzp6U98F38uivJtnhWPJTlVEq4qSVfu8bo3T1ZpoEMnW9LlH1Nxq0jA3Do0fYzCqek7hhG1aCEpDzxIyZYtJE29h5AXXsDnxjGODk04EUtRMRlv2uaK+d15JxofH8cGJJpN6/8kFzWc3gqpdc4XM1lN7Ejfwark1aw4voa00upbD1nL/e1zvyLce3Jx52DiO/s17YpHqwXyTtQcVsw6ZCv5UBeDV0XC1fV0wuXfFXyjbBv3ClFPGm9vwj/9hNR/PU3Br7+S+u9/U374MIGPP+YUf0QJx8uaNw9zejq6iAg6TJns6HBEM5LfCE6oNW4SnlOWw1/Jf/G/xD/ZnvE3RuV0CQZFUWMp6YS5KJYO9ObiqB7E9/NrmhWP5YUVSdYZSVdO4tmLl3pHVEm2qiRdHoEyOV40GbVeT+ibb6CPiiLr/ffJ+fxzyg8fJuw/b6Hx9nZ0eKIVK929m5wvK7Y9evbfqF1cHByRaE6SjDmh1rBJuNlqZnfmbn49spo1KetIKzsCVWp/Wc3uWIq6YTD1ZGDwIC65MKLxKx4VxVYOorYJ9IWn6n6d1gX8YmomXX6dbQVKhWgBKrWagIcexNC1K6eefpri9es5duNNhM5+BbeLLnJ0eKIVMufkkPLwI2Cx4Hn1VXgMHerokEQzk2TMCTmq4GtacRq/J67h96OrOZi/HTPVC5BaykJRlfSgu/dARnTpx5AugQ1b8Wguh+zEmklX9pFzTKAPrNnD5R9jm0AvW9OIVsLrqgT0kRGkTHsAU0oKJyZNpsOkSQQ8+oj0egg7a1kZJx96GHNqKvqoKEJeesnRIYkWIMmYE7JvheTZvCspjRYjfyVv5scDf7Ij828KrMnVjitmN6wlXeno0pdLI4YwIjbm3CseFcVWUT77cPXVilmHbHO86j2BvjLp6mIraiqEE3Dp3p3on5aQ/uqr5H//AzlffEHR6tUEPvUUHpddKhuNt3OK0UjKgw9RsnUrand3W+FgJ1sxLxpHkjEn1JybhB/OPs7ivStYd3Idp8r3oKhOz7uylZ4Ip4MqjoHBQ7i220UMjPavfcWjvUzE4YrE60hFL9dhKMuvOwCDd+1zuWQCvWgjNJ6ehL78Mp4jRpD23AyMJ06Qcv/9uF10EYFPPolrXC9HhygcwFpaSsrDD1P811+oXFwI/3A+hpgYR4clWogkY06oKTcJzyzJ4bu9q/jzxHoSC3dgUmedPqgCq9kTV3MP4nwHcm3XoVzRNRoft4qkSFFsW/qcOnx6En1lj9fZerlQ2epwVZvPJRPoRfvieemluP36C9kffUzOF19QsmULx8eOxX3YUPwmT8Zt0CBUMszeLpizs0l5+GFblX0XF8Lfn4db//6ODku0IEnGnND5zBkrMZay9OB6fk/8i/152ygmCZWqYuK92rbyUWvsRCf3fgyPGsoNPS8ixE2B3GOQtR+2LrX1clUmXeUFdV9M73m6JpdfjG1I0b+rbbhR5+B9I4VoBTSengQ+Nh3fW24mY84cCn7+H8Vr1lK8Zi26sDA8ExLwGHoJLj17tqrV06LplGzdysnHn8Cclobaw4PwD+fj1q+fo8MSLUySMSfUkE3CzRYzq47t5KdDq9mVtYU86yFQVRRdVYEKwBhCuL4Hl3eI5iY/PyItmahyEuHQa/B3om0roDqpbFXnK3u5/LqcHmL0CJJeLiHqQRcaStjrrxMwbRo5X3xB/tKfMZ08Sc5nn5Hz2We2NpERuMR2QxsUhNavA5oOHdB4eaP29EDj4YHa0xO1hwcaT09ULi4y/6yVM6acJPvDD8n79lsA9NHRdHx3LoYuXRwcmXCEVpGMzZs3jzfeeIO0tDR69+7Nu+++y4ABA+ps/+233/Lcc89x/PhxYmJieO2117jmmmvsxxVFYebMmXz88cfk5eUxZMgQPvjgA2KqjL/n5OTw4IMP8vPPP6NWq7nxxht555138KgyWXL37t1MmzaNLVu2EBAQwIMPPsiTTz7ZPN+EBrBvEl5Lz5iiKOxKTeT/9v3J5rS/STftBXWVVY8qMJhd6WbxZZhKR4KllPCiE6iKNsGxs1zUxduWaNmHFit6uzp0Ap2sBBOiKegjIwmeMYPAJ56gaPVqCletomTrVsynUjGdSMJ0IuncJwHQatG4/397dx/UxJ3GAfybAAkvgQSIJKCA4Au2iIi0RrwWO5oTqW21tqdyDlXb0+pZW0frIdcqV/+onHbaa22rzk0Vb9qKdk5xRq2Oip5VIyqKSsGcclTPk5cK5gUBeclzf2AWV5BKBZaX5zOTIfz22d3fPv7YPO5udr2aCjRv76ZiTaW6V7jda/NWwUWrhZteD1edDm56PeQefMS6s1BjI+quXUPN+TzYDuzHneMnAEfTpRzqV1+BbsUKvli/D5O8GNu+fTuWLl2KjRs3wmAw4G9/+xsSEhJgNpsREBDQIv7kyZNISkrCmjVr8MILL+Dbb7/F1KlTce7cOQwf3nTh69q1a/HZZ59h69atCAsLw8qVK5GQkICCggK43/sK+axZs1BSUoKDBw+ivr4ec+fOxfz58/Htt98CAGw2GyZOnAij0YiNGzfi0qVLeP3116HRaDB//vyuS1ArHLZ7pynvHRm7drscmfnZOH7jJG7U5KHB5XZzsBzwaARi79YjvtqOMbW1GFjfgFb/z+zh21Rc+Q1q+ul/76dfOD/yh7EuJPfwgE9iInwSEwEADbdv425hIe5evYqGWxVoqLiFxopKNNrtcNjtcFRVobGqCo6qqqYP+IYGNFqtaLS28WWZ1tarVsNNp4OrXgc3nR4uGjXknp6Qe3pC5ukJuYcnZK4ugFzedD2bXA7IZJC5uAAyOfCot7Fxol8OEce3e4bOXT4RqKEBVFfX9Kqvh6OuDqivR2NVFRorKtFQUYH6mzdx98oVUG2taHavsWOhXbiA7zfHICNq9+juUAaDAU8//TQ+//xzAIDD4UBwcDAWL16MFStWtIifMWMG7ty5gz179ghtY8aMwciRI7Fx40YQEYKCgrBs2TK8++67AACr1QqdToeMjAzMnDkThYWFePLJJ3HmzBk8de8iyf379+P555/HjRs3EBQUhA0bNuC9995DaWkpFIqmC9ZXrFiBrKwsXL58+ZG2zWazQa1Ww2q1wqcDH11kjo+Ho/xnZM4dhuP+pSh3E9+Dy5UII2vvYkxtLcbU1CLybl1z1e3h90Ch5fwZxgUXYz0cEYGqq5sKM7u9qVirugNH1b339io47lSh0V4Fh82Ghp9/Rn1ZGRpKSuCorv7lFbDHIvPwgPvQofCKfxY+ic9DGR4mdZfYQ3TW5/fDSHpkrK6uDrm5uUhNTRXa5HI5jEYjTCZTq/OYTCYsXbpU1JaQkICsrCwAQHFxMUpLS2E0GoXparUaBoMBJpMJM2fOhMlkgkajEQoxADAajZDL5cjJycHLL78Mk8mE+Ph4oRBzruevf/0rbt++DV/flve2unv3Lu7evSv8brO1cXH7r3S1pAh3LD/DA8AJxRWUuzX9T3To3Tqh+IqReUHlFw6E3H+EK6zpPd+Ti7FeSyaTQeblBbmXF6DTtWvexqoqNJSUoL60DA1lpagvLWs66lZd3fyqqQEaGkBETUfgHA6Q8yc5gEZH+68TbXd8e8M7tz8yN7eml0Ih+in39ISL1h+ufv5wDQiAcugQKEJCmo4iMvYASYuxW7duobGxEboHdho6ne6hR59KS0tbjS8tLRWmO9vainnwFKirqyv8/PxEMWFhYS2W4ZzWWjG2Zs0afPDBBw/f4A4wKGAgcuWAQwY8RW54oqE/nguMQWhwdPMpRQ9Np/aBMdb7uKhUcBkyhO9txZgEJL9mrDdJTU0VHbWz2WwIDg7u0HXIXFzgf+B7hPgPwBoXF/7GFGOMMdbDSVqMabVauLi4oKysTNReVlYGvV7f6jx6vb7NeOfPsrIyBAYGimJGjhwpxJSXl4uW0dDQgMrKStFyWlvP/et4kFKphFKpfOj2dpQw3cBOXwdjjDHGuoakt3dWKBSIjY3F4cOHhTaHw4HDhw8jLi6u1Xni4uJE8QBw8OBBIT4sLAx6vV4UY7PZkJOTI8TExcXBYrEgNzdXiMnOzobD4YDBYBBijh07hvr6etF6IiIiWj1FyRhjjDH2q5DEMjMzSalUUkZGBhUUFND8+fNJo9FQaWkpERElJyfTihUrhPgTJ06Qq6srffTRR1RYWEhpaWnk5uZGly5dEmLS09NJo9HQ7t276eLFizRlyhQKCwujmpoaIWbSpEkUExNDOTk5dPz4cRoyZAglJSUJ0y0WC+l0OkpOTqb8/HzKzMwkT09P2rRp0yNvm9VqJQBktVofJ0WMMcYY60Jd/fkteTFGRLR+/XoKCQkhhUJBo0ePplOnTgnTxo0bR7NnzxbF79ixg4YOHUoKhYIiIyNp7969oukOh4NWrlxJOp2OlEolTZgwgcxmsyimoqKCkpKSSKVSkY+PD82dO5fsdrso5sKFC/TMM8+QUqmk/v37U3p6eru2i4sxxhhjrOfp6s9vye8z1pt19X1KGGOMMfb4uvrzW9JrxhhjjDHG+jouxhhjjDHGJMTFGGOMMcaYhLgYY4wxxhiTEBdjjDHGGGMS4mKMMcYYY0xCXIwxxhhjjEmIizHGGGOMMQlxMcYYY4wxJiFXqTvQmzkfbmCz2STuCWOMMcYelfNzu6seUsTFWCey2+0AgODgYIl7whhjjLH2stvtUKvVnb4efjZlJ3I4HLh58ya8vb0hk8k6bLk2mw3BwcH473//2+efecm5aMa5aMa5aMa5aMa5EON8NHswF0QEu92OoKAgyOWdf0UXHxnrRHK5HAMGDOi05fv4+PT5PyAnzkUzzkUzzkUzzkUzzoUY56PZ/bnoiiNiTnwBP2OMMcaYhLgYY4wxxhiTEBdjPZBSqURaWhqUSqXUXZEc56IZ56IZ56IZ56IZ50KM89FM6lzwBfyMMcYYYxLiI2OMMcYYYxLiYowxxhhjTEJcjDHGGGOMSYiLMcYYY4wxCXEx1gN98cUXGDhwINzd3WEwGHD69Gmpu/RY1qxZg6effhre3t4ICAjA1KlTYTabRTHPPfccZDKZ6LVgwQJRzPXr1zF58mR4enoiICAAy5cvR0NDgyjm6NGjGDVqFJRKJQYPHoyMjIzO3rx2+ctf/tJiO4cNGyZMr62txaJFi+Dv7w+VSoVXXnkFZWVlomX0hjwAwMCBA1vkQiaTYdGiRQB695g4duwYXnzxRQQFBUEmkyErK0s0nYiwatUqBAYGwsPDA0ajEVeuXBHFVFZWYtasWfDx8YFGo8Ebb7yBqqoqUczFixfx7LPPwt3dHcHBwVi7dm2Lvnz33XcYNmwY3N3dERUVhX379nX49ralrVzU19cjJSUFUVFR8PLyQlBQEF577TXcvHlTtIzWxlJ6eroopqfnAgDmzJnTYjsnTZokiukL4wJAq/sOmUyGdevWCTHdalwQ61EyMzNJoVDQ5s2b6ccff6R58+aRRqOhsrIyqbv2qyUkJNCWLVsoPz+f8vLy6Pnnn6eQkBCqqqoSYsaNG0fz5s2jkpIS4WW1WoXpDQ0NNHz4cDIajXT+/Hnat28fabVaSk1NFWL+85//kKenJy1dupQKCgpo/fr15OLiQvv37+/S7W1LWloaRUZGirbz559/FqYvWLCAgoOD6fDhw3T27FkaM2YMjR07VpjeW/JARFReXi7Kw8GDBwkAHTlyhIh695jYt28fvffee7Rz504CQLt27RJNT09PJ7VaTVlZWXThwgV66aWXKCwsjGpqaoSYSZMmUXR0NJ06dYp++OEHGjx4MCUlJQnTrVYr6XQ6mjVrFuXn59O2bdvIw8ODNm3aJMScOHGCXFxcaO3atVRQUEDvv/8+ubm50aVLlzo9B05t5cJisZDRaKTt27fT5cuXyWQy0ejRoyk2Nla0jNDQUFq9erVorNy/f+kNuSAimj17Nk2aNEm0nZWVlaKYvjAuiEiUg5KSEtq8eTPJZDIqKioSYrrTuOBirIcZPXo0LVq0SPi9sbGRgoKCaM2aNRL2qmOVl5cTAPrXv/4ltI0bN47eeeedh86zb98+ksvlVFpaKrRt2LCBfHx86O7du0RE9Kc//YkiIyNF882YMYMSEhI6dgMeQ1paGkVHR7c6zWKxkJubG3333XdCW2FhIQEgk8lERL0nD6155513aNCgQeRwOIio74yJBz9oHA4H6fV6WrdundBmsVhIqVTStm3biIiooKCAANCZM2eEmO+//55kMhn973//IyKiL7/8knx9fYVcEBGlpKRQRESE8Pv06dNp8uTJov4YDAZ68803O3QbH1VrH7oPOn36NAGga9euCW2hoaH0ySefPHSe3pKL2bNn05QpUx46T18eF1OmTKHx48eL2rrTuODTlD1IXV0dcnNzYTQahTa5XA6j0QiTySRhzzqW1WoFAPj5+Ynav/nmG2i1WgwfPhypqamorq4WpplMJkRFRUGn0wltCQkJsNls+PHHH4WY+3PnjOluubty5QqCgoIQHh6OWbNm4fr16wCA3Nxc1NfXi7Zh2LBhCAkJEbahN+XhfnV1dfj666/x+uuvQyaTCe19ZUzcr7i4GKWlpaJ+q9VqGAwG0TjQaDR46qmnhBij0Qi5XI6cnBwhJj4+HgqFQohJSEiA2WzG7du3hZielh+r1QqZTAaNRiNqT09Ph7+/P2JiYrBu3TrR6erelIujR48iICAAERERWLhwISoqKoRpfXVclJWVYe/evXjjjTdaTOsu44IfFN6D3Lp1C42NjaIPFwDQ6XS4fPmyRL3qWA6HA0uWLMFvfvMbDB8+XGj//e9/j9DQUAQFBeHixYtISUmB2WzGzp07AQClpaWt5sU5ra0Ym82GmpoaeHh4dOamPRKDwYCMjAxERESgpKQEH3zwAZ599lnk5+ejtLQUCoWixYeMTqf7xW10Tmsrpjvl4UFZWVmwWCyYM2eO0NZXxsSDnH1vrd/3b1dAQIBouqurK/z8/EQxYWFhLZbhnObr6/vQ/DiX0d3U1tYiJSUFSUlJogdfv/322xg1ahT8/Pxw8uRJpKamoqSkBB9//DGA3pOLSZMmYdq0aQgLC0NRURH+/Oc/IzExESaTCS4uLn12XGzduhXe3t6YNm2aqL07jQsuxli3smjRIuTn5+P48eOi9vnz5wvvo6KiEBgYiAkTJqCoqAiDBg3q6m52msTEROH9iBEjYDAYEBoaih07dnTLwqCrfPXVV0hMTERQUJDQ1lfGBHs09fX1mD59OogIGzZsEE1bunSp8H7EiBFQKBR48803sWbNml71KKCZM2cK76OiojBixAgMGjQIR48exYQJEyTsmbQ2b96MWbNmwd3dXdTencYFn6bsQbRaLVxcXFp8e66srAx6vV6iXnWct956C3v27MGRI0cwYMCANmMNBgMA4OrVqwAAvV7fal6c09qK8fHx6baFjkajwdChQ3H16lXo9XrU1dXBYrGIYu7/9++Nebh27RoOHTqEP/zhD23G9ZUx4ex7W/sBvV6P8vJy0fSGhgZUVlZ2yFjpbvsbZyF27do1HDx4UHRUrDUGgwENDQ346aefAPSuXNwvPDwcWq1W9DfRl8YFAPzwww8wm82/uP8ApB0XXIz1IAqFArGxsTh8+LDQ5nA4cPjwYcTFxUnYs8dDRHjrrbewa9cuZGdntzgs3Jq8vDwAQGBgIAAgLi4Oly5dEu1onDvlJ598Uoi5P3fOmO6cu6qqKhQVFSEwMBCxsbFwc3MTbYPZbMb169eFbeiNediyZQsCAgIwefLkNuP6ypgICwuDXq8X9dtmsyEnJ0c0DiwWC3Jzc4WY7OxsOBwOoWiNi4vDsWPHUF9fL8QcPHgQERER8PX1FWK6e36chdiVK1dw6NAh+Pv7/+I8eXl5kMvlwim73pKLB924cQMVFRWiv4m+Mi6cvvrqK8TGxiI6OvoXYyUdF+263J9JLjMzk5RKJWVkZFBBQQHNnz+fNBqN6BtjPc3ChQtJrVbT0aNHRV8xrq6uJiKiq1ev0urVq+ns2bNUXFxMu3fvpvDwcIqPjxeW4byNwcSJEykvL4/2799P/fr1a/U2BsuXL6fCwkL64osvusVtDO63bNkyOnr0KBUXF9OJEyfIaDSSVqul8vJyImq6tUVISAhlZ2fT2bNnKS4ujuLi4oT5e0senBobGykkJIRSUlJE7b19TNjtdjp//jydP3+eANDHH39M58+fF74hmJ6eThqNhnbv3k0XL16kKVOmtHpri5iYGMrJyaHjx4/TkCFDRLcwsFgspNPpKDk5mfLz8ykzM5M8PT1bfG3f1dWVPvroIyosLKS0tLQuv4VBW7moq6ujl156iQYMGEB5eXmi/YfzG3AnT56kTz75hPLy8qioqIi+/vpr6tevH7322mu9Khd2u53effddMplMVFxcTIcOHaJRo0bRkCFDqLa2VlhGXxgXTlarlTw9PWnDhg0t5u9u44KLsR5o/fr1FBISQgqFgkaPHk2nTp2SukuPBUCrry1bthAR0fXr1yk+Pp78/PxIqVTS4MGDafny5aJ7ShER/fTTT5SYmEgeHh6k1Wpp2bJlVF9fL4o5cuQIjRw5khQKBYWHhwvr6C5mzJhBgYGBpFAoqH///jRjxgy6evWqML2mpob++Mc/kq+vL3l6etLLL79MJSUlomX0hjw4HThwgACQ2WwWtff2MXHkyJFW/yZmz55NRE23t1i5ciXpdDpSKpU0YcKEFjmqqKigpKQkUqlU5OPjQ3PnziW73S6KuXDhAj3zzDOkVCqpf//+lJ6e3qIvO3bsoKFDh5JCoaDIyEjau3dvp213a9rKRXFx8UP3H8770eXm5pLBYCC1Wk3u7u70xBNP0IcffigqUIh6fi6qq6tp4sSJ1K9fP3Jzc6PQ0FCaN29ei/+o94Vx4bRp0yby8PAgi8XSYv7uNi5kRETtO5bGGGOMMcY6Cl8zxhhjjDEmIS7GGGOMMcYkxMUYY4wxxpiEuBhjjDHGGJMQF2OMMcYYYxLiYowxxhhjTEJcjDHGGGOMSYiLMcYYY4wxCXExxhjrM+bMmYOpU6d2+XozMjIgk8kgk8mwZMmSR5pnzpw5wjxZWVmd2j/GmLRcpe4AY4x1BJlM1ub0tLQ0fPrpp5DqoSM+Pj4wm83w8vJ6pPhPP/0U6enpwkOeGWO9FxdjjLFeoaSkRHi/fft2rFq1CmazWWhTqVRQqVRSdA1AU7Go1+sfOV6tVkOtVndijxhj3QWfpmSM9Qp6vV54qdVqofhxvlQqVYvTlM899xwWL16MJUuWwNfXFzqdDn//+99x584dzJ07F97e3hg8eDC+//570bry8/ORmJgIlUoFnU6H5ORk3Lp1q919/vLLLzFkyBC4u7tDp9Ph1Vdffdw0MMZ6IC7GGGN92tatW6HVanH69GksXrwYCxcuxO9+9zuMHTsW586dw8SJE5GcnIzq6moAgMViwfjx4xETE4OzZ89i//79KCsrw/Tp09u13rNnz+Ltt9/G6tWrYTabsX//fsTHx3fGJjLGujk+TckY69Oio6Px/vvvAwBSU1ORnp4OrVaLefPmAQBWrVqFDRs24OLFixgzZgw+//xzxMTE4MMPPxSWsXnzZgQHB+Pf//43hg4d+kjrvX79Ory8vPDCCy/A29sboaGhiImJ6fgNZIx1e3xkjDHWp40YMUJ47+LiAn9/f0RFRQltOp0OAFBeXg4AuHDhAo4cOSJcg6ZSqTBs2DAAQFFR0SOv97e//S1CQ0MRHh6O5ORkfPPNN8LRN8ZY38LFGGOsT3NzcxP9LpPJRG3Ob2k6HA4AQFVVFV588UXk5eWJXleuXGnXaUZvb2+cO3cO27ZtQ2BgIFatWoXo6GhYLJbH3yjGWI/CpykZY6wdRo0ahX/+858YOHAgXF0fbxfq6uoKo9EIo9GItLQ0aDQaZGdnY9q0aR3UW8ZYT8BHxhhjrB0WLVqEyspKJCUl4cyZMygqKsKBAwcwd+5cNDY2PvJy9uzZg88++wx5eXm4du0a/vGPf8DhcCAiIqITe88Y6464GGOMsXYICgrCiRMn0NjYiIkTJyIqKgpLliyBRqOBXP7ou1SNRoOdO3di/PjxeOKJJ7Bx40Zs27YNkZGRndh7xlh3JCOpbkfNGGN9REZGBpYsWfKrrgeTyWTYtWuXJI9xYox1DT4yxhhjXcBqtUKlUiElJeWR4hcsWCDpEwMYY12Hj4wxxlgns9vtKCsrA9B0elKr1f7iPOXl5bDZbACAwMDAR36mJWOs5+FijDHGGGNMQnyakjHGGGNMQlyMMcYYY4xJiIsxxhhjjDEJcTHGGGOMMSYhLsYYY4wxxiTExRhjjDHGmIS4GGOMMcYYkxAXY4wxxhhjEvo/eTp+btx1//wAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -329,12 +318,93 @@ "id": "6e900be5", "metadata": {}, "source": [ - "The additional SEI increases the cell resistance, preventing the graphite-silicon composite from being fully lithiated, so there is less plating than before." + "The additional SEI increases the cell resistance, preventing the graphite-silicon composite from being fully lithiated, so there is less plating than before. What happens if the increase is applied to the porous electrode instead?" ] }, { "cell_type": "code", "execution_count": 9, + "id": "20d2680d-daae-46e0-a296-4c9dfd35178e", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABPQElEQVR4nO3dd3hUdd4+/nt6eiPJJIFACL2GHoINNIDIwqKusupXkN/aWHDV6LOaXQXxeVbEiiLKysoiugIWRFcRFiNlUVoCkR5aIAHS20za1M/vj2QGAikzIZlzMrlf1zUXyZlzZt5hYObOpyqEEAJEREREXkIpdQFEREREbYnhhoiIiLwKww0RERF5FYYbIiIi8ioMN0RERORVGG6IiIjIqzDcEBERkVdRS12Ap9ntdly6dAmBgYFQKBRSl0NEREQuEELAaDQiJiYGSmXzbTOdLtxcunQJsbGxUpdBRERErZCbm4tu3bo1e06nCzeBgYEA6v5ygoKCJK6GiIiIXGEwGBAbG+v8HG9Opws3jq6ooKAghhsiIqIOxpUhJRxQTERERF6F4YaIiIi8CsMNEREReRWGGyIiIvIqDDdERETkVRhuiIiIyKsw3BAREZFXYbghIiIir8JwQ0RERF6F4YaIiIi8CsMNEREReRWGGyIiIvIqDDdERK1kswuYrDapyyCiqzDcEBG1ghACd77/Mya+tRMWm13qcojoCmqpCyAi6ohMVjsOXagAAFTUWBAeoJO4IiJyYMsNEVErGGutUpdARE1guCEiaoVKE8MNkVwx3BARtUIlW26IZIvhhoioFYwmi9QlEFETGG6IiFqBY26I5IvhhoioFdgtRSRfDDdERK3AAcVE8sVwQ0TUCgw3RPLFcENE1Aocc0MkXww3REStYKzlbCkiuWK4ISJqBXZLEckXww0RUStwthSRfDHcEBG1gpEtN0SyxXBDRNQKbLkhki+GGyKiVuD2C0TyxXBDRNQKbLkhki+GGyIiNwkhOFuKSMYYboiI3GSy2mGxCanLIKImSBpudu7ciWnTpiEmJgYKhQIbN250+dqff/4ZarUaw4YNa7f6iIgaw1YbInmTNNxUVVUhISEBy5cvd+u68vJyzJo1C7fddls7VUZE1DRuvUAkb2opn3zKlCmYMmWK29c9/vjjuP/++6FSqVps7TGZTDCZTM7vDQaD289HRHQlDiYmkrcON+bmn//8J86ePYuFCxe6dP7ixYsRHBzsvMXGxrZzhUTk7TgNnEjeOlS4OXXqFJ5//nl8+umnUKtda3RKTU1FRUWF85abm9vOVRKRt2PLDZG8Sdot5Q6bzYb7778fixYtQt++fV2+TqfTQafTtWNlRNTZcEAxkbx1mHBjNBqRnp6OgwcPYv78+QAAu90OIQTUajX+85//4NZbb5W4SiLqDBhuiOStw4SboKAgHD58uMGx999/Hz/99BO+/PJL9OzZU6LKiKiz4WwpInmTNNxUVlbi9OnTzu+zs7ORmZmJsLAwdO/eHampqbh48SLWrFkDpVKJwYMHN7g+MjISPj4+1xwnImpPDDdE8iZpuElPT8eECROc36ekpAAAZs+ejdWrVyMvLw85OTlSlUdE1KhKzpYikjWFEKJTrSFuMBgQHByMiooKBAUFSV0OEXVAT607iI2Zl5zfp7+QjPAATlwgak/ufH53qKngRERywAHFRPLGcENE5CYDx9wQyRrDDRGRm7iIH5G8MdwQEbmJ3VJE8sZwQ0TkJoYbInljuCEichO7pYjkjeGGiMgNtRYbzDa71GUQUTMYboiI3MAuKSL5Y7ghInKDo0sqQNdhtuYj6nQYboiI3OBouWG4IZIvhhsiIjc4Ns0M8GG4IZIrhhsiIjcYa+s2zWTLDZF8MdwQEbnB0S0VyJYbItliuCEicgPH3BDJH8MNEZEbHGNu2HJDJF8MN0REbrjccqORuBIiagrDDRGRG5wDitlyQyRbDDdERG5wLOIXyDE3RLLFcENE5AZntxRbbohki+GGiMgNRm6/QCR7DDdERG7gOjdE8sdwQ0TkBk4FJ5I/hhsiIjdwKjiR/DHcEBG5oZIbZxLJHsMNEZGLTFYbzDY7gIYDioWQqiIiagzDDRGRixytNkBduFEpFQAAO9MNkaww3BARucgx3sZfq4JKqYC6PtxY6ltziEgeGG6IiFxkvGq8jUZV9xZqtbHlhkhOGG6IiFzkCDf+9eNt1Kq6lhurnS03RHLCcENE5CLnAn6OcKOsewu1sOWGSFYYboiIXFRlurpbqr7lhuGGSFYYboiIXHR5QHHDbikLu6WIZIXhhojIRc6Wm/puKY2SA4qJ5IjhhojIRc6Wm6sGFHMqOJG8SBpudu7ciWnTpiEmJgYKhQIbN25s9vwNGzZg4sSJiIiIQFBQEJKSkrBlyxbPFEtEnV7lVWNuLg8oZrghkhNJw01VVRUSEhKwfPlyl87fuXMnJk6ciE2bNiEjIwMTJkzAtGnTcPDgwXaulIiokW4pNbuliORI0p3fpkyZgilTprh8/tKlSxt8/8orr+Cbb77Bv//9bwwfPrzRa0wmE0wmk/N7g8HQqlqJiKpMNgB1KxQDgEbJdW6I5KhDj7mx2+0wGo0ICwtr8pzFixcjODjYeYuNjfVghUTkTYxNjrlhyw2RnHTocPPGG2+gsrIS9957b5PnpKamoqKiwnnLzc31YIVE5E0c3VKBV2+/wJYbIlmRtFvqenz22WdYtGgRvvnmG0RGRjZ5nk6ng06n82BlROStqq5uuVGy5YZIjjpkuFm3bh0efvhhfPHFF0hOTpa6HCLqJK6dCs4BxURy1OG6pdauXYs5c+Zg7dq1mDp1qtTlEFEnUnn1bClunEkkS5K23FRWVuL06dPO77Ozs5GZmYmwsDB0794dqampuHjxItasWQOgritq9uzZeOedd5CYmIj8/HwAgK+vL4KDgyX5GYio87h6Kjg3ziSSJ0lbbtLT0zF8+HDnNO6UlBQMHz4cCxYsAADk5eUhJyfHef6HH34Iq9WKefPmITo62nl78sknJamfiDoPk9XmDDFXz5aychE/IlmRtOVm/PjxEKLp33hWr17d4Pvt27e3b0FERE1wrHEDXLnOjWO2FFtuiOSkw425ISKSgqNLykejdA4k5t5SRPLEcENE5AJjrWO8jcZ5TMPZUkSyxHBDROSCKrMj3Kicx5zr3HC2FJGsMNwQEbng6jVuAK5zQyRXDDdERC64enVi4Ip1bjjmhkhWGG6IiFxQWdtwjRvginVuOFuKSFYYboiIXHD16sTAFbOlrGy5IZIThhsiIhc41rlptFuKLTdEssJwQ0TkgsZnSzm2X2DLDZGcMNwQEbnAsc5Ng5YbNWdLEckRww0RkQuu3jQTADRK7gpOJEcMN0RELmgs3DjWueGu4ETywnBDROSCxhbxuzygmC03RHLCcENE5IJGp4Ir2XJDJEcMN0RELnB2S/lcu84NVygmkheGGyIiF1Q61rnRcp0bIrljuCEickGjA4rZLUUkSww3REQtsNrsqLE4Vii+YhE/dksRyRLDDRFRC6rMNufXV4650dRPBWe3FJG8MNwQEbXA0SWlUSmgU1+5/UL9xplsuSGSFYYbIqIWVDWyxg1wRcsNx9wQyQrDDRFRC4yOcKNtGG7UXMSPSJYYboiIWuBouQn0uSrccLYUkSwx3BARtaDpbinOliKSI4YbIqIWOBfw013dLcWWGyI5YrghImrB5QX8VA2OaxyzpTjmhkhWGG6IiFrQ2KaZwOWWGyEAG9e6IZINhhsiohZUNjHmxjFbCuBaN0RywnBDRNSCxvaVAgCt6vJbKFcpJpIPhhsiohY02XKjvNxywxlTRPLBcENE1ILK2sZbblTKK7ul2HJDJBcMN0RELagyNx5uFArF5bVuOGOKSDYYboiIWlBVv86Nn1Z1zX2OVYq5vxSRfDDcEBG1oMbsCDfqa+5zzJjibCki+ZA03OzcuRPTpk1DTEwMFAoFNm7c2OI127dvx4gRI6DT6dC7d2+sXr263eskos7N0S3lp7u25ca5MzhnSxHJhqThpqqqCgkJCVi+fLlL52dnZ2Pq1KmYMGECMjMz8dRTT+Hhhx/Gli1b2rlSIurMHC03V+8KDlyeMcWWGyL5uPZ/qgdNmTIFU6ZMcfn8FStWoGfPnnjzzTcBAAMGDMCuXbvw9ttvY/LkyY1eYzKZYDKZnN8bDIbrK5qIOh1ny00jY26cLTccc0MkGx1qzM3u3buRnJzc4NjkyZOxe/fuJq9ZvHgxgoODnbfY2Nj2LpOIvIjNLlBrqWuVaXRAMWdLEclOhwo3+fn50Ov1DY7p9XoYDAbU1NQ0ek1qaioqKiqct9zcXE+USkReosZic37d6IBiZ7cUW26I5ELSbilP0Ol00Ol0UpdBRB1UdX2XlEIB+Giu/X2Q3VJE8tOhWm6ioqJQUFDQ4FhBQQGCgoLg6+srUVVE5M2qHWvcaFRQKBTX3O+cCs5uKSLZ6FDhJikpCWlpaQ2Obd26FUlJSRJVRETertqxxo2u8YZuLuJHJD+ShpvKykpkZmYiMzMTQN1U78zMTOTk5ACoGy8za9Ys5/mPP/44zp49iz//+c84ceIE3n//fXz++ed4+umnpSifiDqB6mZmSgGXdwY3W9lyQyQXkoab9PR0DB8+HMOHDwcApKSkYPjw4ViwYAEAIC8vzxl0AKBnz574/vvvsXXrViQkJODNN9/EP/7xjyangRMRXa/qZlYnBgDf+tBz5cBjIpKWpAOKx48fDyGabsptbPXh8ePH4+DBg+1YFRHRZY6WG/8mWm4cLTqO84hIeh1qzA0Rkac5Wm58mww36gbnEZH0GG6IiJpR1czWC8CVLTcMN0RywXBDRNSMmhYGFDvDjYndUkRywXBDRNSMKsc6N43sCA5c7q6q5oBiItlguCEiaoZjFlRTs6Uc3VU17JYikg2GGyKiZlSZmu+W8uVsKSLZYbghImpGjXOdm5amgrPlhkguGG6IiJpR5RxQ3NRsKU4FJ5IbhhsiomZUs+WGqMNhuCEiakZL2y9whWIi+WG4ISJqhmNAsX8TU8HZLUUkPww3RETNuDwVvPluKU4FJ5IPlzbODAsLc+tBFQoFDhw4gB49erSqKCIiuXAu4udCt5QQAgqFwmO1EVHjXAo35eXlWLp0KYKDg1s8VwiBP/7xj7DZ+FsMEXV8LW2/4Fjnxi4Ak9UOH03j5xGR57gUbgDg97//PSIjI10694knnmh1QUREcmG12S9vnKlrfio4UDfuhuGGSHouhRu73e7WgxqNxlYVQ0QkJ4bayzOgQnw1jZ6jUiqgUythstpRbbYizF/rqfKIqAkuDyj+7rvv3A45REQdWVm1GQAQ6KOGWtX02yXXuiGSF5fDzYwZMxAbG4u//vWvOH36dHvWREQkC+XVFgBAiF/jrTYOnA5OJC8uh5vs7Gw89thjWLduHfr164dbbrkFn3zyCWpqatqzPiIiyZTXt9yE+jXf1cSF/IjkxeVwExsbiwULFuDMmTP48ccfERcXh7lz5yI6OhqPP/449u/f3551EhF5XJmz5ca1cMO1bojkoVWL+E2YMAEff/wx8vLy8Prrr+Pw4cMYO3YsEhIS2ro+IiLJOFpumhpM7ODolqpiuCGSBZengjcmMDAQt912G86fP48TJ07g2LFjbVUXEZHkHGNuQlscc+NouWG3FJEctKrlpqamBmvWrMH48ePRp08frFu3DikpKTh37lwbl0dEJJ3ymrqWm+AWuqV8OVuKSFbcarnZs2cPVq1ahc8//xxmsxl33XUXfvzxR0yYMKG96iMikkyZmy03DDdE8uByuBk4cCCysrIwfPhwLF68GPfff79L2zEQEXVUzjE3Lk8FZ7cUkRy4HG6Sk5Oxdu1aDhomok6j3M3ZUmy5IZIHl8PNu+++2551EBHJjjPctDhbqj7cmBhuiOTApQHFI0aMQFlZmcsPeuONN+LixYutLoqISA5cX8SvvlvKwnBDJAcutdxkZmbi119/RVhYmEsPmpmZCZPJdF2FERFJyWy9vCO4qysUcyo4kTy43C112223QQjh0rkKhaLVBRERyYGj1UapqNs4szmcCk4kLy6Fm+zsbLcfuFu3bm5fQ0QkF+U1deNtgn01UCqb/4XNnysUE8mKS+GmR48e7V0HEZGslFa5Nt4GYLcUkdy0aoViIiJv5wg3Yf4thxt2SxHJC8MNEVEjStwIN5cX8WO4IZIDycPN8uXLERcXBx8fHyQmJmLfvn3Nnr906VL069cPvr6+iI2NxdNPP43a2loPVUtEnUVpZV246RLgercUVygmkgdJw8369euRkpKChQsX4sCBA0hISMDkyZNRWFjY6PmfffYZnn/+eSxcuBDHjx/HRx99hPXr1+Mvf/mLhysnIm9XUlW3nEUXf12L5zrCTa3FDrvdtVmlRNR+WhVuysvL8Y9//AOpqakoLS0FABw4cMDthfveeustPPLII5gzZw4GDhyIFStWwM/PD6tWrWr0/F9++QU33HAD7r//fsTFxWHSpEm47777mm3tMZlMMBgMDW5ERC1pTbcUANRwIT8iybkdbg4dOoS+fftiyZIleOONN1BeXg4A2LBhA1JTU11+HLPZjIyMDCQnJ18uRqlEcnIydu/e3eg148aNQ0ZGhjPMnD17Fps2bcIdd9zR5PMsXrwYwcHBzltsbKzLNRJR5+VOt5SPRgnH8l5V7Joikpzb4SYlJQUPPfQQTp06BR8fH+fxO+64Azt37nT5cYqLi2Gz2aDX6xsc1+v1yM/Pb/Sa+++/Hy+//DJuvPFGaDQa9OrVC+PHj2+2Wyo1NRUVFRXOW25urss1ElHn5c5sKYVCAT+NYzo4W26IpOZ2uNm/fz8ee+yxa4537dq1yVDSVrZv345XXnkF77//Pg4cOIANGzbg+++/x//+7/82eY1Op0NQUFCDGxFRS9zplgIAX86YIpINl7dfcNDpdI2OWzl58iQiIiJcfpzw8HCoVCoUFBQ0OF5QUICoqKhGr3nxxRfx4IMP4uGHHwYADBkyBFVVVXj00Ufx17/+FUql5JO/iMgL2O0CZfXbL4QHtDygGOCMKSI5cTsNTJ8+HS+//DIslrqlyRUKBXJycvDcc8/h7rvvdvlxtFotRo4cibS0NOcxu92OtLQ0JCUlNXpNdXX1NQFGpap7Q3F13ysiopZU1Fhgq5/15MoKxcCV4YYtN0RSczvcvPnmm6isrERkZCRqampwyy23oHfv3ggMDMTf/vY3tx4rJSUFK1euxMcff4zjx49j7ty5qKqqwpw5cwAAs2bNajBIedq0afjggw+wbt06ZGdnY+vWrXjxxRcxbdo0Z8ghIrpeji6pQB81tGrX3iYZbojkw+1uqeDgYGzduhW7du3CoUOHUFlZiREjRjSY9eSqmTNnoqioCAsWLEB+fj6GDRuGzZs3OwcZ5+TkNGipeeGFF6BQKPDCCy/g4sWLiIiIwLRp09wOVUREzXEMJu7i4ngb4PJ0cA4oJpKeQnSy/hyDwYDg4GBUVFRwcDERNWrzkTw8/ukBjOgegg1/vMGlax5dk47/HCvA3+4cjAcSudkwUVtz5/Pb7Zabd999t9HjCoUCPj4+6N27N26++WZ2ExFRh+Xoluri4mBi4MqdwdlyQyQ1t8PN22+/jaKiIlRXVyM0NBQAUFZWBj8/PwQEBKCwsBDx8fHYtm0bF8wjog7pUnkNACAy0PVww6ngRPLh9oDiV155BaNHj8apU6dQUlKCkpISnDx5EomJiXjnnXeQk5ODqKgoPP300+1RLxFRu8surgIA9Az3d/ka//qWG65QTCQ9t1tuXnjhBXz11Vfo1auX81jv3r3xxhtv4O6778bZs2fx2muvuTUtnIhITs4W1YWbXhEBLl/Dbiki+XC75SYvLw9W67W/mVitVucKxTExMTAajddfHRGRh9ntwtlyEx/hessNu6WI5MPtcDNhwgQ89thjOHjwoPPYwYMHMXfuXNx6660AgMOHD6Nnz55tVyURkYdcLK+ByWqHRqVA1xBfl69jyw2RfLgdbj766COEhYVh5MiR0Ol00Ol0GDVqFMLCwvDRRx8BAAICAvDmm2+2ebFERO3N0WrTo4s/1CrX3yL9OOaGSDbcHnMTFRWFrVu34sSJEzh58iQAoF+/fujXr5/znAkTJrRdhUREHnS2qBIAEO/GYGLg8iJ+7JYikp7b4cahf//+6N+/f1vWQkQkubOOmVJujLcBAD8dN84kkotWhZsLFy7g22+/RU5ODsxmc4P73nrrrTYpjIhICudKqgEAPbu4F26CfOreTo21DDdEUnM73KSlpWH69OmIj4/HiRMnMHjwYJw7dw5CCIwYMaI9aiQi8hjHAn7dQv3cui7IRwMAMNRY2rwmInKP2wOKU1NT8eyzz+Lw4cPw8fHBV199hdzcXNxyyy2455572qNGIiKPEEI4w01MiI9b1wb71oebWis62ZZ9RLLjdrg5fvw4Zs2aBQBQq9WoqalBQEAAXn75ZSxZsqTNCyQi8pSKGotzQHCMG9PAASCoPtzY7AJVHFRMJCm3w42/v79znE10dDTOnDnjvK+4uLjtKiMi8rCL9a02Xfy18NG4t/mvTq2Etn7qOLumiKTl9pibsWPHYteuXRgwYADuuOMOPPPMMzh8+DA2bNiAsWPHtkeNREQecam8FoD7rTYAoFAoEOSrRnGlGYZaC2Lg/mMQUdtwO9y89dZbqKysWwdi0aJFqKysxPr169GnTx/OlCKiDs0x3sadlYmvFOSjqQs3NZwxRSQlt8NNfHy882t/f3+sWLGiTQsiIpLK5cHErQs3gb6cMUUkB26PuYmPj0dJSck1x8vLyxsEHyKijuZiK2dKOTjWujHUMtwQScntcHPu3DnYbNfOBDCZTLh48WKbFEVEJIXr7pZiyw2RLLjcLfXtt986v96yZQuCg4Od39tsNqSlpSEuLq5NiyMi8qQLZXXhJvo6xtwAdWvdEJF0XA43M2bMAFA3I2D27NkN7tNoNIiLi+NO4ETUYRVXmlBoNEGhAOLd3FfKIci3vluKLTdEknI53NjtdgBAz549sX//foSHh7dbUUREnnboQjmAut3AHS0w7rrccsNwQyQlt2dLZWdnt0cdRESSysytAAAkxIa0+jEcY24q2HJDJCmXws27777r8gP+6U9/anUxRERScbTcDLuecOOYLcV1bogk5VK4efvtt116MIVCwXBDRB2OEAK/5pYDAIZ2C2n14zhnS7FbikhSLoUbdkURkTfLKa1GWbUFGpUCA6IDW/04wQw3RLLg9jo3VxJCQAjRVrUQEUliz9m6hUmHdguBTu3ehplXcg4oZrcUkaRaFW7WrFmDIUOGwNfXF76+vhg6dCg++eSTtq6NiMgjdp+pCzfjenW5rsdxTAU31lpgt/MXPyKptGrjzBdffBHz58/HDTfcAADYtWsXHn/8cRQXF+Ppp59u8yKJiNqLEAK/1IebpPjrDDf1LTd2ARhNVmc3FRF5ltvhZtmyZfjggw8wa9Ys57Hp06dj0KBBeOmllxhuiKhDOVtchUKjCVq1EiN6hF7XY/loVPDVqFBjsaGi2sJwQyQRt7ul8vLyMG7cuGuOjxs3Dnl5eW1SFBGRpzhabUZ2D4WPpvXjbRxC/OoCTXmN+bofi4hax+1w07t3b3z++efXHF+/fj369OnTJkUREXnKHkeX1HWOt3EI8dMCAMqqOWOKSCpud0stWrQIM2fOxM6dO51jbn7++WekpaU1GnqIiOTKbhfYfbZtBhM7hNR3RZVXs+WGSCout9wcOXIEAHD33Xdj7969CA8Px8aNG7Fx40aEh4dj3759uPPOO9utUCKitnay0IjSKjN8NarrWrzvSqH+jnDDlhsiqbgcboYOHYrExESsXLkSffv2xaeffoqMjAxkZGTg008/xfDhw1tVwPLlyxEXFwcfHx8kJiZi3759zZ5fXl6OefPmITo6GjqdDn379sWmTZta9dxE1Ln9crqu1WZ0zzBo1de17JfT5W4pttwQScXl/807duzAoEGD8MwzzyA6OhoPPfQQ/vvf/17Xk69fvx4pKSlYuHAhDhw4gISEBEyePBmFhYWNnm82mzFx4kScO3cOX375JbKysrBy5Up07dr1uuogos7J0SV1vVPAr3S5W4otN0RScTnc3HTTTVi1ahXy8vKwbNkyZGdn45ZbbkHfvn2xZMkS5Ofnu/3kb731Fh555BHMmTMHAwcOxIoVK+Dn54dVq1Y1ev6qVatQWlqKjRs34oYbbkBcXBxuueUWJCQkNPkcJpMJBoOhwY2IyGYXzpWJ22q8DQCE1rfccMwNkXTcbof19/fHnDlzsGPHDpw8eRL33HMPli9fju7du2P69OkuP47ZbEZGRgaSk5MvF6NUIjk5Gbt37270mm+//RZJSUmYN28e9Ho9Bg8ejFdeeQU2m63J51m8eDGCg4Odt9jYWNd/WCLyWscuGWCstSJQp8agmKA2e9zg+qngnC1FJJ3r6mTu3bs3/vKXv+CFF15AYGAgvv/+e5evLS4uhs1mg16vb3Bcr9c32Qp09uxZfPnll7DZbNi0aRNefPFFvPnmm/i///u/Jp8nNTUVFRUVzltubq7LNRKR9/rlTDEAIDE+DGpV24y3Aa5oualhuCGSittTwR127tyJVatW4auvvoJSqcS9996LP/zhD21Z2zXsdjsiIyPx4YcfQqVSYeTIkbh48SJef/11LFy4sNFrdDoddDpdu9ZFRB2Pc7xNr/A2fdxQP04FJ5KaW+Hm0qVLWL16NVavXo3Tp09j3LhxePfdd3HvvffC39/frScODw+HSqVCQUFBg+MFBQWIiopq9Jro6GhoNBqoVJdXER0wYADy8/NhNpuh1WrdqoGIOieLzY592aUA2nYwMXB5heKyKoYbIqm43BY7ZcoU9OjRA8uWLcOdd96J48ePY9euXZgzZ47bwQYAtFotRo4cibS0NOcxu92OtLQ0JCUlNXrNDTfcgNOnT8NutzuPnTx5EtHR0Qw2ROSyQxcqUG22IdRPg/5RgW362I6p4IZaK2zcGZxIEi6HG41Ggy+//BIXLlzAkiVL0K9fv+t+8pSUFKxcuRIff/wxjh8/jrlz56Kqqgpz5swBAMyaNQupqanO8+fOnYvS0lI8+eSTOHnyJL7//nu88sormDdv3nXXQkSdx+768TZj47tAqVS06WOHXLFZZgXH3RBJwuVuqW+//bbNn3zmzJkoKirCggULkJ+fj2HDhmHz5s3OQcY5OTlQKi/nr9jYWGzZsgVPP/00hg4diq5du+LJJ5/Ec8891+a1EZH3austF66kVikRqFPDaLKirNqMMH+2KhN5WqsHFLeV+fPnY/78+Y3et3379muOJSUlYc+ePe1cFRF5q2qzFennygC03WaZVwvx18BosnIhPyKJtN38RyKiDuDvO87CZLWjRxc/9IoIaJfnCA+om6GZV1HTLo9PRM1juCGiTuNSeQ1W7DgDAHj+9v5QKNp2vI1D38i6QcpZ+cZ2eXwiah7DDRF1Gl8fvAiT1Y7RcaG4fXDjS060hX71M7BOMNwQSYLhhog6jW0n6jblnT6sa7u12gBwTi9nyw2RNBhuiKhTKKsy40BO3UDiW/tHtutzOVpuckqrUWWytutzEdG1GG6IqFPYeaoIdgH00weia4hvuz5XlwAdIgLrBhWfLGDrDZGnMdwQUafg6JKa0M6tNg7smiKSDsMNEXk9m11gx8kiAO3fJeXQp37G1JmiSo88HxFdxnBDRF4vM7cMZdUWBPtqMKJ7iEeeMybEBwBwqaLWI89HRJcx3BCR1/upvkvq5r4RUKs887bnGNeTV86F/Ig8jeGGiLzej8fqws2t/SM89pzR9eHmUjlbbog8jeGGiLzaiXwDsgqM0KqUuLWf3mPP6+iWKjTWwmKze+x5iYjhhoi83MaDlwAAE/pHINhP47HnDffXQatSwi6AAgNbb4g8ieGGiLyW3S7wbeZFAMCMYV09+txKpQJRwfWDitk1ReRRDDdE5LX+e7oYlypqEeSj9tj6NldydE1xd3Aiz2K4ISKv9dne8wCAu0Z0g49G5fHnjwmuG1R8kTOmiDyK4YaIvFKBoRY/Hq+bJXV/YndJaohxTgdntxSRJzHcEJFX+nx/Lmx2gVE9QtFXHyhJDdH13VJsuSHyLIYbIvI6NrvAuv25AKRrtQGAnl38AQCnC7kFA5EnMdwQkdfZebIIF8trEOyrwR1DoiWrY0B0EAAgp7QahlqLZHUQdTYMN0Tkdb7MuAAAuGtEV0kGEjuE+msRUz8d/Pglg2R1EHU2DDdE5FWMtRb8eLwAAHD3iG4SVwMMjAkGABzLY7gh8hSGGyLyKluOFsBktaNXhD8GxQRJXQ4G1tdwlC03RB7DcENEXuW7Q3XbLfx2WFcoFAqJq4EzYB1juCHyGIYbIvIaZqsde8+WAgAmDfLcJpnNcYSbkwVGVJmsEldD1Dkw3BCR1zh0oRw1FhvC/LXoJ9HaNlfrGuKL7mF+sNoFfj5dLHU5RJ0Cww0ReY09Z0sAAGPjw2TRJQUACoUCE/pFAAC2nyySuBqizoHhhoi8xu76cJMU30XiShoaX79p5/YThRBCSFwNkfdjuCEir1BoqEX6uTIAwFiZhZuk+C7QqZW4VFGLkwVcrZiovTHcEJFXePWHEzBZ7RgWG4LekQFSl9OAj0aFcb3qAte2rEKJqyHyfgw3RNThHc8zYMPBi1AogEXTB8lmvM2VJtR3TW07wXBD1N4Yboiow/v+UB4AYOIAPRJiQ6Qtpgnj+9aFm/TzZdxniqidMdwQUYe3+Wg+AGDqUOk2yWxJ9y5+6BXhD5tdYNcpTgknak8MN0TUoZ0uNOJ0YSU0KoWz60euJvRj1xSRJ8gi3CxfvhxxcXHw8fFBYmIi9u3b59J169atg0KhwIwZM9q3QCKSra8OXAQA3NA7HEE+GomraZ4jfG0/WQS7nVPCidqL5OFm/fr1SElJwcKFC3HgwAEkJCRg8uTJKCxs/jebc+fO4dlnn8VNN93koUqJSG6KjCas/vkcAOD+Md2lLcYFo+JC4a9Vocho4i7hRO1I8nDz1ltv4ZFHHsGcOXMwcOBArFixAn5+fli1alWT19hsNjzwwANYtGgR4uPjm318k8kEg8HQ4EZE3uH97adRY7EhITYEEwfKYy+p5ujUKtzQOxwAu6aI2pOk4cZsNiMjIwPJycnOY0qlEsnJydi9e3eT17388suIjIzEH/7whxafY/HixQgODnbeYmNj26R2IpJWebUZ6/blAgCemdhXltO/G+OcEs71bojajaThpri4GDabDXp9w9+49Ho98vPzG71m165d+Oijj7By5UqXniM1NRUVFRXOW25u7nXXTUTS+9feHNRYbBgYHYSb+oRLXY7LxtfvM3UwtxylVWaJqyHyTpJ3S7nDaDTiwQcfxMqVKxEe7tqbmU6nQ1BQUIMbEXVsJqsNq385BwB49Ob4DtNqAwDRwb7oHxUIIYD/nuJGmkTtQS3lk4eHh0OlUqGgoKDB8YKCAkRFRV1z/pkzZ3Du3DlMmzbNecxutwMA1Go1srKy0KtXr/Ytmogk903mJRQZTYgO9pH12jZNmdA/Eifyjdh2ohC/HdZV6nKIvI6kLTdarRYjR45EWlqa85jdbkdaWhqSkpKuOb9///44fPgwMjMznbfp06djwoQJyMzM5Hgaok5ACIGVO88CAObcEAeNqkM1QAO4vN7N9pNFsNjsEldD5H0kbbkBgJSUFMyePRujRo3CmDFjsHTpUlRVVWHOnDkAgFmzZqFr165YvHgxfHx8MHjw4AbXh4SEAMA1x4nIO20/WYRThZUI0Knx+w4w/bsxI3uEIjxAh+JKE3adLnaGHSJqG5KHm5kzZ6KoqAgLFixAfn4+hg0bhs2bNzsHGefk5ECp7Hi/mRFR+/jHf+tabX4/Olb2i/Y1RaVUYOqQKHy8+zz+/eslhhuiNqYQQnSqZTINBgOCg4NRUVHBwcVEHcyRixX4zbJdUCkV2PnnCega4it1Sa2Wfq4Uv1uxGwE6Nfb99Tb4aSX/XZNI1tz5/GaTCBF1GO+mnQIATB0S3aGDDQCM6B6K2DBfVJqsWLzphNTlEHkVhhsi6hB+zS3Hf44VQKkA/nRbb6nLuW5KpQKv3DkEAPDJnvPYe7ZE4oqIvAfDDRHJnhACr2w6DgC4c3g39I4MlLiitnFTnwjcNaJuKvgPRxpfuJSI3MdwQ0Sy903mJezNLoWPRomnJ/aRupw2lTygbvLE7jNsuSFqKww3RCRr+RW1+N/vjgEAnri1D7qF+klcUdsaG98FAJBVYERxpUniaoi8A8MNEcmW1WbHE2sPoKTKjAHRQXj4pp5Sl9Tmwvy16B9V1822h+NuiNoEww0Rydbfd57F/nNlCNSp8cEDI6BTq6QuqV2M61W3V97Ok9xriqgtMNwQkSwdu2TAOz/WTf1+afogxIX7S1xR+5k4sG7czXeH8mCstUhcDVHHx3BDRLJTVmXGY5+mw2yzI3lApHNGkbcaGx+GXhH+qDbbsPHgRanLIerwGG6ISFasNjvmrz2A3NIadA/zwxv3JEChUEhdVrtSKBT4f2N7AAA+3ZODTrZwPFGbY7ghItmw2QUWfnsUP58ugZ9WhQ9njUSIn1bqsjzirhHd4KtRIavAiP3nyqQuh6hDY7ghIlkorTLj0TXp+NfeHADAm/ckoH9U59n/LdhXg98OiwEAfLrnvMTVEHVsDDdEJKlaiw2f7jmPSW/vRNqJQmjVSrzz+2GYMiRa6tI8ztE19cORPBQaaiWuhqjj4ja0RORRdrtATmk1jl4y4MfjBfjP0XxUmW0AgN6RAVg6cxgGdw2WuEppDO4ajJE9QpFxvgyrfzmHP9/eX+qSiDokhhsiahcmqw25pdU4W1SFcyVVOFVQiZOFlThdYHSGGYduob54+MaeuC+xu9euZeOqx26Ox6OfZOCTPefxxwm9EaDj2zSRu/i/hojazIl8A74+cBE7TxUjK98AexOTfrRqJfpHBWJE91BMS4jBiO4hXj8jylXJA/SIj/DH2aIqfJGeizk3eN+qzETtjeGGiK5bVr4Rb23NwpajBQ2OB+jU6Bnu77z11Qeirz4APcP9oVZxyF9jlEoF5oyLw4vfHMW/9ubgoXFxDH5EbmK4IaJWqzHbsPiH4/hkz3kIASgUwKSBekwdGoPRcaGICvLhB3MrzBjeFYt/OIHThZXYc7YUSb26SF0SUYfCcENErXL4QgWeXH8QZ4uqAABTBkchZWJf9NEHSlxZxxfoo8GM4V3x2d4cfJGey3BD5CaGGyJyi9Vmx993nsXbW0/CahfQB+nwxj0JuKlPhNSleZXpCTH4bG8OtmUVwmqzsxuPyA0MN0TksuN5Bjz31SEculABALhjSBT+NmMIQv07xyrCnjSqRyiCfTUoq7bgQE45xvQMk7okog6DvwoQUYtMVhve+k8Wpi3bhUMXKhDoo8ab9yRg+f0jGGzaiVqlxK39IwEAaccLWjibiK7EcENEzTqQU4bfvLsL7/50Gla7wKSBeqSl3IK7R3bjYOF2ljxADwD44Ug+N9MkcgO7pYioUVUmK978z0n885dsCAGEB2ixaPpg3DEkiqHGQyb0j4C/VoWc0mrsP1fGrikiFzHcEFEDFpsd6/bn4p0fT6G40gQAuGtEV7w4dSC7oDzMT6vG1KHR+Dz9Ar7MyGW4IXIRww0RAQCqzVZ8mXEBH+3KxvmSagBAjy5+eGn6IEzoFylxdZ3X70bG4vP0C/j+UB7+esdABPtppC6JSPYYbog6ueziKqzdl4PP03NRXm0BAHTx1+JPt/XBfWO6Q6vm0DwpjY4LRT99ILIKjPj7zjPcTJPIBQw3RJ2Q1WbHj8cL8eme89h1uth5vEcXP/zhxp743chu8NPy7UEOFAoFnpnUF49+koF//nwOD90Qh8hAH6nLIpI1vnsRdRI2u8CBnDJsOZKP7w/nIa+iFkDdlgnj+0bg/sQeuLV/JFRKDhaWm4kD9UiIDcGvueX4Iv0C5k3oLXVJRLLGcEPkxcxWO3afLcGWo/n4z9EC5wBhAAjz12Lm6FjcP6Y7YsP8JKySWqJQKPBAYnf8mluOLzMu4I/je3HGGlEzGG6IvEyN2YYdJ4uw5Wg+fjxeAGOt1XlfoI8ayQP0mDxIj/H9IuGjUUlYKblj6pBovPTtUWQXV+FAThlG9uDMKaKmMNwQdXBmqx1HL1Ug43wZ9maX4r+nilBrsTvvDw/QYdIgPW4fFIWx8V04QLiD8tepMWVwNL46cAFvbz2FT/4whq03RE1guCHqYMqrzcg4X4aM82VIP1+GX3PLYbLaG5zTLdQXtw+Kwu2DozC8eyjH0XiJeRN64btDl7DrdDHW78/F78d0l7okIlmSRbhZvnw5Xn/9deTn5yMhIQHLli3DmDFjGj135cqVWLNmDY4cOQIAGDlyJF555ZUmzyfqiIQQqKix4FxJNTLOlyGvvAYFRhOO5xlwurDymvND/DQY2T0UI+NCcUvfCAyMDuJv9V4oPiIAz07qh79tOo63fzyJu0d2g4a7hRNdQ/Jws379eqSkpGDFihVITEzE0qVLMXnyZGRlZSEy8tqFw7Zv34777rsP48aNg4+PD5YsWYJJkybh6NGj6Nq1qwQ/AZFrai02CAFoVAqUVJlRaDCh0FiLQqPJ+XWR0YQCowlnCitRabI2+Vjx4f4Y2SMUo+JCMbJHGOLD/aFk60ynMGtcD/x95xkUGExIO16A2wdHS10SkewohMS7sSUmJmL06NF47733AAB2ux2xsbF44okn8Pzzz7d4vc1mQ2hoKN577z3MmjWrxfMNBgOCg4NRUVGBoKCg666fOi67XcBqF7DZBax2O6w2AZPVDrPVDpPVBpPVXn+zXXG87k+rzQ6VUoFaiw1VZhuqTFZUm22osdhQW/9njcWGGrMNtRYbjCYrzpdUw2YXUCgAV//XBftqMDouFD3D/aEP8kGPLv4Y0T0EXQJ07fuXQ7L22uYTeH/7GdzQuwv+9fBYqcsh8gh3Pr8lbbkxm83IyMhAamqq85hSqURycjJ2797t0mNUV1fDYrEgLKzxmQMmkwkm0+XprwaD4fqKJtmw2QXKqs0orTKjuNKEksq6r0sqTSiu/7PGYofNbkelyYbKWoszgFSbbTBfNU7FU4QAlIq6gb6RQTroA30QEahDZKAOEUE+iAjQIS7cD3Fd/DmbiRp1f2J3rNhxBj+fLsG+7FLuOUV0FUnDTXFxMWw2G/R6fYPjer0eJ06ccOkxnnvuOcTExCA5ObnR+xcvXoxFixZdd60kD7ml1c41WzJyymCzt23Do0qpgE6trL+poHV8rVFCq6o7ptMooVYqYLUL+GpU8NOqEaBTwVerhp9WBV+NCj6OPzVK+Grqvu4Z4Q8/rRomiw1dAnQc5Eut1i3UDzNHd8fafTlY9O+j+Hb+jfz3RHQFycfcXI9XX30V69atw/bt2+Hj0/hy5KmpqUhJSXF+bzAYEBsb66kSqQ0IUbey7j/+m43NR/MbdOkoFEConxZh/lp08dciPEBX93VA3fd+WjWUSiBAp0GATg1/naougGjV8FEroVbVBRWVUgG1UgG1JwZn+nLjQ7p+z07qi+8OXcLRSwZ8d+gSfjuMYw6JHCQNN+Hh4VCpVCgoKGhwvKCgAFFRUc1e+8Ybb+DVV1/Fjz/+iKFDhzZ5nk6ng07H8QkdUXm1GVuO5uOzvTn49UKF8/jY+DBMGRyNCf0iERPi45lAQiQzXQJ0ePSmeLy59STe33YG04bGcFA5UT1Jw41Wq8XIkSORlpaGGTNmAKgbUJyWlob58+c3ed1rr72Gv/3tb9iyZQtGjRrloWrJUy6V1+Dz9Fx8uPMsqs02AIBWrcSdw7ri/7uxJ/pFBUpcIZE8zEqKw993nkVWgRFbjuZjyhDOnCICZNAtlZKSgtmzZ2PUqFEYM2YMli5diqqqKsyZMwcAMGvWLHTt2hWLFy8GACxZsgQLFizAZ599hri4OOTn5wMAAgICEBAQINnPQdenxmzDhoMX8EX6BWTmljuP99MH4rfDYzBzVCxnCBFdJdhPg4fGxeG9baex8NujSOrVBSF+WqnLIpKc5OFm5syZKCoqwoIFC5Cfn49hw4Zh8+bNzkHGOTk5UCovdzt88MEHMJvN+N3vftfgcRYuXIiXXnrJk6XTdbDZBQ7mlGHrsQL8dKIQZ4oq4RgbrFAAo+PC8P/G9sC0odFcjI6oGfNv7Y0fjuThTFEVFnxzFO/eN1zqkogkJ/k6N57W3uvclFaZsf9cKWotdWujBPmonR/afloV/HV1M2r8tWr46er+9NWovLavXAiB8yXVOFdShVqLDWt2n4ex1opL5TUoqTI3OLdbqC8eGheH6cNiEBnY+ABxIrpWZm457v7gF9jsAsvvH4GpQ9k9Rd6nw6xz420ulFXjN8t2obza4va12iumHzumHvtr62b3+GhUddOQNXX3Oc7VXnn+VceuPketUkAIUbfGilIBjVJZN0NIpYACda0lgAIalQK+mrrrjbVWKBSAUqGAxWaHxWZHjdmOarMV1RYbTPUL1V0orUGInwbl1RbkG2phtQmcLDSioKIWxZVmmG2NrycT6KPGrf0jMXGgHqPjwhAZqGMrDVErDIsNwR/H98Kyn07j+Q2H0DPcHwNjuEgpdV4MN23EarPjyXWZKK+2IDrYB/ER/lArlTDWWqCu71artlhRZbq8mm2V2eqc1myuX/nWiKaX3O+otCol4sL9YLLakTxAj6T4LvDXqTEqLpT74hC1kSdu7YM9Z0uw/1wZZq3ai2/m34iuIb5Sl0UkCYabNvJ5+gVknC9DoE6Nzx9LQmyYX4vXCCFQa7GjymyF2Wp3dmWZ6r+uNteFoVqLDWabHSaLvcH2AFduB2CyXj7n8rmXtw2w1i/7D9SNd7HZBSw2AZvdDoHL2wFYbHXPbRd1rUkKAHYhoFEpoVEp6xetU8FXW9eipFMrERPii/JqC/y0KsR18QMUCvSJDEBsmB/CA7SIDPSBVs0QQ9SetGolPnpoNGb+fQ+O5xnwx38dwOePjYVOzVWuqfNhuGkjM0fHoshoQq9If5eCDQAoFAr41gcFORGibs8ltqoQdSxBPhp8+OBI/GbZLvyaW47/++44/nfGYKnLIvI4fnq1EZVSgSeT++A3Q2OkLuW6KRQKBhuiDio2zA9Lfz8MCgXwyZ7z+CI9V+qSiDyOn2BERF5mQr9IPHFrHwDAc18dwlcZFySuiMizGG6IiLzQU7f1wcxRsbAL4JkvfsWT6w4i43wpqkzeN2mB6Gpc54aIyEvZ7QJvbT2J5dtPN9hwNiJQh7gufggP0EGtUiLYV40QXy1C/DTwq1+CIq5L3XRydlGTXHCdGyIiglKpwLOT++HWAZH4+Jdz2HGyCOXVFhQZTSgymlq8PlCnxg29wzG+XwQm9I+EPoiLa1LHwJYbIqJOpLza7Fw13FBjgdkmUFFjQUW1GWXVFlSbbTDUWnCqwIiyKxYkVSqAiQP1eGhcT4yND+OCm+Rx7nx+M9wQEdE17HaBQxcrsCOrCNuyChtsaJvYMwz/N2Mw+ugDpSuQOh2Gm2Yw3BARue9UgRGrfzmHrw5cQK3FDrVSgYdvisefbusNPy1HOFD7Y7hpBsMNEVHrXSirxqJ/H8PWYwUAgK4hvnhp+iBMHKiXuDLydu58fnMYPBERuaxbqB9WzhqFf8waha4hvrhYXoNH1qTj4Y/TkVtaLXV5RAAYboiIqBWSB+qxNeVmzB3fC2qlAj8eL8DEt3dg+bbTqLXYpC6POjl2SxER0XU5VWDECxuPYG92KQAgOtgHKRP74q4R3aBSclYVtQ2OuWkGww0RUdsTQmBj5kW8vjkLlypqAQA9w/3x+C3xuHN4N2jV7Cig68Nw0wyGGyKi9lNrseHjX87hgx1nUF6/Tk50sA8evike942J5cwqajWGm2Yw3BARtb8qkxVr9+Xgw51nUVi/GnKonwZ3Du+GKUOiMDw2BGpu7UBuYLhpBsMNEZHnmKw2bDhwESt2nMH5ksuzqYJ9NRjfLwLJA/QY0zOMWztQixhumsFwQ0TkeVabHTtOFuHbXy9he1YRKmosDe4fEB2E6QkxGN8vAv2jArm9A12D4aYZDDdERNKy2uw4mFuOH48XYEdWEU4WGGG/4pMoMlCHm/pE4Oa+4bipTwTC/LXSFUuywXDTDIYbIiJ5Ka8249+H8vDT8QLsOVuKmqvWyRkQHYQbenXBuN5dkNAtBF0CdBJVSlJiuGkGww0RkXyZrDaknyvDjpNF2HmyCCfyjdecExGow4DoIAyICsSA6CD0jw5Er4gAaDhA2asx3DSD4YaIqOMoMpqw+2wJfjldjD1nS3CupPEtHjQqBXpHBqJPZAAiAnXoEqBFuH/9nwE6hAfqEB6ghU6t8vBPQG2F4aYZDDdERB1XlcmKrAIjjucZcCLPiBP5dX8aTVaXrg/yUSPQRwOtWgmtSgm1SgGbXcBPq0KgjwYalQIxIb6oMdvgr1Mj0EeNarMNSgWgVCqgUiigVimhViqgVSsRGaiDEIBdCPhp1dCplVAogCBfDXw1dUFKqVAg0EeNYD8NdGolNEollFy52W3ufH5zNSUiIuow/HVqjOgeihHdQ53HhBC4UFaDE/lGnC2qRGmVGcWVZpRUmVBSaUZxpQnFlSZYbAKGWisMta4FofaiUioQ6qdFmL8GABAeoEOfyAD01geib2QA+ugDEeqn4Yyx68CWGyIi8npCCBhqrCiqrEWlyQaLzQ6L1Q6zzQ6VUoHKWisqTVaYrHZcLK9BgE4NQ60F1SYb/LR1LTA2u4BNCNjsAhabgMliQ4GxFkqFAkqFArUWG2qtdkAIlNdYYLLYAQBWu4Cx1gKT1e5yvUoFEOavQ2yYL3qE+WFw12AM7x6KQTFB8NF0zq41dks1g+GGiIikUGuxwWyzo8ZsQ0mlGWXVZgBAXkUtThUYcaqwEqcKjcgtrWnyMRQKIDbUD70jA9AnMgA39glHUnyXTrHaM8NNMxhuiIhIzmotNpRXW1BcaUJOaTXOFlUiM7cCmbllKK40X3O+Tq3EoJgg3NQnAlHBPhgb3wU9w/0lqLx9Mdw0g+GGiIg6IiEESqrMOFVQidNFlTh6sQJbjuajrNpyzbkje4Ri6pBoDO8eggHR3tGVxXDTDIYbIiLyFja7QE5pNfacLUHG+TJcLKvB3uySBis+a1VKTBykx0Pj4jCqR2iHHajMcNMMhhsiIvJmhYZafJN5Cb+cKcavFypQWnW5K2tgdBD+39gemNA/AtHBvhJW6T6Gm2Yw3BARUWchhMCxPAM+2X0eXx+82GDG1tj4MCQP0KOvPhD9owMRGSjvndk7XLhZvnw5Xn/9deTn5yMhIQHLli3DmDFjmjz/iy++wIsvvohz586hT58+WLJkCe644w6XnovhhoiIOqPyajPW78/FpsN5OHyxokHXFVC3h1dCt2BEBfugW6gfenTxg1KhQL+oQKiVCmhUSqgkXHywQ4Wb9evXY9asWVixYgUSExOxdOlSfPHFF8jKykJkZOQ15//yyy+4+eabsXjxYvzmN7/BZ599hiVLluDAgQMYPHhwi8/HcENERJ3dpfIabDhwAUcuGnCy0Ijs4iq0lAa0KiW6d/FD1xBfqJQKxIf7IyrYBxqVEr4aFcL8tdColdAH6dAz3L/Nt7roUOEmMTERo0ePxnvvvQcAsNvtiI2NxRNPPIHnn3/+mvNnzpyJqqoqfPfdd85jY8eOxbBhw7BixYoWn4/hhoiIqKGSShP2nC1FVr4BRZVmnCmqRIGhFiaLHfmGWrcfLz7CHz89M75Na+ww2y+YzWZkZGQgNTXVeUypVCI5ORm7d+9u9Jrdu3cjJSWlwbHJkydj48aNjZ5vMplgMpmc3xsMhusvnIiIyIt0CdBh6tBoTB0afc195dVmKJUKVFRbkF1chfyKWljtAicLjCivNsNiE6g2W1FaZa5b4bmsBvHhARL8FJdJGm6Ki4ths9mg1+sbHNfr9Thx4kSj1+Tn5zd6fn5+fqPnL168GIsWLWqbgomIiDqZED8tACDIR4PYML8WzxdCoNpsa++ymuX16zWnpqaioqLCecvNzZW6JCIiIq+lUCjgr5N2X25Jnz08PBwqlQoFBQUNjhcUFCAqKqrRa6Kiotw6X6fTQafTtU3BREREJHuSttxotVqMHDkSaWlpzmN2ux1paWlISkpq9JqkpKQG5wPA1q1bmzyfiIiIOhdp240ApKSkYPbs2Rg1ahTGjBmDpUuXoqqqCnPmzAEAzJo1C127dsXixYsBAE8++SRuueUWvPnmm5g6dSrWrVuH9PR0fPjhh1L+GERERCQTkoebmTNnoqioCAsWLEB+fj6GDRuGzZs3OwcN5+TkQKm83MA0btw4fPbZZ3jhhRfwl7/8BX369MHGjRtdWuOGiIiIvJ/k69x4Gte5ISIi6njc+fz2+tlSRERE1Lkw3BAREZFXYbghIiIir8JwQ0RERF6F4YaIiIi8CsMNEREReRWGGyIiIvIqDDdERETkVSRfodjTHGsWGgwGiSshIiIiVzk+t11Ze7jThRuj0QgAiI2NlbgSIiIicpfRaERwcHCz53S67RfsdjsuXbqEwMBAKBSKNn1sg8GA2NhY5ObmcmsHmeFrI198beSLr418dcbXRggBo9GImJiYBntONqbTtdwolUp069atXZ8jKCio0/xj62j42sgXXxv54msjX53ttWmpxcaBA4qJiIjIqzDcEBERkVdhuGlDOp0OCxcuhE6nk7oUugpfG/niayNffG3ki69N8zrdgGIiIiLybmy5ISIiIq/CcENEREReheGGiIiIvArDDREREXkVhps2snz5csTFxcHHxweJiYnYt2+f1CV5nZdeegkKhaLBrX///s77a2trMW/ePHTp0gUBAQG4++67UVBQ0OAxcnJyMHXqVPj5+SEyMhL/8z//A6vV2uCc7du3Y8SIEdDpdOjduzdWr17tiR+vQ9m5cyemTZuGmJgYKBQKbNy4scH9QggsWLAA0dHR8PX1RXJyMk6dOtXgnNLSUjzwwAMICgpCSEgI/vCHP6CysrLBOYcOHcJNN90EHx8fxMbG4rXXXrumli+++AL9+/eHj48PhgwZgk2bNrX5z9uRtPTaPPTQQ9f8P7r99tsbnMPXpu0tXrwYo0ePRmBgICIjIzFjxgxkZWU1OMeT72Fe/5kl6LqtW7dOaLVasWrVKnH06FHxyCOPiJCQEFFQUCB1aV5l4cKFYtCgQSIvL895Kyoqct7/+OOPi9jYWJGWlibS09PF2LFjxbhx45z3W61WMXjwYJGcnCwOHjwoNm3aJMLDw0VqaqrznLNnzwo/Pz+RkpIijh07JpYtWyZUKpXYvHmzR39Wudu0aZP461//KjZs2CAAiK+//rrB/a+++qoIDg4WGzduFL/++quYPn266Nmzp6ipqXGec/vtt4uEhASxZ88e8d///lf07t1b3Hfffc77KyoqhF6vFw888IA4cuSIWLt2rfD19RV///vfnef8/PPPQqVSiddee00cO3ZMvPDCC0Kj0YjDhw+3+9+BXLX02syePVvcfvvtDf4flZaWNjiHr03bmzx5svjnP/8pjhw5IjIzM8Udd9whunfvLiorK53neOo9rDN8ZjHctIExY8aIefPmOb+32WwiJiZGLF68WMKqvM/ChQtFQkJCo/eVl5cLjUYjvvjiC+ex48ePCwBi9+7dQoi6N32lUiny8/Od53zwwQciKChImEwmIYQQf/7zn8WgQYMaPPbMmTPF5MmT2/in8R5Xf4Da7XYRFRUlXn/9deex8vJyodPpxNq1a4UQQhw7dkwAEPv373ee88MPPwiFQiEuXrwohBDi/fffF6Ghoc7XRgghnnvuOdGvXz/n9/fee6+YOnVqg3oSExPFY4891qY/Y0fVVLj57W9/2+Q1fG08o7CwUAAQO3bsEEJ49j2sM3xmsVvqOpnNZmRkZCA5Odl5TKlUIjk5Gbt375awMu906tQpxMTEID4+Hg888ABycnIAABkZGbBYLA1eh/79+6N79+7O12H37t0YMmQI9Hq985zJkyfDYDDg6NGjznOufAzHOXwtXZednY38/PwGf4/BwcFITExs8FqEhIRg1KhRznOSk5OhVCqxd+9e5zk333wztFqt85zJkycjKysLZWVlznP4erlv+/btiIyMRL9+/TB37lyUlJQ47+Nr4xkVFRUAgLCwMACeew/rLJ9ZDDfXqbi4GDabrcE/NgDQ6/XIz8+XqCrvlJiYiNWrV2Pz5s344IMPkJ2djZtuuglGoxH5+fnQarUICQlpcM2Vr0N+fn6jr5PjvubOMRgMqKmpaaefzLs4/i6b+z+Rn5+PyMjIBver1WqEhYW1yevF/3tNu/3227FmzRqkpaVhyZIl2LFjB6ZMmQKbzQaAr40n2O12PPXUU7jhhhswePBgAPDYe1hn+czqdLuCU8c1ZcoU59dDhw5FYmIievTogc8//xy+vr4SVkbUcfz+9793fj1kyBAMHToUvXr1wvbt23HbbbdJWFnnMW/ePBw5cgS7du2SuhSvxZab6xQeHg6VSnXNiPaCggJERUVJVFXnEBISgr59++L06dOIioqC2WxGeXl5g3OufB2ioqIafZ0c9zV3TlBQEAOUixx/l839n4iKikJhYWGD+61WK0pLS9vk9eL/PdfFx8cjPDwcp0+fBsDXpr3Nnz8f3333HbZt24Zu3bo5j3vqPayzfGYx3FwnrVaLkSNHIi0tzXnMbrcjLS0NSUlJElbm/SorK3HmzBlER0dj5MiR0Gg0DV6HrKws5OTkOF+HpKQkHD58uMEb99atWxEUFISBAwc6z7nyMRzn8LV0Xc+ePREVFdXg79FgMGDv3r0NXovy8nJkZGQ4z/npp59gt9uRmJjoPGfnzp2wWCzOc7Zu3Yp+/fohNDTUeQ5fr+tz4cIFlJSUIDo6GgBfm/YihMD8+fPx9ddf46effkLPnj0b3O+p97BO85kl9Yhmb7Bu3Tqh0+nE6tWrxbFjx8Sjjz4qQkJCGoxop+v3zDPPiO3bt4vs7Gzx888/i+TkZBEeHi4KCwuFEHXTKLt37y5++uknkZ6eLpKSkkRSUpLzesc0ykmTJonMzEyxefNmERER0eg0yv/5n/8Rx48fF8uXL+dU8EYYjUZx8OBBcfDgQQFAvPXWW+LgwYPi/PnzQoi6qeAhISHim2++EYcOHRK//e1vG50KPnz4cLF3716xa9cu0adPnwbTjcvLy4VerxcPPvigOHLkiFi3bp3w8/O7ZrqxWq0Wb7zxhjh+/LhYuHBhp55uLETzr43RaBTPPvus2L17t8jOzhY//vijGDFihOjTp4+ora11PgZfm7Y3d+5cERwcLLZv395gGn51dbXzHE+9h3WGzyyGmzaybNky0b17d6HVasWYMWPEnj17pC7J68ycOVNER0cLrVYrunbtKmbOnClOnz7tvL+mpkb88Y9/FKGhocLPz0/ceeedIi8vr8FjnDt3TkyZMkX4+vqK8PBw8cwzzwiLxdLgnG3btolhw4YJrVYr4uPjxT//+U9P/HgdyrZt2wSAa26zZ88WQtRNB3/xxReFXq8XOp1O3HbbbSIrK6vBY5SUlIj77rtPBAQEiKCgIDFnzhxhNBobnPPrr7+KG2+8Ueh0OtG1a1fx6quvXlPL559/Lvr27Su0Wq0YNGiQ+P7779vt5+4ImnttqqurxaRJk0RERITQaDSiR48e4pFHHrnmQ42vTdtr7DUB0OD9xZPvYd7+maUQQghPtxYRERERtReOuSEiIiKvwnBDREREXoXhhoiIiLwKww0RERF5FYYbIiIi8ioMN0RERORVGG6IiIjIqzDcEBERkVdhuCEiyT300EOYMWOGx5939erVUCgUUCgUeOqpp1y65qGHHnJes3Hjxnatj4haRy11AUTk3RQKRbP3L1y4EO+88w6kWiw9KCgIWVlZ8Pf3d+n8d955B6+++qpzo0kikh+GGyJqV3l5ec6v169fjwULFiArK8t5LCAgAAEBAVKUBqAufEVFRbl8fnBwMIKDg9uxIiK6XuyWIqJ2FRUV5bwFBwc7w4TjFhAQcE231Pjx4/HEE0/gqaeeQmhoKPR6PVauXImqqirMmTMHgYGB6N27N3744YcGz3XkyBFMmTIFAQEB0Ov1ePDBB1FcXOx2ze+//z769OkDHx8f6PV6/O53v7vevwYi8iCGGyKSpY8//hjh4eHYt28fnnjiCcydOxf33HMPxo0bhwMHDmDSpEl48MEHUV1dDQAoLy/HrbfeiuHDhyM9PR2bN29GQUEB7r33XreeNz09HX/605/w8ssvIysrC5s3b8bNN9/cHj8iEbUTdksRkSwlJCTghRdeAACkpqbi1VdfRXh4OB555BEAwIIFC/DBBx/g0KFDGDt2LN577z0MHz4cr7zyivMxVq1ahdjYWJw8eRJ9+/Z16XlzcnLg7++P3/zmNwgMDESPHj0wfPjwtv8BiajdsOWGiGRp6NChzq9VKhW6dOmCIUOGOI/p9XoAQGFhIQDg119/xbZt25xjeAICAtC/f38AwJkzZ1x+3okTJ6JHjx6Ij4/Hgw8+iH/961/O1iEi6hgYbohIljQaTYPvFQpFg2OOWVh2ux0AUFlZiWnTpiEzM7PB7dSpU251KwUGBuLAgQNYu3YtoqOjsWDBAiQkJKC8vPz6fygi8gh2SxGRVxgxYgS++uorxMXFQa2+vrc2tVqN5ORkJCcnY+HChQgJCcFPP/2Eu+66q42qJaL2xJYbIvIK8+bNQ2lpKe677z7s378fZ86cwZYtWzBnzhzYbDaXH+e7777Du+++i8zMTJw/fx5r1qyB3W5Hv3792rF6ImpLDDdE5BViYmLw888/w2azYdKkSRgyZAieeuophISEQKl0/a0uJCQEGzZswK233ooBAwZgxYoVWLt2LQYNGtSO1RNRW1IIqZYFJSKS2OrVq/HUU0+1ajyNQqHA119/Lcm2EUTUPLbcEFGnVlFRgYCAADz33HMunf/4449LuqIyEbWMLTdE1GkZjUYUFBQAqOuOCg8Pb/GawsJCGAwGAEB0dLTLe1IRkecw3BAREZFXYbcUEREReRWGGyIiIvIqDDdERETkVRhuiIiIyKsw3BAREZFXYbghIiIir8JwQ0RERF6F4YaIiIi8yv8PadglVjoY3a4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "param_GrSi.update(\n", + " {\"Negative SEI reaction exchange current density [A.m-2]\": 1.5e-07}\n", + ") # reset to original value\n", + "param_GrSi.update(\n", + " {\"Positive SEI reaction exchange current density [A.m-2]\": 6e-07}\n", + ") # 300% increase\n", + "sim5 = pybamm.Simulation(\n", + " model_with_degradation,\n", + " parameter_values=param_GrSi,\n", + " experiment=exp_degradation,\n", + " var_pts=var_pts,\n", + ")\n", + "sol5 = sim5.solve()\n", + "t = sol5[\"Time [s]\"].entries\n", + "V = sol5[\"Voltage [V]\"].entries\n", + "plt.figure()\n", + "plt.plot(t, V)\n", + "plt.xlabel(\"Time [s]\")\n", + "plt.ylabel(\"Voltage [V]\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "86c0c41f-0b12-46f6-922c-4ee318d7fa3a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAGwCAYAAABSN5pGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACRaUlEQVR4nOzdeXwTZf7A8U+SNknvQu9CoQUK5aiUQ0pRQVmwKCqoi1zKIQte4IGugqsUV7R4oAioqKsc/mRhQUUURLEgKiA3KgKVu0BvoPeRNJnfH2lD0wOa0pIe3/fuvJI888zMd9LKfPs8zzyjUhRFQQghhBBCWKkdHYAQQgghREMjCZIQQgghRAWSIAkhhBBCVCAJkhBCCCFEBZIgCSGEEEJUIAmSEEIIIUQFkiAJIYQQQlTg5OgAGiuz2UxycjIeHh6oVCpHhyOEEEKIGlAUhdzcXIKDg1Grq28nkgSplpKTkwkJCXF0GEIIIYSohTNnztC6detq10uCVEseHh6A5Qv29PR0cDRCCCGEqImcnBxCQkKs1/HqSIJUS2Xdap6enpIgCSGEEI3MlYbHyCBtIYQQQogKJEESQgghhKhAEiQhhBBCiApkDFI9M5lMGI1GR4chmiBnZ2c0Go2jwxBCiCZJEqR6oigKqampZGVlOToU0YR5e3sTGBgoc3EJIUQdkwSpnpQlR/7+/ri6usoFTNQpRVEoKCggPT0dgKCgIAdHJIQQTYskSPXAZDJZkyMfHx9HhyOaKBcXFwDS09Px9/eX7jYhhKhDMki7HpSNOXJ1dXVwJKKpK/sdk3FuQghRtyRBqkfSrSbqm/yOCSFE/ZAESQghhBCiAkmQhBBCCCEqkARJNDqhoaHMnz/f0WEIIYRowiRBElYTJkxApVIxd+5cm/K1a9c6ZKzL0qVL8fb2rlS+e/dupkyZUq/HPnnyJGPGjCE4OBi9Xk/r1q0ZNmwYR44csdZRqVRVLitXrgTgxx9/RKVSyVxYQghhJ8PZcxhTUlAUxWExODxBevfddwkNDUWv1xMdHc2uXbsuW3/16tVERESg1+uJjIxkw4YNNuu/+OILbr31Vnx8fFCpVBw4cKDK/ezYsYOBAwfi5uaGp6cn/fv3p7CwsK5Oq9HS6/W89tprXLx40dGhVMvPz69e7xA0Go0MHjyY7OxsvvjiCxITE1m1ahWRkZGVkp0lS5aQkpJiswwfPrzeYhNCiOYgc+ECjt0ykPMf/cdhMTg0QVq1ahXTp08nLi6Offv20b17d2JjY62T31W0fft2Ro8ezaRJk9i/fz/Dhw9n+PDhHDx40FonPz+fG2+8kddee63a4+7YsYMhQ4Zw6623smvXLnbv3s3UqVNRq+vn61AUhQJDiUMWe7PvQYMGERgYSHx8/GXr/fLLL9x00024uLgQEhLC448/Tn5+vnV9SkoKQ4cOxcXFhbCwMFasWFGpa+ytt94iMjISNzc3QkJCePTRR8nLywMsrS8TJ04kOzvb2jIze/ZswLaLbcyYMYwcOdImNqPRiK+vL8uXLwfAbDYTHx9PWFgYLi4udO/enTVr1lR7bn/++SfHjx/nvffeo2/fvrRt25YbbriBOXPm0LdvX5u6ZTNZl1/0ev1lvzshhBCXV3ziJADasFCHxeDQiSLfeustJk+ezMSJEwFYvHgx69ev55NPPmHGjBmV6r/zzjsMGTKEf/7znwC8/PLLbNq0iUWLFrF48WIAHnjgAQBOnTpV7XGfeuopHn/8cZtjdOrUqa5Oq5JCo4kus76rt/1fzqF/x+KqrfmPWaPR8OqrrzJmzBgef/xxWrduXanO8ePHGTJkCHPmzOGTTz4hIyODqVOnMnXqVJYsWQLAuHHjyMzM5Mcff8TZ2Znp06dXSnzVajULFiwgLCyMEydO8Oijj/Lss8/y3nvv0a9fP+bPn8+sWbNITEwEwN3dvVIsY8eOZcSIEeTl5VnXf/fddxQUFHD33XcDEB8fz//93/+xePFiwsPD+emnn7j//vvx8/NjwIABlfbp5+eHWq1mzZo1PPnkkzIBoxBCXEOKomA4cQIAXbt2DovDYS1IBoOBvXv3MmjQoEvBqNUMGjSIHTt2VLnNjh07bOoDxMbGVlu/Kunp6ezcuRN/f3/69etHQEAAAwYM4JdffrnsdsXFxeTk5NgsTdXdd99NVFQUcXFxVa6Pj49n7NixPPnkk4SHh9OvXz8WLFjA8uXLKSoq4siRI/zwww989NFHREdH07NnT/7zn/9U6sJ88sknueWWWwgNDWXgwIHMmTOH//3vfwBotVq8vLxQqVTWlpmqEqTY2Fjc3Nz48ssvrWUrVqzgrrvuwsPDg+LiYl599VU++eQTYmNjadeuHRMmTOD+++/ngw8+qPL8WrVqxYIFC5g1axYtWrRg4MCBvPzyy5wo/Q+2vNGjR+Pu7m6zJCUl1fi7FkIIYaskPR1zfj5oNGhDQhwWh8NakDIzMzGZTAQEBNiUBwQE2AyELS81NbXK+qmpqTU+btlFbvbs2bz55ptERUWxfPly/va3v3Hw4EHCw8Or3C4+Pp6XXnqpxscpz8VZw6F/x9Zq26vl4ly71o/XXnuNgQMH8swzz1Ra99tvv/H777/z2WefWcsURcFsNnPy5En++usvnJyc6Nmzp3V9hw4daNGihc1+fvjhB+Lj4zly5Ag5OTmUlJRQVFREQUFBjccYOTk5cd999/HZZ5/xwAMPkJ+fz1dffWUdKH3s2DEKCgoYPHiwzXYGg4EePXpUu9/HHnuMcePG8eOPP/Lrr7+yevVqXn31VdatW2ezr7fffrtS0h4cHFyj2IUQQlRW1nqkbdMGlVbrsDia3bPYzGYzAA899JC1a69Hjx4kJCTwySefVDv2ZubMmUyfPt36OScnh5AaZrYqlcqubq6GoH///sTGxjJz5kwmTJhgsy4vL4+HHnqIxx9/vNJ2bdq04a+//rri/k+dOsUdd9zBI488wiuvvELLli355ZdfmDRpEgaDwa5B2GPHjmXAgAGkp6ezadMmXFxcGDJkiDVWgPXr19OqVSub7XQ63WX36+HhwZ133smdd97JnDlziI2NZc6cOTYJUmBgIB06dKhxrEIIIS6v+HhpguTA7jVwYILk6+uLRqMhLS3NpjwtLY3AwMAqtwkMDLSrflXKnnrepUsXm/LOnTtftmtEp9Nd8YLa1MydO5eoqKhK47N69uzJoUOHqk0MOnXqRElJCfv376dXr16ApSWn/J1xe/fuxWw2M2/ePOvg+LLutTJarRaTyXTFOPv160dISAirVq3i22+/ZcSIETg7OwOWn7NOpyMpKanK8UY1pVKpiIiIYPv27bXehxBCiCtrCOOPwIFjkLRaLb169SIhIcFaZjabSUhIICYmpsptYmJibOoDbNq0qdr6VQkNDSU4ONg68LfMX3/9Rdu2be04g6YvMjKSsWPHsmDBApvy5557ju3btzN16lQOHDjA0aNH+eqrr5g6dSoAERERDBo0iClTprBr1y7279/PlClTcHFxsc6n1KFDB4xGIwsXLuTEiRN8+umn1oH2ZUJDQ8nLyyMhIYHMzEwKCgqqjXXMmDEsXryYTZs2MXbsWGu5h4cHzzzzDE899RTLli3j+PHj7Nu3j4ULF7Js2bIq93XgwAGGDRvGmjVrOHToEMeOHePjjz/mk08+YdiwYTZ1s7KySE1NtVnK380nhBDCPsUnGkYLEooDrVy5UtHpdMrSpUuVQ4cOKVOmTFG8vb2V1NRURVEU5YEHHlBmzJhhrb9t2zbFyclJefPNN5XDhw8rcXFxirOzs/LHH39Y65w/f17Zv3+/sn79egVQVq5cqezfv19JSUmx1nn77bcVT09PZfXq1crRo0eVF154QdHr9cqxY8dqHHt2drYCKNnZ2ZXWFRYWKocOHVIKCwtr87U4zPjx45Vhw4bZlJ08eVLRarVKxV+VXbt2KYMHD1bc3d0VNzc35brrrlNeeeUV6/rk5GTltttuU3Q6ndK2bVtlxYoVir+/v7J48WJrnbfeeksJCgpSXFxclNjYWGX58uUKoFy8eNFa5+GHH1Z8fHwUQImLi1MURVHatm2rvP322zbxHDp0SAGUtm3bKmaz2Wad2WxW5s+fr3Tq1ElxdnZW/Pz8lNjYWGXr1q1Vfg8ZGRnK448/rnTr1k1xd3dXPDw8lMjISOXNN99UTCaTtR5Q5RIfH68oiqJs2bKl0vnUtcb6uyaEENX566b+yqFOEUrBgQP1sv/LXb/Lc2iCpCiKsnDhQqVNmzaKVqtV+vTpo/z666/WdQMGDFDGjx9vU/9///uf0rFjR0Wr1Spdu3ZV1q9fb7N+yZIlVV60yi6uZeLj45XWrVsrrq6uSkxMjPLzzz/bFXdTTJDq05kzZxRA+eGHHxwdSpMiv2tCiKakJDdXOdQpQjnUKUIpycmpl2PUNEFSKYoD5/FuxHJycvDy8iI7OxtPT0+bdUVFRZw8eZKwsLBmO2ng5s2bycvLIzIykpSUFJ599lnOnTvHX3/9ZR0fJK6e/K4JIZqSwt9/59R9I3Hy8yP855/q5RiXu36X17hurRKNhtFo5Pnnn+fEiRN4eHjQr18/PvvsM0mOhBBCVKvBjD9CEiRRT2JjY4mNdczcT0IIIRonQ+kt/rr2jk+QHP6wWiGEEEIIgOKTpS1IYZIgCSGEEEIAYCh7SG27MAdHIgmSEEIIIRoApaQEw5kzAOhCQx0bDJIgCSGEEKIBMKamgtGISqvFqfSpF44kCZIQQgghHM5w6jQAzm1CUKkdn544PgLRLPz444+oVCqysrIuWy80NJT58+dfk5iEEEI0HIbTpwDQtg11aBxlJEESVhMmTEClUqFSqdBqtXTo0IF///vflJSUXPW++/XrR0pKCl5eXgAsXboUb2/vSvV2797NlClTrvp4l3Py5EnGjBlDcHAwer2e1q1bM2zYMI4cOWKtU/Y9VFxWrlwJ1DzhE0IIUTOG05YWJG0DeS6qzIMkbAwZMoQlS5ZQXFzMhg0beOyxx3B2dmbmzJlXtV+tVktgYOAV6/n5+V3Vca7EaDQyePBgOnXqxBdffEFQUBBnz57l22+/rZTsLFmyhCFDhtiUVZXUCSGEuHrG00kAaNu0cXAkFtKCJGzodDoCAwNp27YtjzzyCIMGDWLdunUAXLx4kXHjxtGiRQtcXV257bbbOHr0qHXb06dPc+edd9KiRQvc3Nzo2rUrGzZsAGxbXH788UcmTpxIdna2tWVm9uzZgG0X25gxYxg5cqRNfEajEV9fX5YvXw6A2WwmPj6esLAwXFxc6N69O2vWrKn2/P7880+OHz/Oe++9R9++fWnbti033HADc+bMoW/fvjZ1vb29CQwMtFnkcR5CCFE/rC1IodKC1HwoChgLHHNsZ1dQqWq9uYuLC+fPnwcsXXBHjx5l3bp1eHp68txzz3H77bdz6NAhnJ2deeyxxzAYDPz000+4ublx6NAh3N3dK+2zX79+zJ8/n1mzZpGYmAhQZb2xY8cyYsQI8vLyrOu/++47CgoKuPvuuwGIj4/n//7v/1i8eDHh4eH89NNP3H///fj5+TFgwIBK+/Tz80OtVrNmzRqefPJJNBpNrb8bIYQQdUMpKcFw9iwgXWzNi7EAXg12zLGfTwatm92bKYpCQkIC3333HdOmTbMmRtu2baNfv34AfPbZZ4SEhLB27VpGjBhBUlIS9957L5GRkQC0q+ZZOlqtFi8vL1Qq1WW73WJjY3Fzc+PLL7/kgQceAGDFihXcddddeHh4UFxczKuvvsoPP/xATEyM9Zi//PILH3zwQZUJUqtWrViwYAHPPvssL730Er179+aWW25h7NixleIdPXp0pQTq0KFDtGkgzb9CCNFUGJOToaQElU6HU0CAo8MBpItNVPDNN9/g7u6OXq/ntttuY+TIkcyePZvDhw/j5OREdHS0ta6Pjw+dOnXi8OHDADz++OPMmTOHG264gbi4OH7//ferisXJyYn77ruPzz77DID8/Hy++uorxo4dC8CxY8coKChg8ODBuLu7W5fly5dz/Pjxavf72GOPkZqaymeffUZMTAyrV6+ma9eubNq0yabe22+/zYEDB2yW4GAHJbpCCNGEWbvXGsgt/iAtSNeGs6ulJcdRx7bDLbfcwvvvv49WqyU4OBgnp5r/ivzjH/8gNjaW9evX8/333xMfH8+8efOYNm2avVFbjR07lgEDBpCens6mTZtwcXGxDpzOy8sDYP369bRq1cpmO51Od9n9enh4cOedd3LnnXcyZ84cYmNjmTNnDoMHD7bWCQwMpEOHDrWOXQghRM0YSgdoOzeQ7jWQBOnaUKlq1c3lCG5ublUmBZ07d6akpISdO3dau9jOnz9PYmIiXbp0sdYLCQnh4Ycf5uGHH2bmzJl89NFHVSZIWq0Wk8l0xXj69etHSEgIq1at4ttvv2XEiBE4OzsD0KVLF3Q6HUlJSVV2p9WUSqUiIiKC7du313ofQgghaq+h3eIPkiCJGgoPD2fYsGFMnjyZDz74AA8PD2bMmEGrVq0YNmwYAE8++SS33XYbHTt25OLFi2zZsoXOnTtXub/Q0FDy8vJISEige/fuuLq64upadWvXmDFjWLx4MX/99Rdbtmyxlnt4ePDMM8/w1FNPYTabufHGG8nOzmbbtm14enoyfvz4Svs6cOAAcXFxPPDAA3Tp0gWtVsvWrVv55JNPeO6552zqZmVlkZqaalPm4eGBm1vjSHaFEKKxuDRJZMNJkBpGR59oFJYsWUKvXr244447iImJQVEUNmzYYG3RMZlMPPbYY3Tu3JkhQ4bQsWNH3nvvvSr31a9fPx5++GFGjhyJn58fr7/+erXHHTt2LIcOHaJVq1bccMMNNutefvllXnzxReLj463HXb9+PWFhVT8JunXr1oSGhvLSSy8RHR1Nz549eeedd3jppZf417/+ZVN34sSJBAUF2SwLFy605ysTQghRA5dakEIdG0g5KkVRFEcH0Rjl5OTg5eVFdnY2np6eNuuKioo4efIkYWFhMm+OqFfyuyaEaOwUo5EjUT3AZKLDj1twrsGkwlfjctfv8qQFSQghhBAOY0xOBpMJlV6Pk7+/o8OxkgRJCCGEEA5z6Rb/Ng3mFn+QBEkIIYQQDmQ41fDuYANJkIQQQgjhQA3tGWxlJEESQgghhMMYkkoniWxgj3GSBEkIIYQQDtMQJ4kESZCEEEII4SCK0Yjx3DmgYc2BBJIgCSGEEMJBDGfPWm7xd3HByd/P0eHYkARJCCGEEA5hc4u/SuXgaGxJgiTEVZgwYQLDhw93dBhCCNEoGUsHaDe08UcgCZIoJyMjg0ceeYQ2bdqg0+kIDAwkNjaWbdu2WeuEhoaiUqkqLXPnzgXg1KlTqFQqDhw44KCzEEII0Vg01DmQAJwcHYBoOO69914MBgPLli2jXbt2pKWlkZCQwPnz523q/fvf/2by5Mk2ZR4eHtcy1KtmMBjQarWODkMIIZq1hjoHEjSQFqR3332X0NBQ9Ho90dHR7Nq167L1V69eTUREBHq9nsjISDZs2GCz/osvvuDWW2/Fx8fniq0ZiqJw2223oVKpWLt2bR2cTeOUlZXFzz//zGuvvcYtt9xC27Zt6dOnDzNnzuSuu+6yqevh4UFgYKDN4ubmVuNjXbx4kXHjxtGiRQtcXV257bbbOHr0qHX90qVL8fb25rvvvqNz5864u7szZMgQUlJSLrvfP//8kzvuuANPT088PDy46aabOH78OHCpK+yVV14hODiYTp06AfDpp5/Su3dv6zmNGTOG9PT0Gu+3ot27d+Pn58drr70GwG+//cYtt9yCh4cHnp6e9OrViz179tT4uxJCiKasod7iDw0gQVq1ahXTp08nLi6Offv20b17d2JjYytdpMps376d0aNHM2nSJPbv38/w4cMZPnw4Bw8etNbJz8/nxhtvtF6kLmf+/Pn1PjBMURQKjAUOWRRFqVGM7u7uuLu7s3btWoqLi+v1+5gwYQJ79uxh3bp17NixA0VRuP322zEajdY6BQUFvPnmm3z66af89NNPJCUl8cwzz1S7z3PnztG/f390Oh2bN29m7969PPjgg5SUlFjrJCQkkJiYyKZNm/jmm28AMBqNvPzyy/z222+sXbuWU6dOMWHCBLv2W2bz5s0MHjyYV155heeeew6AsWPH0rp1a3bv3s3evXuZMWMGzs7OV/sVCiFEo6cYDJYH1dLwJokEUCk1vYLWk+joaK6//noWLVoEgNlsJiQkhGnTpjFjxoxK9UeOHEl+fr71AgfQt29foqKiWLx4sU3dU6dOERYWxv79+4mKiqq0rwMHDnDHHXewZ88egoKC+PLLL2s84DYnJwcvLy+ys7Px9PS0WVdUVMTJkycJCwtDr9dTYCwgekV0jfZb13aO2Ymrs2uN6n7++edMnjyZwsJCevbsyYABAxg1ahTXXXedtU5oaCgpKSmVLvLffvstN9100xW/86NHj9KxY0e2bdtGv379ADh//jwhISEsW7aMESNGsHTpUiZOnMixY8do3749AO+99x7//ve/SU1NrTL2559/npUrV5KYmFhlAjJhwgQ2btxIUlLSZbvW9uzZw/XXX09ubi7u7u412m9WVhbjx49n3Lhx/Oc//2HkyJHW9Z6enixcuJDx48dXe8yrUfF3TQghGoviEyc5cfvtqF1d6bh3zzW7i+1y1+/yHNqCZDAY2Lt3L4MGDbKWqdVqBg0axI4dO6rcZseOHTb1AWJjY6utX52CggLGjBnDu+++S2Bg4BXrFxcXk5OTY7M0Nffeey/JycmsW7eOIUOG8OOPP9KzZ0+WLl1qU++f//wnBw4csFl69+5do2McPnwYJycnoqMvJYw+Pj506tSJw4cPW8tcXV2tyRFAUFBQta2KYEl2b7rppsu2zkRGRlZKjvbu3cudd95JmzZt8PDwYMCAAQAkld5ZUZP97ty5kxEjRvDpp5/aJEcA06dP5x//+AeDBg1i7ty51XbNCSFEc2M4fQoA57ZtG9wt/uDgQdqZmZmYTCYCAgJsygMCAjhy5EiV26SmplZZv7qWheo89dRT9OvXj2HDhtWofnx8PC+99JJdxyjj4uTCzjE7a7Xt1XJxcrGrvl6vZ/DgwQwePJgXX3yRf/zjH8TFxdl0O/n6+tKhQ4c6jtRWxYREpVJdtrvQxeXK51lxnFR+fj6xsbHExsby2Wef4efnR1JSErGxsRgMhhrvt3379vj4+PDJJ58wdOhQm9hnz57NmDFjWL9+Pd9++y1xcXGsXLmSu++++4r7FUKIpqwhjz+CBjAGyRHWrVvH5s2bmT9/fo23mTlzJtnZ2dblzJkzNd5WpVLh6uzqkOVqs/IuXbqQn59/Vfsor3PnzpSUlLBz56WE8fz58yQmJtKlS5da7/e6667j559/thnHdCVHjhzh/PnzzJ07l5tuuomIiIhKrVQ12a+vry+bN2/m2LFj3HfffZXqduzYkaeeeorvv/+ee+65hyVLlth3ckII0QSVnySyIXJoguTr64tGoyEtLc2mPC0trdpur8DAQLvqV2Xz5s0cP34cb29vnJyccHKyNKTde++93HzzzVVuo9Pp8PT0tFmakvPnzzNw4ED+7//+j99//52TJ0+yevVqXn/99UqtbLm5uaSmptosNe1yDA8PZ9iwYUyePJlffvmF3377jfvvv59WrVrVuDWvKlOnTiUnJ4dRo0axZ88ejh49yqeffkpiYmK127Rp0watVsvChQs5ceIE69at4+WXX67Vfv39/dm8eTNHjhxh9OjRlJSUUFhYyNSpU/nxxx85ffo027ZtY/fu3XTu3LnW5ymEEE2F8XTDnSQSHJwgabVaevXqRUJCgrXMbDaTkJBATExMldvExMTY1AfYtGlTtfWrMmPGDH7//XebMTQAb7/9drP9697d3Z3o6Gjefvtt+vfvT7du3XjxxReZPHmydQB9mVmzZhEUFGSzPPvsszU+1pIlS+jVqxd33HEHMTExKIrChg0bruruLh8fHzZv3kxeXh4DBgygV69efPTRR5fdp5+fH0uXLmX16tV06dKFuXPn8uabb9Z6v4GBgWzevJk//viDsWPHolarOX/+POPGjaNjx47cd9993HbbbbXuqhVCiKakIc+BBA3gLrZVq1Yxfvx4PvjgA/r06cP8+fP53//+x5EjRwgICGDcuHG0atWK+Ph4wHKb/4ABA5g7dy5Dhw5l5cqVvPrqq+zbt49u3boBcOHCBZKSkkhOTrbW6dSpk3XOnqqoVKp6u4tNiPoiv2tCiMbIbDCQGNUDzGbCf/kZJ1/fa3bsmt7F5vCZtEeOHElGRgazZs0iNTWVqKgoNm7caB2InZSUhFp9qaGrX79+rFixghdeeIHnn3+e8PBw1q5da02OwDLGaOLEidbPo0aNAiAuLo7Zs2dfmxMTQgghRJWMZ86A2YzazQ2Nj4+jw6mSw1uQGitpQRINgfyuCSEao9zNmzn76GPounSm3RdfXNNjN4p5kIQQQgjR/Bga+ABtkARJCCGEENdY2SSRkiAJIYQQQpS6NElkqGMDuQxJkIQQQghxTTX0WbRBEiQhhBBCXEPm4mJKUiyPB9O2bZizaIMkSEIIIYS4hoxnzoCioHZ3R9OypaPDqZYkSEIIIYS4Zsp3r13t80LrkyRIosZUKhVr1669bJ0JEyZccTby0NBQux4UfC3Nnj2bqKioBrMfIYRoagynGv74I5AESZRzpeQmJSWF2267DYBTp06hUqmsz7Gzx+7du5kyZUoto2x4qkocn3nmmUrPDBRCCHGpBcm5AY8/ggbwqBHReFT3HDt7+fn51cl+GjJ3d3fc3d0dHYYQQjQ4jeEONpAWJGGH8i0lYWFhAPTo0QOVSsXNN99sU/fNN98kKCgIHx8fHnvsMYxGo3Vd+S62qlqisrKyUKlU/PjjjwD8+OOPqFQqvvvuO3r06IGLiwsDBw4kPT2db7/9ls6dO+Pp6cmYMWMoKCioNv6lS5fi7e3N2rVrCQ8PR6/XExsby5kzZ6rdZvfu3QwePBhfX1+8vLwYMGAA+/btszkXgLvvvhuVSmX9XLGLrax17nLfS0pKCkOHDsXFxYWwsDBWrFjRoLsjhRCiNgxJDX8WbZAWpGtCURSUwkKHHFvl4lIvg+B27dpFnz59+OGHH+jatStarda6bsuWLQQFBbFlyxaOHTvGyJEjiYqKYvLkyVd1zNmzZ7No0SJcXV257777uO+++9DpdKxYsYK8vDzuvvtuFi5cyHPPPVftPgoKCnjllVdYvnw5Wq2WRx99lFGjRrFt27Yq6+fm5jJ+/HgWLlyIoijMmzeP22+/naNHj+Lh4cHu3bvx9/dnyZIlDBkyBI1GU+2xr/S9jBs3jszMTH788UecnZ2ZPn066enpV/WdCSFEQ2IuKqIkJQUAbekflA2VJEjXgFJYSGLPXg45dqd9e1G5utb5fsu6yXx8fCp1vbVo0YJFixah0WiIiIhg6NChJCQkXHWCNGfOHG644QYAJk2axMyZMzl+/Djt2rUD4O9//ztbtmy5bIJkNBpZtGgR0dHRACxbtozOnTtbE76KBg4caPP5ww8/xNvbm61bt3LHHXdYvwdvb+8rdkFe7ns5cuQIP/zwA7t376Z3794A/Oc//yE8PLyG344QQjR8Za1Hak9PNN7ejg3mCqSLTdS5rl272rSkBAUF1UlLyHXXXWd9HxAQgKurqzU5Kiu70nGcnJy4/vrrrZ8jIiLw9vbm8OHDVdZPS0tj8uTJhIeH4+XlhaenJ3l5eSSV/kduj8t9L4mJiTg5OdGzZ0/r+g4dOtCiRQu7jyOEEA2VdfxRmzYN+hZ/qGEL0j333GP3jhcvXoy/v7/d2zVFKhcXOu3b67BjX2vOzs62MahUmM3mKuuq1ZYcXVEUa1n5cTnV7VelUtl1nNoaP34858+f55133qFt27bodDpiYmIwGAx27+taxCuEEA2ZsZGMP4IaJkhr167lvvvuw6WGF9uyMSGSIFmoVKp66eZypLIxRyaT6ar2U9ZFlZKSQo8ePQBqNXVATZWUlLBnzx5rd1piYiJZWVl07ty5yvrbtm3jvffe4/bbbwfgzJkzZGZm2tRxdna+6u+hU6dOlJSUsH//fnr1snTHHjt2jIsXL17VfoUQoiFpLHMggR1jkBYsWFDjhGfNmjW1Dkg4VnZ2dqUExcfHh5CQEJsyf39/XFxc2LhxI61bt0av1+Pl5WX38VxcXOjbty9z584lLCyM9PR0Xnjhhas5hctydnZm2rRpLFiwACcnJ6ZOnUrfvn2rHH8EEB4ezqeffkrv3r3Jycnhn//8Z6U/FEJDQ0lISOCGG25Ap9PVqlssIiKCQYMGMWXKFN5//32cnZ15+umncamnQfZCCOEI1i620IafINVoDNKWLVtoacfzUr799ltatWpV66CE4/z444/06NHDZnnppZcq1XNycmLBggV88MEHBAcHM2zYsFof85NPPqGkpIRevXrx5JNPMmfOnKs5hctydXXlueeeY8yYMdxwww24u7uzatWqaut//PHHXLx4kZ49e/LAAw/w+OOPV/pDYd68eWzatImQkBBrK1htLF++nICAAPr378/dd9/N5MmT8fDwQK/X13qfQgjRkDSWOZAAVEr5wR+ixnJycvDy8iI7OxtPT0+bdUVFRZw8eZKwsDC5uDUgS5cu5cknnyQrK8vRodTI2bNnCQkJ4YcffuBvf/tblXXkd00I0ViYCwtJ7GG5ESV8x3acHHQTyuWu3+XV6jZ/s9nMsWPHSE9PrzTItH///rXZpRDN3ubNm8nLyyMyMpKUlBSeffZZQkND5b8pIUSTYEiyTMqr9vJyWHJkD7sTpF9//ZUxY8Zw+vRpKjY+qVSqqx6sKkRzZTQaef755zlx4gQeHh7069ePzz77rNLdb0II0RgZTp8CGkf3GtQiQXr44Yfp3bs369evJygoSAaQikZjwoQJTJgwwdFhVCs2NpbY2FhHhyGEEPWiMY0/glokSEePHmXNmjV06NChPuIRQgghRBNkLO1i01a4K7qhsnsm7ejoaI4dO1YfsTQ5Mv5d1Df5HRNCNBbGc2cBcG7TOBKkGrUg/f7779b306ZN4+mnnyY1NZXIyMhK4yPKPw6iuSr7TgoKCmo8uaYQtVFQUABUnqVbCCEaGsMZS4LUWFqQapQgRUVFoVKpbP5affDBB63vy9bJIG0LjUaDt7e39Tlbrq6uMlZL1ClFUSgoKCA9PR1vb2+bZ7wJIURDo5SUYExOBsC5dRNKkE6ePFnfcTQ5ZU92r4uHtApRHW9vb+vvmhBCNFTG1FQwmVBptTj5+To6nBqpUYLUtpGMOG9IVCoVQUFB+Pv7V/vwVSGuhrOzs7QcCSEaBeMZywBt59atUantHv7sELWaKLIqKSkpGI1G2rRpU1e7bBI0Go1cxIQQQjRrhrIEKaS1gyOpuTpL4wYOHEhYWFhd7U4IIYQQTYSxbIB2Ixl/BHXYgrR8+XLrHTVCCCGEEGUMZ5txC9L111+Pj49PrbZ99913CQ0NRa/XEx0dza5duy5bf/Xq1URERKDX64mMjGTDhg0267/44gtuvfVWfHx8UKlUHDhwwGb9hQsXmDZtGp06dcLFxYU2bdrw+OOPk52dXav4hRBCCFE9YyO7xR/qIEHKzc3lww8/pE+fPnTv3t3u7VetWsX06dOJi4tj3759dO/endjY2Grv/tq+fTujR49m0qRJ7N+/n+HDhzN8+HAOHjxorZOfn8+NN97Ia6+9VuU+kpOTSU5O5s033+TgwYMsXbqUjRs3MmnSJLvjF0IIIcTlXRqk3XgSJJVSy6l4f/rpJz7++GM+//xzgoODueeee7j33nu5/vrr7dpPdHQ0119/PYsWLQLAbDYTEhLCtGnTmDFjRqX6I0eOJD8/n2+++cZa1rdvX6Kioli8eLFN3VOnThEWFsb+/fuJioq6bByrV6/m/vvvJz8/Hyenyj2PxcXFFBcXWz/n5OQQEhJCdnY2np6e9pyyEEII0WyYcnL4q080AJ327kHt5ubQeHJycvDy8rri9duuFqTU1FTmzp1LeHg4I0aMwNPTk+LiYtauXcvcuXPtTo4MBgN79+5l0KBBlwJSqxk0aBA7duyocpsdO3bY1AfLQz6rq19TZV9UVckRQHx8PF5eXtYlpBE1EwohhBCOYjxr6V7T+Pg4PDmyR40TpDvvvJNOnTrx+++/M3/+fJKTk1m4cOFVHTwzMxOTyURAQIBNeUBAAKmpqVVuk5qaalf9msbx8ssvM2XKlGrrzJw5k+zsbOtyprS5UAghhBDVsz5ipHXjGaANdtzF9u233/L444/zyCOPEB4eXp8xXVM5OTkMHTqULl26MHv27Grr6XQ6dDrdtQtMCCGEaAKM1jvYGlfPS41bkH755Rdyc3Pp1asX0dHRLFq0iMzMzKs6uK+vLxqNhrS0NJvytLS0ah+fEBgYaFf9y8nNzWXIkCF4eHjw5ZdfygM/hRBCiDrWGCeJBDsSpL59+/LRRx+RkpLCQw89xMqVKwkODsZsNrNp0yZyc3PtPrhWq6VXr14kJCRYy8xmMwkJCcTExFS5TUxMjE19gE2bNlVbvzo5OTnceuutaLVa1q1bh16vtzt+IYQQQlye8ew5oPF1sdl9m7+bmxsPPvggv/zyC3/88QdPP/00c+fOxd/fn7vuusvuAKZPn85HH33EsmXLOHz4MI888gj5+flMnDgRgHHjxjFz5kxr/SeeeIKNGzcyb948jhw5wuzZs9mzZw9Tp0611rlw4QIHDhzg0KFDACQmJnLgwAHrOKWy5Cg/P5+PP/6YnJwcUlNTSU1NxWQy2X0OQgghhKhaY7zFHwClDpSUlChffvmlcuedd9Zq+4ULFypt2rRRtFqt0qdPH+XXX3+1rhswYIAyfvx4m/r/+9//lI4dOyparVbp2rWrsn79epv1S5YsUYBKS1xcnKIoirJly5Yq1wPKyZMnaxRzdna2AijZ2dm1OmchhBCiqTOXlCiHukUqhzpFKIazZx0djqIoNb9+13oepOaupvMoCCGEEM2VMSWFY7cMBGdnIg7sR9UAHt5ep/Mg3XPPPeTk5NT44GPHjq12JmwhhBBCNA9lcyA5BwU1iOTIHjW6zf+rr74iIyOjRjtUFIWvv/6al19+GX9//6sKTgghhBCNl6F0gLZzq2AHR2K/GiVIiqLQsWPH+o5FCCGEEE2I8VzjvIMNapggbdmyxe4dt2rVyu5thBBCCNF0WLvYGmFOUKMEacCAAfUdhxBCCCGamLIWJOdWja8Fye55kIQQQgghasJwrrQFqXXja0GSBEkIIYQQdU4xGilJtTwarDF2sUmCJIQQQog6Z0xNBbMZlU6Hk5+fo8OxmyRIQgghhKhz5Qdoq1QqB0djP7sTpLi4OE6fPl0fsQghhBCiiTA04jvYoBYJ0ldffUX79u3529/+xooVKyguLq6PuIQQQgjRiFnvYGuEA7ShFgnSgQMH2L17N127duWJJ54gMDCQRx55hN27d9dHfEIIIYRohIyls2hrm0sLEkCPHj1YsGABycnJfPzxx5w9e5YbbriB6667jnfeeYfs7Oy6jlMIIYQQjcilFqTGNwcSXOUgbUVRMBqNGAwGFEWhRYsWLFq0iJCQEFatWlVXMQohhBCikbk0SLsZJUh79+5l6tSpBAUF8dRTT9GjRw8OHz7M1q1bOXr0KK+88gqPP/54XccqhBBCiEbAXFRESelD7pvNGKTIyEj69u3LyZMn+fjjjzlz5gxz586lQ4cO1jqjR48mo/SLEUIIIUTzYkxOAUDt6orG29uxwdRSjZ7FVt59993Hgw8+eNmH0fr6+mI2m68qMCGEEEI0TkbrI0ZaN8o5kMDOFiSj0cjSpUvJycmpr3iEEEII0cgZG/kcSGBnguTs7ExRUVF9xSKEEEKIJqCx38EGtRiD9Nhjj/Haa69RUlJSH/EIIYQQopEzlM6B5Nwq2MGR1J7dY5B2795NQkIC33//PZGRkbi5udms/+KLL+osOCGEEEI0PmUtSNpG3IJkd4Lk7e3NvffeWx+xCCGEEKIJsI5Bak4J0pIlS+ojDiGEEEI0Aeb8fEwXLwKNe5C23QlSmYyMDBITEwHo1KkTfn5+dRaUEEIIIRonQ2n3mtrLC42Hh4OjqT27B2nn5+fz4IMPEhQURP/+/enfvz/BwcFMmjSJgoKC+ohRCCGEEI1EY39IbRm7E6Tp06ezdetWvv76a7KyssjKyuKrr75i69atPP300/URoxBCCCEaiaYwBxLUoovt888/Z82aNdx8883Wsttvvx0XFxfuu+8+3n///bqMTwghhBCNSFOYAwlq0YJUUFBAQEBApXJ/f3/pYhNCCCGaOcO5ptGCZHeCFBMTQ1xcnM2M2oWFhbz00kvExMTUaXBCCCGEaFyM55IBcG7duBMku7vY5s+fz5AhQ2jdujXdu3cH4LfffkOv1/Pdd9/VeYBCCCGEaDzKxiA15kkioRYtSJGRkRw9epT4+HiioqKIiopi7ty5HD16lK5du9YqiHfffZfQ0FD0ej3R0dHs2rXrsvVXr15NREQEer2eyMhINmzYYLP+iy++4NZbb8XHxweVSsWBAwcq7aOoqIjHHnsMHx8f3N3duffee0lLS6tV/EIIIYQAU3Y25txcAJyDG+9jRqAWCdJPP/2EVqtl8uTJzJs3j3nz5vGPf/wDZ2dnfvrpJ7sDWLVqFdOnTycuLo59+/bRvXt3YmNjSU9Pr7L+9u3bGT16NJMmTWL//v0MHz6c4cOHc/DgQWud/Px8brzxRl577bVqj/vUU0/x9ddfs3r1arZu3UpycjL33HOP3fELIYQQwqJsgLbGxwe1q6uDo7k6KkVRFHs20Gg0pKSk4O/vb1N+/vx5/P39MZlMdgUQHR3N9ddfz6JFiwAwm82EhIQwbdo0ZsyYUan+yJEjyc/P55tvvrGW9e3bl6ioKBYvXmxT99SpU4SFhbF//36ioqKs5dnZ2fj5+bFixQr+/ve/A3DkyBE6d+7Mjh076Nu37xXjzsnJwcvLi+zsbDw9Pe06ZyGEEKIpyvn+e849/gT67tcRtmqVo8OpUk2v33a3ICmKgkqlqlR+/vz5Sg+uvRKDwcDevXsZNGjQpYDUagYNGsSOHTuq3GbHjh029QFiY2OrrV+VvXv3YjQabfYTERFBmzZtqt1PcXExOTk5NosQQgghLmkqk0SCHYO0y7qfVCoVEyZMQKfTWdeZTCZ+//13+vXrZ9fBMzMzMZlMlaYNCAgI4MiRI1Vuk5qaWmX91NTUGh83NTUVrVaLt7d3jfcTHx/PSy+9VONjCCGEEM2NdQ6kVo17gDbYkSB5eXkBlhYkDw8PXFxcrOu0Wi19+/Zl8uTJdR9hAzFz5kymT59u/ZyTk0NISIgDIxJCCCEalqYyizbYkSAtWbIEgNDQUJ555hm7u9Oq4uvri0ajqXT3WFpaGoGBgVVuExgYaFf96vZhMBjIysqyaUW63H50Op1Nq5kQQgghbFkniWzkt/hDLcYgxcXF1UlyBJaWp169epGQkGAtM5vNJCQkVDvpZExMjE19gE2bNtk1SWWvXr1wdna22U9iYiJJSUky2aUQQghRC4qiXJokslXjvsUfajFRZFpaGs888wwJCQmkp6dT8SY4e+9imz59OuPHj6d379706dOH+fPnk5+fz8SJEwEYN24crVq1Ij4+HoAnnniCAQMGMG/ePIYOHcrKlSvZs2cPH374oXWfFy5cICkpieRkyw8qMTERsLQcBQYG4uXlxaRJk5g+fTotW7bE09OTadOmERMTU6M72IQQQghhy3T+PEphIahUzWuQdpkJEyaQlJTEiy++SFBQUJV3tNlj5MiRZGRkMGvWLFJTU4mKimLjxo3WgdhJSUmo1Zcauvr168eKFSt44YUXeP755wkPD2ft2rV069bNWmfdunXWBAtg1KhRgKX1a/bs2QC8/fbbqNVq7r33XoqLi4mNjeW99967qnMRQgghmivDmTMAOAUFotJqHRzN1bN7HiQPDw9+/vlnm3mFmiOZB0kIIYS4JPvrr0n+57O49ulD2+XLHB1OteptHqSQkJBK3WpCCCGEaN4MSUkAOIc0/gHaUIsEaf78+cyYMYNTp07VQzhCCCGEaIyMZ0ofUttEpsCxewzSyJEjKSgooH379ri6uuLs7Gyz/sKFC3UWnBBCCCEaB8NZyxgk59bNNEGaP39+PYQhhBBCiMbsUgtS0+hisztBGj9+fH3EIYQQQohGylxcTEnpJM7OTaSLze4xSADHjx/nhRdeYPTo0aSnpwPw7bff8ueff9ZpcEIIIYRo+MqewaZ2c0PTooWDo6kbdidIW7duJTIykp07d/LFF1+Ql5cHwG+//UZcXFydByiEEEKIhs1YOgeSc0jIVc+P2FDYnSDNmDGDOXPmsGnTJrTlJoIaOHAgv/76a50GJ4QQQoiGz9DExh9BLRKkP/74g7vvvrtSub+/P5mZmXUSlBBCCCEaD2sLUhO5gw1qkSB5e3uTkpJSqXz//v20agLPXhFCCCGEfQxnLS1ITWWSSKhFgjRq1Ciee+45UlNTUalUmM1mtm3bxjPPPMO4cePqI0YhhBBCNGDG0lm0m8okkVCLBOnVV18lIiKCkJAQ8vLy6NKlC/3796dfv3688MIL9RGjEEIIIRooRVEutSC1bjotSHY/rLZMUlISBw8eJC8vjx49ehAeHl7XsTVo8rBaIYQQAkoyMzl6402gUtHptwOoy93A1RDV9Ppt90SRv/zyCzfeeCNt2rShTZs2VxWkEEIIIRo3Q+kAbafAwAafHNnD7i62gQMHEhYWxvPPP8+hQ4fqIyYhhBBCNBLG0u41bRPqXoNaJEjJyck8/fTTbN26lW7duhEVFcUbb7zB2dIvSAghhBDNh6F0gHZTecRIGbsTJF9fX6ZOncq2bds4fvw4I0aMYNmyZYSGhjJw4MD6iFEIIYQQDZT1Dra2bR0cSd2q1bPYyoSFhTFjxgzmzp1LZGQkW7durau4hBBCCNEIGE6XJUhNa1xyrROkbdu28eijjxIUFMSYMWPo1q0b69evr8vYhBBCCNHAlXWxaZvYjVt238U2c+ZMVq5cSXJyMoMHD+add95h2LBhuLq61kd8QgghhGigTLm5mC5cAMC5uSdIP/30E//85z+577778PX1rY+YhBBCCNEIlLUeaXx80Li7OziaumV3grRt27b6iEMIIYQQjYyxiXavQS0SJICjR4+yZcsW0tPTMZvNNutmzZpVJ4EJIYQQomGzDtCWBAk++ugjHnnkEXx9fQkMDESlUlnXqVQqSZCEEEKIZsI6B1ITu4MNapEgzZkzh1deeYXnnnuuPuIRQgghRCNhSDoNgDak6SVIdt/mf/HiRUaMGFEfsQghhBCiETE20TmQoBYJ0ogRI/j+++/rIxYhhBBCNBLmggJKMjIAGYMEQIcOHXjxxRf59ddfiYyMxNnZ2Wb9448/XmfBCSGEEKJhMpw5A4DaywuNt7djg6kHdidIH374Ie7u7mzdurXSo0VUKpUkSEIIIUQzYDhdOv6oCbYeQS0SpJMnT9ZHHEIIIYRoRJryHEhwlQ+rFUIIIUTzZEiydLE1xQHaUMMEafr06eTn51vfX26pjXfffZfQ0FD0ej3R0dHs2rXrsvVXr15NREQEer2eyMhINmzYYLNeURRmzZpFUFAQLi4uDBo0iKNHj9rU+euvvxg2bBi+vr54enpy4403smXLllrFL4QQQjQ31jmQmnML0v79+zEajdb31S0HDhywO4BVq1Yxffp04uLi2LdvH927dyc2Npb09PQq62/fvp3Ro0czadIk9u/fz/Dhwxk+fDgHDx601nn99ddZsGABixcvZufOnbi5uREbG0tRUZG1zh133EFJSQmbN29m7969dO/enTvuuIPU1FS7z0EIIYRobpr6GCSVoiiKIwOIjo7m+uuvZ9GiRQCYzWZCQkKYNm0aM2bMqFR/5MiR5Ofn880331jL+vbtS1RUFIsXL0ZRFIKDg3n66ad55plnAMjOziYgIIClS5cyatQoMjMz8fPz46effuKmm24CIDc3F09PTzZt2sSgQYMqHbe4uJji4mLr55ycHEJCQsjOzsbT07NOvxMhhBCiITPl5fNX794AhO/YjlOLFg6OqOZycnLw8vK64vXboWOQDAYDe/futUlI1Go1gwYNYseOHVVus2PHjkoJTGxsrLX+yZMnSU1Ntanj5eVFdHS0tY6Pjw+dOnVi+fLl5OfnU1JSwgcffIC/vz+9evWq8rjx8fF4eXlZl5CQkKs6dyGEEKKxMpw8AYDG17dRJUf2cGiClJmZiclkIiAgwKY8ICCg2q6u1NTUy9Yve71cHZVKxQ8//MD+/fvx8PBAr9fz1ltvsXHjRlpU84OeOXMm2dnZ1uVM6fwPQgghRHNTfOw4ALp27RwcSf2x+zb/pkBRFB577DH8/f35+eefcXFx4T//+Q933nknu3fvJigoqNI2Op0OnU7ngGiFEEKIhsVwojRB6tDewZHUH4e2IPn6+qLRaEhLS7MpT0tLIzAwsMptAgMDL1u/7PVydTZv3sw333zDypUrueGGG+jZsyfvvfceLi4uLFu2rE7OTQghhGiqylqQtO0lQaoXWq2WXr16kZCQYC0zm80kJCQQExNT5TYxMTE29QE2bdpkrR8WFkZgYKBNnZycHHbu3GmtU1BQAFjGO5WnVqsxm81Xf2JCCCFEE1Z8vLQFqX0HB0dSf2rVxZacnMwvv/xCenp6pYTC3keNTJ8+nfHjx9O7d2/69OnD/Pnzyc/PZ+LEiQCMGzeOVq1aER8fD8ATTzzBgAEDmDdvHkOHDmXlypXs2bOHDz/8ELCML3ryySeZM2cO4eHhhIWF8eKLLxIcHMzw4cMBS5LVokULxo8fz6xZs3BxceGjjz7i5MmTDB06tDZfiRBCCNEsmIuKMJaOw23KXWx2J0hLly7loYceQqvV4uPjg0qlsq6rzbPYRo4cSUZGBrNmzSI1NZWoqCg2btxoHWSdlJRk09LTr18/VqxYwQsvvMDzzz9PeHg4a9eupVu3btY6zz77LPn5+UyZMoWsrCxuvPFGNm7ciF6vByxdexs3buRf//oXAwcOxGg00rVrV7766iu6d+9u71cihBBCNBuGU6dAUdB4eaHx8XF0OPXG7nmQQkJCePjhh5k5c2alLqrmpKbzKAghhBBNSfY360l+5hlcevYkdMVnjg7HbvU2D1JBQQGjRo1q1smREEII0VwVHz8GgK4JD9CGWiRIkyZNYvXq1fURixBCCCEaOMOxpn+LP9RiDFJ8fDx33HEHGzduJDIyEmdnZ5v1b731Vp0FJ4QQQoiGpewONm0TvoMNapkgfffdd3Tq1Amg0iBtIYQQQjRNisGAISkJkBakSubNm8cnn3zChAkT6iEcIYQQQjRUhqQkKClB7eaGU4VHejU1do9B0ul03HDDDfURixBCCCEasPIzaDf1XiO7E6QnnniChQsX1kcsQgghhGjAio4cBkDXMdzBkdQ/u7vYdu3aZX2WWdeuXSsN0v7iiy/qLDghhBBCNBxFhw4BoO/SxcGR1D+7EyRvb2/uueee+ohFCCGEEA1Y0WFLC5KLJEiVLVmypD7iEEIIIUQDZkxPx5SRCWo1utI72ZsymQ5bCCGEEFdU1r2mbReG2sXFwdHUP7tbkMLCwi47cv3EiRNXFZAQQgghGp7i0u41feem370GtUiQnnzySZvPRqOR/fv3s3HjRv75z3/WVVxCCCGEaEAKf/sdAH1XSZCq9MQTT1RZ/u6777Jnz56rDkgIIYQQDYtiNlO4fz8Arj17Ojiaa6POxiDddtttfP7553W1OyGEEEI0EIaTJzFlZ6PS69F37uzocK6JOkuQ1qxZQ8uWLetqd0IIIYRoIAr27gXAJTISVYX5D5squ7vYevToYTNIW1EUUlNTycjI4L333qvT4IQQQgjheIX7LN1rLr2aR/ca1CJBGj58uM1ntVqNn58fN998MxEREXUVlxBCCCEaiIJ9+4DmM/4IapEgxcXF1UccQgghhGiAjCkpGJOSQKPBRRIkWzk5OXh6elrfX05ZPSGEEEI0fvk7dwKg79oVjbu7g6O5dmqUILVo0YKUlBT8/f3x9vaucqJIRVFQqVSYTKY6D1IIIYQQjlGwcxcAbtF9HBzJtVWjBGnz5s3WO9S2bNlSrwEJIYQQouEo2GVJkFz7RDs4kmurRgnSgAEDqnwvhBBCiKbLcOYMxnPnwMkJ1549HB3ONWX3IG2ArKwsdu3aRXp6Omaz2WbduHHj6iQwIYQQQjhW3s8/A+DaowdqNzcHR3Nt2Z0gff3114wdO5a8vDw8PT1txiOpVCpJkIQQQogmIv/nXwBwu+kmB0dy7dk9k/bTTz/Ngw8+SF5eHllZWVy8eNG6XLhwoT5iFEIIIcQ1ZjYYrHewud90o4OjufbsTpDOnTvH448/jqura33EI4QQQogGoHDfPpSCAjR+vuia4UTQdidIsbGx7Nmzpz5iEUIIIUQDUTb+yP2GG6uc3qepq9EYpHXr1lnfDx06lH/+858cOnSIyMhInCs8tO6uu+6q2wiFEEIIcc1dGn/U/LrXAFSKoihXqqRW16yhqTlNFJmTk4OXlxfZ2dkye7gQQogmxZiWxrEBN4NKRfj2bTi1aOHokOpMTa/fNcp8zGZzjZbaJkfvvvsuoaGh6PV6oqOj2VU6KVV1Vq9eTUREBHq9nsjISDZs2GCzXlEUZs2aRVBQEC4uLgwaNIijR49W2s/69euJjo7GxcWFFi1aVHoQrxBCCNEc5f9iaT3SXxfZpJIje9g9Bmn58uUUFxdXKjcYDCxfvtzuAFatWsX06dOJi4tj3759dO/endjYWNLT06usv337dkaPHs2kSZPYv38/w4cPZ/jw4Rw8eNBa5/XXX2fBggUsXryYnTt34ubmRmxsLEVFRdY6n3/+OQ888AATJ07kt99+Y9u2bYwZM8bu+IUQQoimJvf7TQC439TfwZE4To262MrTaDTW57KVd/78efz9/e1uRYqOjub6669n0aJFgKW1KiQkhGnTpjFjxoxK9UeOHEl+fj7ffPONtaxv375ERUWxePFiFEUhODiYp59+mmeeeQaA7OxsAgICWLp0KaNGjaKkpITQ0FBeeuklJk2aZFe8ZaSLTQghRFNUcvEiR2/qDyUltNuwHl27do4OqU7VaRdbeWUPpa3o7NmzeHl52bUvg8HA3r17GTRo0KWA1GoGDRrEjh07qtxmx44dNvXBcmddWf2TJ0+SmppqU8fLy4vo6GhrnX379nHu3DnUajU9evQgKCiI2267zaYVqqLi4mJycnJsFiGEEKKpyf3uOygpQd+lS5NLjuxR45m0e/TogUqlQqVS8be//Q0np0ubmkwmTp48yZAhQ+w6eGZmJiaTiYCAAJvygIAAjhw5UuU2qampVdZPTU21ri8rq67OiRMnAJg9ezZvvfUWoaGhzJs3j5tvvpm//vrL+mDe8uLj43nppZfsOj8hhBCiscle9zUAnnfc4eBIHKvGCVLZAOYDBw4QGxuLu7u7dZ1WqyU0NJR77723zgOsD2XPj/vXv/5ljXnJkiW0bt2a1atX89BDD1XaZubMmUyfPt36OScnh5CQkGsTsBBCCHENGE6fpnDfPlCr8Rw61NHhOFSNE6S4uDgAQkNDGTlyJHq9/qoP7uvri0ajIS0tzaY8LS2NwMDAKrcJDAy8bP2y17S0NIKCgmzqREVFAVjLu3TpYl2v0+lo164dSUlJVR5Xp9Oh0+nsODshhBCicclauxYAtxtvwDnA//KVmzi7xyCNHz++TpIjsLQ89erVi4SEBGuZ2WwmISGBmJiYKreJiYmxqQ+wadMma/2wsDACAwNt6uTk5LBz505rnV69eqHT6UhMTLTWMRqNnDp1irZt29bJuQkhhBCNiWI2k732KwC8777bwdE4Xo1akFq2bMlff/2Fr68vLVq0uOyU4/Y+sHb69OmMHz+e3r1706dPH+bPn09+fj4TJ04EYNy4cbRq1Yr4+HgAnnjiCQYMGMC8efMYOnQoK1euZM+ePXz44YeAZbLKJ598kjlz5hAeHk5YWBgvvvgiwcHB1m5CT09PHn74YeLi4ggJCaFt27a88cYbAIwYMcKu+IUQQoimoGDnTkpSUlB7euI+cKCjw3G4GiVIb7/9Nh4eHtb3dflMlpEjR5KRkcGsWbNITU0lKiqKjRs3WgdZJyUl2czk3a9fP1asWMELL7zA888/T3h4OGvXrqVbt27WOs8++yz5+flMmTKFrKwsbrzxRjZu3GjT8vXGG2/g5OTEAw88QGFhIdHR0WzevJkWzXRCLCGEEM1b1hdfAuA59HbUMqTE/nmQhIXMgySEEKKpMOXlcfTGm1CKigj93ypcrrvO0SHVm5pev2vUgmTPnD+SLAghhBCNS/a6dShFRWjbt0cfGenocBqEGiVI3t7eV+xWK5tAsrk8rFYIIYRoChRF4eJnKwBoMWpUnQ6jacxqlCBt2bKlvuMQQgghhAMU/PorhuPHUbu64nX3cEeH02DUKEEaMGBAfcchhBBCCAc4/5+PAfAaPhxNuUmgmzu750ESQgghRNNQ+Mcf5G/bBhoNLR+c6OhwGhRJkIQQQohmKnPRuwB43Xkn2tatHRxNwyIJkhBCCNEM5W3bRt7WreDkhM9DUxwdToNTowRp3bp1GI3G+o5FCCGEENeAUlJC+tzXAGgxZjS6sDAHR9Tw1ChBuvvuu8nKygJAo9GQnp5enzEJIYQQoh5lrVlD8dGjaLy88Hv0UUeH0yDVKEHy8/Pj119/BS7NdySEEEKIxseUnU3GOwsA8J02DY23t2MDaqBqdJv/ww8/zLBhw1CpVKhUKgIDA6utKxNFCiGEEA1X2uuvY7p4EW379rQYeZ+jw2mwapQgzZ49m1GjRnHs2DHuuusulixZgrdknEIIIUSjkr99O9mffwEqFUEv/xuVs7OjQ2qwapQgAURERBAREUFcXBwjRozA1dW1PuMSQgghRB0yFxSQ8uIsAFqMGYNrz54Ojqhhq3GCVCYuLg6AjIwMEhMTAejUqRN+fn51G5kQQggh6kzaG29gPHcOp+Ag/J56ytHhNHh2z4NUUFDAgw8+SHBwMP3796d///4EBwczadIkCgoK6iNGIYQQQlyFrLVryfrvSgCC/v0yGnc3B0fU8NmdID311FNs3bqVdevWkZWVRVZWFl999RVbt27l6aefro8YhRBCCFFLeT//Yu1a8330UdxvvMHBETUOKkVRFHs28PX1Zc2aNdx888025Vu2bOG+++4jIyOjLuNrsHJycvDy8iI7OxtPT09HhyOEEEJUUrB3L0mT/oFSVITHkCG0emseKnXzfohGTa/ftepiCwgIqFTu7+8vXWxCCCFEA1H4xx+ceehhlKIi3PrfRKvXX2v2yZE97P6mYmJiiIuLo6ioyFpWWFjISy+9RExMTJ0GJ4QQQgj7FezZQ9KEiZjz8nDp3YvW77yDSqt1dFiNit13sb3zzjvExsbSunVrunfvDsBvv/2GXq/nu+++q/MAhRBCCFFzeT//zNlpj6MUFeHapw+t33sPtYuLo8NqdOwegwSWbrbPPvuMI0eOANC5c2fGjh2LSzP6AcgYJCGEEA2JYjCQsWAB5z/+BBQFtwH9af3OO6j1ekeH1qDU9PptdwsSgKurK5MnT651cEIIIYSoG4qiULBzF2mvvUbx4cMAeI8YQeCLL0i32lWoVYIkhBBCCMdSzGbytmzh/Ef/ofDAAQA03t4EvvxvPAcPdmxwTYAkSEIIIUQjYi4uJuebbzj/8ScYTpwAQKXV4j1iBL4PP4STPNmiTkiCJIQQQjQChrNnufjf/5L9+ReYsrIAUHt40GL0aFo+cL8kRnVMEiQhhBCigTIbDORt3kLWl1+Q/9PPUHpflVNwEC3HjsV75Eg07u4OjrJpsjtBOnPmDCqVitatWwOwa9cuVqxYQZcuXZgyZUqdByiEEEI0N8bkZC7+979krV5jbS0CcLvhBlqMGY37zTej0mgcF2AzYHeCNGbMGKZMmcIDDzxAamoqgwcPpmvXrnz22WekpqYya9as+ohTCCGEaPIK9u3jwtJl5P7wA5jNADj5++M1fDje99yNNjTUsQE2I3YnSAcPHqRPnz4A/O9//6Nbt25s27aN77//nocfflgSJCGEEMJOhX/8Qcbb88nfvt1a5hrTl5b33y+tRQ5id4JkNBrR6XQA/PDDD9x1110AREREkJKSUrfRCSGEEE1Y8dGjZCxYQO6mHywFzs54Dx9GiwceQN+xo2ODa+bsTpC6du3K4sWLGTp0KJs2beLll18GIDk5GR8fnzoPUAghhGhqjOfOkbFwEdlffWUZeK1W43XXXfhOfQxt6Rjf5u5M7hlCPEIcdny7H1b72muv8cEHH3DzzTczevRo6/PY1q1bZ+16s9e7775LaGgoer2e6Ohodu3addn6q1evJiIiAr1eT2RkJBs2bLBZrygKs2bNIigoCBcXFwYNGsTRo0er3FdxcTFRUVGoVCoOlE60JYQQQtQHU1YWqa++yvEht5G9di0oCh6DB9Nu3VcEz42X5AgwmU28tecthq0dxv70/Q6Lw+4E6eabbyYzM5PMzEw++eQTa/mUKVNYvHix3QGsWrWK6dOnExcXx759++jevTuxsbGkp6dXWX/79u2MHj2aSZMmsX//foYPH87w4cM5ePCgtc7rr7/OggULWLx4MTt37sTNzY3Y2FiKiooq7e/ZZ58lODjY7riFEEIIe+T99BPH77yTi8s/RTEace3bl9D/raL1wgXoOnRwdHgNQo4hh6mbp7LkzyUYzUb2pe1zXDCKnQoKCpT8/Hzr51OnTilvv/22snHjRnt3pSiKovTp00d57LHHrJ9NJpMSHBysxMfHV1n/vvvuU4YOHWpTFh0drTz00EOKoiiK2WxWAgMDlTfeeMO6PisrS9HpdMp///tfm+02bNigREREKH/++acCKPv3769x3NnZ2QqgZGdn13gbIYQQzY/ZbFYy3l+sHIrorBzqFKEcu32okvvLL44Oq8E5kXVCueOLO5RuS7spvT/trWw4saFejlPT67fdLUjDhg1j+fLlAGRlZREdHc28efMYPnw477//vl37MhgM7N27l0GDBlnL1Go1gwYNYseOHVVus2PHDpv6ALGxsdb6J0+eJDU11aaOl5cX0dHRNvtMS0tj8uTJfPrpp7i6ul4x1uLiYnJycmwWIYQQ4nLMBQWce2o6GfPng6LgPWokYV98jvsNNzg6tAbl57M/M3b9WE7lnCLANYBlty3jtrDbHBqT3QnSvn37uOmmmwBYs2YNAQEBnD59muXLl7NgwQK79pWZmYnJZCIgIMCmPCAggNTU1Cq3SU1NvWz9stfL1VEUhQkTJvDwww/Tu3fvGsUaHx+Pl5eXdQkJcdzAMSGEEA2fMTmZU2PGkrtxIzg7E/jSSwTNno269E5wYbkeLz24lKmbp5JrzKWHfw9W3rGSLj5dHB2a/QlSQUEBHh4eAHz//ffcc889qNVq+vbty+nTp+s8wPqwcOFCcnNzmTlzZo23mTlzJtnZ2dblzJkz9RihEEKIxsx47hynHxhH8ZEjaHx8aLt0CS1G3ufosBqUopIinv/leebtnYdZMXNP+D3859b/4Ovi6+jQgFokSB06dGDt2rWcOXOG7777jltvvRWA9PR0PD097dqXr68vGo2GtLQ0m/K0tDQCAwOr3CYwMPCy9cteL1dn8+bN7NixA51Oh5OTEx1KB8f17t2b8ePHV3lcnU6Hp6enzSKEEEJUZDx3jtPjxmM8dw7ntm0IW/0/XHv1cnRYDUpyXjITNk7gmxPfoFFpmNlnJrNjZqPVaB0dmpXdCdKsWbN45plnCA0NpU+fPsTExACW1qQePXrYtS+tVkuvXr1ISEiwlpnNZhISEqz7rSgmJsamPsCmTZus9cPCwggMDLSpk5OTw86dO611FixYwG+//caBAwc4cOCAdZqAVatW8corr9h1DkIIIUQZw1nb5Kjt8uU4y53SNrYnb2fkNyP58/yfeOm8+GDwB4zpPAaVSuXo0GzVZgR4SkqKsm/fPsVkMlnLdu7cqRw+fNjufa1cuVLR6XTK0qVLlUOHDilTpkxRvL29ldTUVEVRFOWBBx5QZsyYYa2/bds2xcnJSXnzzTeVw4cPK3FxcYqzs7Pyxx9/WOvMnTtX8fb2Vr766ivl999/V4YNG6aEhYUphYWFVcZw8uRJuYtNCCHEVSk+c1Y5OvBvljvVbo1VDKXXMWFhMpuUD3/7UIlcGql0W9pNue/r+5RzueeueRw1vX7bPZM2WLqxAgMDOXv2LACtW7eu9SSRI0eOJCMjg1mzZpGamkpUVBQbN260DrJOSkpCrb7U0NWvXz9WrFjBCy+8wPPPP094eDhr166lW7du1jrPPvss+fn5TJkyhaysLG688UY2btyIXq+vVYxCCCHE5RjPnSNpvKXlSNu2LW2WL8O5ws1CzVmOIYd//fIvfjzzIwD3ht/LzOiZ6DQNd8C6SlEUxZ4NzGYzc+bMYd68eeTl5QHg4eHB008/zb/+9S+bZKYpy8nJwcvLi+zsbBmPJIQQzZgpJ4dTo8dgOH5ckqMq/HXxL57a8hRJuUlo1Vqej36eezve67B4anr9trsF6V//+hcff/wxc+fO5YbSeRx++eUXZs+eTVFRkYzhEUII0WwoBgNnpz2O4fhxnAICaLNsqSRH5aw/sZ7Z22dTZCoiyC2It29+m66+XR0dVo3Y3YIUHBzM4sWLueuuu2zKv/rqKx599FHOnTtXpwE2VNKCJIQQzZuiKKQ8/y+yv/wStasrbVd8hj4iwtFhNQhFJUW8tvs11vy1BoCYoBhe6/8aLfQtHBxZPbYgXbhwgYgqfgEiIiK4cOGCvbsTQgghGqXstV+R/eWXoNHQ6p35khyVOpF9gme2PsPRi0dRoeIfkf/gsajH0Kg1jg7NLnYPGOrevTuLFi2qVL5o0SK6d+9eJ0EJIYQQDZnh9GnSXn4ZAL9p03AvfcJEc7fu+DpGfTOKoxeP0lLfksWDF/N4z8cbXXIEtWhBev311xk6dCg//PCDdV6hHTt2cObMGet8QkIIIURTpRiNnHv2WcwFBbj27o3P5H84OiSHyzPkEb8rnnXH1wEQHRjN3P5zG8ys2LVhdwvSgAED+Ouvv7j77rvJysoiKyuLe+65h8TEROsz2oQQQoimKvPDDyn67XfUnp4Ev/4aKk3jax2pS3tS9/D3r//OuuPrUKvUPBb1GB8M/qBRJ0dQixYksAzUrni32tmzZ5kyZQoffvhhnQQmhBBCNDRFf/1F5uIPAAicNatZz5JdbCpm4b6FLD+0HAWFVu6tmHPDHHoH1uwh8A1dnU1adP78eT7++OO62p0QQgjRoCgmEykvvAhGI+4DB+I59HZHh+Qwu1N3M+LrESw7tAwFhXvC72HNnWuaTHIEtWxBEkIIIZqbC8s/pej331F7eBAYF9fwnh12DVwousC8PfOsY4189D7M7jebm0Nudmxg9UASJCGEEOIKDKdPk/HOOwD4P/tPnAP8HRzRtWU0GVlzdA3vHniX7OJsVKgY0XEEj/d8HC+dl6PDqxeSIAkhhBCXoZjNpLw4C6WoCNeYvnj//e+ODumaMStmvj/1PQv2L+BM7hkAOrXoxIsxL9Ldr2lP7VPjBOmee+657PqsrKyrjUUIIYRocLL+t5qCXbtQubgQ9O9/N5uutR3JO3h779scvnAYsHSnPdz9Yf7e8e84qZt++0qNz9DL6/JNaF5eXowbN+6qAxJCCCEaCmNqKulvvAGA/5NPoA0JcXBE9UtRFHYk7+DDPz5kb9peAFydXJnYbSLjuozD1dnVwRFeOzVOkJYsWVKfcQghhBANTvobb2LOz8ele3da3H+/o8OpN2bFzI9nfuSj3z/i4PmDADipnRjZaSRTrptCS31LxwboAE2/jUwIIYSohcIDB8hZvx5UKgLjZjXJCSENJgPfnvyWZYeWcfTiUQD0Gj1/7/h3JnSdQIBbgIMjdBxJkIQQQogKFEUhLX4uAF53342+SxcHR1S3MgszWZ24mlWJqzhfdB4AN2c3RkeM5v7O9+Pj4uPgCB1PEiQhhBCigpwNGyj87TdUrq74PfGEo8OpM4kXEvm/w//H+hPrMZqNAAS4BjAqYhQjOo5osrfs14YkSEIIIUQ55qIi0ufNA8DnH5Ma/ZxHxaZivj/1PWv+WsO+9H3W8kjfSB7o8gCD2g7CWe3swAgbJkmQhBBCiHIuLF1GSXIKToGB+Eyc6Ohwau1E9gnW/LWGdcfXkV2cDYBGpWFw28Hc3+X+Jj+P0dWSBEkIIYQoVZKRwfnSh677Pz0dtYuLgyOyj8Fk4IfTP7D6r9XsSdtjLQ90C+Se8Hu4p8M9zXrgtT0kQRJCCCFKpb/zDuaCAvTXXYfn0KGODqdGFEXh8IXDfHXsKzac3EBWcRYAapWa/q36M6LTCG4IvgGNuundhVefJEESQgghgKIjR8j+/AsAAmbMQKVWOziiy8sszGT9ifV8dfwr6y36AP6u/twbfi/3hN9DoFugAyNs3CRBEkII0ewpikLa3NdAUfC4bQiuPXs4OqQqGUwGtp7dyrpj6/j53M+YFBMAWrWWgW0GMqzDMPoG9W0WjwKpb/INCiGEaPbytmyh4NdfUWm1+D/9jKPDsaEoCocuHLJ2oZUNuAa4zvc6hnUYRmxorNyiX8ckQRJCCNGsKQYD6a+9DkDL8ePRtm7l4IgsyrrQ1h5by7GsY9Zyfxd/7mh/B8PaD6OddzsHRti0SYIkhBCiWbv43/9iOH0ajY8PPg9NcWgsxaZitp7Zyrrj6/jl3C82XWh/a/M3axeaDLiuf5IgCSGEaLZMWVlkvPc+AH6PP47G3f2ax2BWzOxP38/Xx7/m+1Pfk2vMta67zu86hrWXLjRHkARJCCFEs5Xx7nuYs7PRdeyI99/vvabHPpV9iq9PfM36E+s5l3fOWh7gGsDQdkMZ1mEY7bykC81RJEESQgjRLBWfOMnF//4XgIAZz6HS1H+31cWii2w8tZGvj3/NH5l/WMtdnVwZ3HYwd7a/k+sDr0etathTDDQHkiAJIYRoltJffx1KSnC/+Wbc+vWrt+OUjSv6+sTX/HL2F0qUEsDy2I+Y4BjubHcnt7S5BRenxjVrd73LPgeewaBSOeTwkiAJIYRodvK3byfvxx/ByQn/Z5+t8/1fblxR55adubP9ndwWdhu+Lr51fuxGTVHg1C+wczEkboAJG6BtjENCaRBteO+++y6hoaHo9Xqio6PZtWvXZeuvXr2aiIgI9Ho9kZGRbNiwwWa9oijMmjWLoKAgXFxcGDRoEEePXppl9NSpU0yaNImwsDBcXFxo3749cXFxGAyGejk/IYQQDYdiMlkmhQRajBqFrl1Yne37VPYpFu5fyO1f3M6EjRP4/Ojn5BpzCXAN4MFuD/LlXV/yvzv/xwNdHpDkqLziXNj9Mbx/Ayy7A458A4oZTv3ssJAc3oK0atUqpk+fzuLFi4mOjmb+/PnExsaSmJiIv79/pfrbt29n9OjRxMfHc8cdd7BixQqGDx/Ovn376NatGwCvv/46CxYsYNmyZYSFhfHiiy8SGxvLoUOH0Ov1HDlyBLPZzAcffECHDh04ePAgkydPJj8/nzfffPNafwVCCCGuoazPP6f4r79Qe3nh+9ijV72/snFF3xz/ht8zf7eWlx9X1Dugt9yaX5X0I7DnYzjwXzCUtrI5u0L3UdBnCvh3dlhoKkVRFIcdHYiOjub6669n0aJFAJjNZkJCQpg2bRozZsyoVH/kyJHk5+fzzTffWMv69u1LVFQUixcvRlEUgoODefrpp3nmGctsqNnZ2QQEBLB06VJGjRpVZRxvvPEG77//PidOnKhyfXFxMcXFxdbPOTk5hISEkJ2djaenZ63PXwghxLVjys3leOwQTBcuEDBzBi3Hj6/VfopKivjp7E+VxhWpVWpigmO4q91dMq6oOiYjHFkPu/9j20Lk0wGu/wd0Hw0u3vV2+JycHLy8vK54/XZoC5LBYGDv3r3MnDnTWqZWqxk0aBA7duyocpsdO3Ywffp0m7LY2FjWrl0LwMmTJ0lNTWXQoEHW9V5eXkRHR7Njx45qE6Ts7GxatmxZbazx8fG89NJLNT01IYQQDVDm+4sxXbiANiyMFmPG2LWt0WxkZ8pOvj35LQlJCeQb863rOrfszB3t7uD2drdL11l1clJg3zLYuxRyUyxlKjV0ut2SGIUNgAb0gGCHJkiZmZmYTCYCAgJsygMCAjhy5EiV26SmplZZPzU11bq+rKy6OhUdO3aMhQsXXrZ7bebMmTaJWVkLkhBCiMbBcOoUFz79FCi9rd/Z+YrblA22/vbkt3x/6nsuFl+0rgt0C+T2sNu5s92ddGjRod7ibtTMJji+BfYthcRvwWxpacPND3qOh94Twau1Q0OsjsPHIDnauXPnGDJkCCNGjGDy5MnV1tPpdOh0umsYmRBCiLqU9vobYDTidtNNuA8YUG09RVE4fOEw3578lo2nNpKaf+mP65b6lgxuO5ih7YbS3a+7zFdUnawk2P8Z7P8/yDl7qbxNjKW1qPNd4KR1XHw14NAEydfXF41GQ1pamk15WloagYGBVW4TGBh42fplr2lpaQQFBdnUiYqKstkuOTmZW265hX79+vHhhx9e7ekIIYRooPK3bydv82bQaAiY8Vyl9YqicDDzIAlJCfyQ9AOnc05b17k7uzOwzUBuD7ud6KBonNTNvm2haiUGy635+5bD8c1A6RBnvbdl0HXPcRDQ1ZER2sWhP2WtVkuvXr1ISEhg+PDhgGWQdkJCAlOnTq1ym5iYGBISEnjyySetZZs2bSImxjJPQlhYGIGBgSQkJFgTopycHHbu3Mkjjzxi3ebcuXPccsst9OrViyVLlqBuQP2eQggh6o5SUkJa/FwAWowZg659ewBKzCXsS9tHQlICCUkJpBVc+uNbp9HRv3V/bg+7nZta34ROIz0IVTKb4cxO+GM1/PklFF64tC5sgCUpirgDnPWOi7GWHJ4GT58+nfHjx9O7d2/69OnD/Pnzyc/PZ+LEiQCMGzeOVq1aER8fD8ATTzzBgAEDmDdvHkOHDmXlypXs2bPH2gKkUql48sknmTNnDuHh4dbb/IODg61J2Llz57j55ptp27Ytb775JhkZGdZ4qmu5Elev5OJFSlJSKMnIoCQzk5LM8yjFxSglJSglJWA2o3Z1Re3mZl003t7oOrTHKTAQlYNmUxVCNG4XV6yg+OhRNF5euEwZzw+nf+Cnsz+x5cwWsoqzrPVcnVy5qfVNDGoziJta34Sbs5vjgm7IFAVS/4CDn1uW7DOX1nkEQdRY6HE/tKy7+aUcweEJ0siRI8nIyGDWrFmkpqYSFRXFxo0brYOsk5KSbFp3+vXrx4oVK3jhhRd4/vnnCQ8PZ+3atdY5kACeffZZ8vPzmTJlCllZWdx4441s3LgRvd6SwW7atIljx45x7NgxWre2HRzm4FkPmgRTbi7FR49RfPQoxccuvZoyM2u9T7WnJ669e+Pxt7/hfsvNOF3mjkMhhChjSEkhbf7bAKy/tQXLv73Deks+gLfOm5tDbmZQm0H0De4rLUXVKSmGkz/DX99C4kbbcUVaD+hyF0T+HUL7g8bhqUWdcPg8SI1VTedRaMqUkhIMp05RlJhI8V9HKU5MpOivREqSU6rdRuPri5OfH05+vji19EHt6gJOTta7ScwFBZjz8zHnW15LMjMwnDwFJtOlnajVuPbsifeIv+N5222otA17oJ8Q4tpRFIXTOafZk7aHPWl7uO7t7+hxqIjEVjDrAQ2KSkWoZyg3trqRW0JuoWdATxlTVBVFgYxEOPkTnPjRspSb1gAnF+jwN7juPgi/FZwbz3xPNb1+S4JUS80xQTKmpVG4fz+F+w9Q+NtvFB06hFLN41mcAgPRdeiALjzc8toxHF27dqjd7G+yNhsMFCf+Rd7WreRuTqD40GHrOo2fLz4TJtJy3AM1umVXCNG0lJhLOJ51nP3p+9mbtpc9aXvILLS0Vvc4ZmbmajMmFayZGU1EnyHc0OoGQjxkipZKFMXSVXbyJzix1fKaV2FqHI8g6DgEOt0GYf0bVVJUniRI9aw5JEjmwkIKdu0ib9s28rdtx3D8eKU6aldXdB07ouvUCV3HcPSdOqHr2BFNPX4nxnPnyP76ay6u+C8l6ekA6Lp0JviVV9B3dty09EKI+qUoCsn5yfyR+QcHMw7yR+YfHL5wmMKSQpt6WrWWXu6deeSNRPQX8vCaOJ7g5yo/maFZMxkh9Xc4swuSfrW85ibb1nHSQ5u+lsHW7W+BoChoAmNBJUGqZ001QTIXFpK39SdyNm4kb+tWlMJy//Co1egiOuEaFYVLVBQu112Hc5s2qBx0B6BiNJK9bh1pr7+BOTsbnJzwnTIZn4cfRi3dbkI0aheKLnA86zjHso7ZvJYfVF3GzdmNbr7d6B3Qm14BvbjO7zrOv/hvsr/4Auc2bWi39kvUrq7X/iQakvzzcG7PpWTo3F6okFii0kCrnpaEqN0AaN2nUd59diWSINWzppQgmQsLyfvpZ3K/20julh9tkiLn4GDcbroJtxv64RYdjcbLy4GRVq0kI4PUf79M7qZNAOivu47WCxfiHFD5YcdCCMczK2ZyinPILMwkOT+Z5DzLci7vnPW1/IzV5TmpnejUohPdfLsR6RtJpG8koV6hNhM25m7ZwtlHHgWVirb/9ymuvXpdq1NrGAovQvIBSN5fuhyA7KTK9fTeEBINIX0sLUXBPUDb9O/ckwSpnjX2BMlsMFjG9Hy7kdwff0QpKLCuc27VCs/bhuAx5Db0Xbs0mtvrczZ+R0pcHObsbJz8/Wn97iJcIiMdHZYQzUJRSREXii5Yl/OF5zlfdP5SWeEF6+eLRRcxKaYr7rOVeys6eHegvXd7Onh3oIN3B9p5t7vsnWYlFy9y8q5hlGRk0HLChConhWxSinIg5bdyydB+uHiy6ro+4dAmujQpirZ8boZzADaKh9WKa6/4xAmy/rea7LVrMWVlWcudgoPwHHIbnrcNQd+tW6NJisrzHBKLvktnzjz6KIZjxzl9/wO0evstPAYOdHRoQjRoZsVMsamY4pJiikxFFJUUUWyyvM835JNtyCarOIvs4myyi7PJMeSQVZxFVnEWFwotCVBBScGVD1SBh9aDYLdggt2DaeXeimD3S+/beLTB1dm+bjFFUUidNYuSjAy0YWH4PfmE3TE1aAUXLMlQ6u+Q8jukHIDzx6qu2yLM0iJUtgRdB/qG1wPQkEmC1AwoikLe1q1c+M/HFOzZYy138vfH8/bbLUnRddc1yqSoIm2bNoSuXMm5p58mf+tPnJ06jVZvvYXnkFhHh9YsGc1GCowFFJYUUlBSQKGxEIPZgMFkwGg22ryWmEsufTYbMJosryXmEsyKmRJzCSbFVO17k9lkea3ufRVlNaFQuZG9qob3ivWuVKdsvVL2v3Kfy6qVrSurX3F767rS7ZVLG1a/ruKxFQWDueq7Ue2lVWtp6dKSlvpLi4/eBx8XH5uyssVZU7d3nmatWUPuph/A2ZngN99ArW+k42cUxfIss7JEKPUPy/ucc1XX925TmgRFlb52B1eZK+5qSYLUhCmKQu4PP5D53vsUHy69NV6txn3AALxHjMC9/02onJrer4DG3Z2Qd98l5YUXyV67luRnn8XJpyWu11/v6NAalWJTMTnFOeQYSpdy78taEXKKc8g15FJQUmCTCJV9NpqNjj4NYScntRN6jR6dRofeSY+rsyveOm+8dd54aj3x0nnhrfPGS+eFl84LH/2l5MfN2c1hf2gVnzhJ2quWJy74P/kELl0byTO/TEbI/Ks0ESqXDBVlV12/ZTsIvA4CIyE4CoJ6gJvPNQ25uWh6V0cBQP6uXWTMe4vC334DLLfje48eRcsHHsC5GTxOReXkRNArczDl5ZL3QwJnHptK6Gf/hy483NGhOYzRZLQZI2IdK1J03tpNUrZcLLpIkamozo7tpHLC1dkVFycXdBodWo0WZ7UzzhpnnNXOaNVanDWlr6XlZXWc1E44qZxQq9Ro1JrLv1ercVI5oVFrUKvUl62rUqlQYXsxr3hxv9L6qupUWl/NPlWorOtUqLD8v5p15fZV9r/yn0srVruu0v4rrNNqtOidLElRY5w00VxUxLmnn0YpLMQ1pi8tSx9V1eAU50Han6UtQ79ZkqH0w2AqrlxX7Qz+nS1dY4GlS0BX0De+Ma+NVeP7L0FcluH0aVJffZX8rT8BoHJxoeX4cfhMmIDG29uxwV1jKo2GVm++SdLEByncv5+kyVMIXfnfJpcgFhgLyCjMIL0gnYyCDDIKM0grSCOjwFJWlgTlGnLt3rdapcZD64Gn1vPSorN976H1wM3JDVdnV1ydXG1eXZxccHVyrfOuFCHKS3vlFYoPH0bj40Pw3NccNvWIjbz0cl1kpS1D548DVdwXpfO0tAiVtQwFXQe+ncBJpitxJEmQmgjFbObiypWkv/Gm5TZ9jQbv+0bg9+ijOPn5OTo8h1Hr9bR+711Oj70fw4kTnJk8hbb/XYHG3d3RoV2R0WS8lPiUvpYlQemFpclQQQa5xponPhqVxnYciEvVY0XKulDcnN1sbp8WoqHJ+uJLslavAZWKVm++ce2n9zCbLXeNlXWNlY0ZqjgLdRmP4EtJUFlS5N22Wd5N1tBJgtQEmPLyODd9Ovk//QyAa3Q0gbPj0IU17icp1xWnFi1o89GHnBo1muKjRzn39NOEvPceKo3GIfGYzCYuFF2wJjnWxKdCK9CFogs13qeLkwsBrgH4ufrh5+KHv6u/9dXHxcc6TsRT5ykJj2gyihITSf33vwHwe3wabjEx9XvA4jzIOGLpJivrKks9CFW2zqrAp0O5LrLSZMi9+f7B2thIgtTIGVNTOfPQwxQnJqLS6fB/+mla3D+2YTQxNyDOrVrR+r33OH3//eRv/Yn0N96sl/lR8o35pOWnkVqQSnpBOmn5aTaJT3pBOplFmZgVc43256R2wt/F35LwuNomPtYyF3+HDo4VwhFMeXmce/wJlKIi3PrfhM9DD9Xdzs0muHDiUiKUfsjyWt38QhqdZXyQtWWodLxQM5h0sSmTBKkRKz5xgqSJD1KSlobGz5eQ9xfj0q2R3LnhAC6R3QieG8+5p6ZzYelSdB3a4/33v9doW0VRyCrOIq0gjfSCdFLzU63v0/LTSCuwLPnln3Z9GWqVGh+9j02SU5YAlU+CvHXekvgIUYGiKKT86wUMp0/jFBRE8Gu1HHdkNlse0Hr+KKQfuZQIZRyBkmpuUnAPAP8upQlRacuQb0fQyOW0qZGfaCNlTE0ladI/KElLQ9u+PSEffIC2dStHh9Xged52G8XHT5C5aBEps1/CuU0b9L17kVmYeSnhKUizSXrS8i3lNZ0rxsPZA39XfwLcAqwJT1kCVNYN1lLfslHeLSREQ3Dx0/8j97vvwNmZ1m+/hVOLFpffoDjPkgRlHrPcUn/+KGQetUyyWF0i5OwKfhGWRCig66WkyM237k9INEjyL3QjZMrO5szkyZSkpKANC6Pt/3165X8gmjFFUcgozOBs7lnLs55u1BC6M4Q2u8+QOGUi/x7rxHH/mnV5tdS3JMA1wLKUJkAV37s5S7O6EPWlYP9+0l5/HYCAZ5/FJSoKjEWQfRayTsHF05ZJFrNKXy+ehoLM6neo0VrmFvLtaJsItQiTgdPNnDyLrZYc9Sw2paSEpAkTKdizByd/f0L/uwLnVtJyBJbHJSTnJXMi+wQnsk5wPPu49X2eMc+mrtao8MJKExFnIccFXnrAGWObcglPuSQowPVSS5BWI7fdCnHNmIyWx2sUZEJuCsbTf3HqXx9TklWARxdvWt3qjCovFfLSrrwvNz9LEuTTwfLqG255791WuseaGXkWWxOVsWAhBXv2oHZzI+Sjj5ptcqQoCkm5SfyR+Qd/Zv7JH5l/kHghsdrJDdUqNUFuQTbPe3Lu0xLTC8vw/Osk89e2oM2HC9FHRFzjMxGiCTKbwJBfbskrXfLLvVZ4X5QNBedLE6LzlifSF+dc2mWJirObfSjJ0qL1NBLU+TCq1HJ/3zu7WpKdFm0tr95tbN+7eF/770E0apIgNSJ5P//C+Q8/BCDolTnoO3V0cETXTnpBOgczD15azh+scuJDZ7UzoV6htPNqR3uv9oR5h9Heqz1tPdtW2fpTsuxWksaNo/joMU6NGk3Qv1/C6667rsUpiYoUBcwllxbFXLoo5d5X9bl0garLbeqXvqeqfShceghaxfeUbsOl91XWq2ob5QrbVFGvYsN+vez7ctuUvjcVW7qvSgrBWLqUFIGxoFx5UeVkp6SQOqNSo+hbkPyLB0UXDGhcnQl5ehia9h3BIwg8AsErBFx9QG5oEHVIEqRGwpieTvJzltvSvUePwnPIEAdHVH9yDDn8mfknf57/kz8y/uDg+YOkF6RXqqdVa4nwiaCbTze6+Xajq29X2ni0sWvws1OLFrT99FPO/fNZ8n/+meRnnyN/+w78n57efCbYNJWAsewv+oJLFzpj6XtjkeWiWFJ8hdcqyswmMBvLJT4mS7dJ2XtzyaX1NZz6QDQiKg1o3UHnbrnlXetm+Wx9X+6zztOS5Li2tLy6tATXlig6L9Li55J79P8sg7I/+BitPFdRXAMyBqmWrvUYpLNPPUXutxvRRUQQumolap2u3o95LRSbijly4YhN69CpnFOV6qlVatp5tSPSN5JuvpaEKNw7vM4eYaGYTGS++y6Z771vOZ6bGz5TptBi1Eg0Xl51cow6YzJCca6l+6E4F4pKX8uX2XRnFFx6byyo0PWRX/VzoBoqldp2QVWhrCZ1VKVLFXWgXCuEqsJ7Lr231qvufVXbq+zc/jL7qs3xa3McJx046cHZpfTVFZz14ORieXV2tZRXSnxK3zvprqpVR1EU0ufO5cKy5aBSETw3Hq9hw2q9PyGg5tdvSZBq6VomSHm/bOPMP/4BajVhX3zeaMfJmMwmjmcft44ZOph5kKMXj1KilFSq28q9Fd18uxHpG0lXn6508emCq7NrvcdYsH8/aa/GU/THHwCo9Ho8b78drzvvwLVXL1TaqxikXVJsm8SULUU5lctsEp4K66q7Lflqlf21r3UDravl1dnt0sWx7GJpz6vGGdROpYszqDWXPmsqfLZZr7HEUzGpEc2GYjaT/trrXFi2DIDAl/9NixEjHByVaAokQapn1ypBUkwmTgwbhuHYcVqOH0fAzJn1dqy6pCgKZ/PO8mfmnxzMPMgfmX9w+MJhCqsYm9BS39LSKlSuq6ylvqUDorZQzGZyvv6a858soTgx0VqudnXBtUcXXDq2wSXMH12AOxq9GZWhYitObhWJUA6YajaPUo05u4LOo8LiaXkt69ZwdqvQneFm2c4mESp9r9FKEiIaBHNREckzZpK7cSMAgXGzaDF6tIOjEk2F3MXWRGSvXYvh2HE0Xl74PvaYo8OpVmZhpiUZOn/QemdZVnFWpXquTq508eliaRny7UqkbyRBbkH1O1u02WS5IyY/w3KHTHGO5Y6ZahZVcQ5eRdl49sumsE0BWce15CXrMRUUkrdtL3nb9lp3rXYy4+xRgtbNhEZvxklnRqMzo9FaXtUaBZWTglqjoHbSoNIoqF1cUbl5oNJXldx4Vp/0lC16T9B6yK3JokkypqZy7smnKDxwAJydCX5ljtw4IRxC/oVtwBSDgYxF7wLg8/DDaK7hfEuXk2/M59D5Q9ZusoOZB0nJT6lUz0ntRKcWnaxjhrr5dCPMKwyNug4eEqsolmQn5xzkJFuenJ2fAfmZpa/l3hecr9UAYBWlY0Z9ClGUHIryvCjIdKXwvBNFGQrGbBPmEjXFF7UUX7T/FFT6ElS6AtRay6tKl4VKp0Wt1aHS6VBptbafdVrUOh0qrQ61hwcaD3fUHp5oPD0snz09ra8qnU4eUSIanZxvvyUlbjbmnBzUXl60XrgAtz59HB2WaKYkQWrAstdvoCQlBY2fLy3GOKZ5udhUTOKFRP48b+kq+zPzT05kn0DBtmdWhYpQr1DrmKFI30g6texUu4kVzSbIS7ckPmUJUG5y6eeyshT7Bxe7tLDcGePiDXovS8uM3uvyi84T9J6onN1wUatxKR+mwYDxzBkMp5MwnjuH6eJFSi5ewHQxC9PFi5iys1GKijAXFaEUFlpeiy/FrBQVWdbb/w1dkcrZGbWXF84BATgHB+McHIRzcDBOwcE4BwXj3CoYjbc85000DMUnT5Lx9nxyv/8eAH23brR68w20oaGODUw0a5IgNVCK2cz5//wHAJ/x46/JXWtGs5HjWcetXWV/Zv5Z7SDqQLdAazLUzbcbXXy64KH1uPJBTEbITbEkOtlnS5OflEuJUE4y5KaCYqpZ0G5+4BlsmQ/Fza908a3w6mdpCqqjO97KqLVadO3bo2vfvsbbKCYTSnEx5qIizAWFKIZilGLLYi42XPpsMFg+FxejGIoxFxejlH42FxdhzsvHnJuDKScXU24O5pxczLm5mHJzwWxGMRoxZWZiysyk6M8/q47fwwNd+/ZoO7RH174D+k4d0XXuLI+tEdeEoigUHjhA1uefk/3lWjCZQK3G9+GH8H3kEVTOdfvfqxD2kgSpgcrfsQPD8eOo3d3xHjmyzvdvVsycyj5lTYQOnj9I4oVEiqtolWmha0EX3y508+lmaR3yi8TXpYoHNppKLF1d1uTnXOX3ualADe4LUGksE8B5BpcurSxJUNl7z2DLeqfGNd2BSqNB5eqK2tUV6mEcuqIomPMLLMlTVhbGlBSMySkYk5MtS4rl1ZSRiTk3l8IDByxjPcpxCgpC37mzZelieXUKqudxYqJJU8xmTOfPY0xJoejwEYoOHiR/+3aM585Z67jfcgt+Tz2JvmPzmQBXNGySIDVQWStXAeA1bBgajxq0zFyGWTGTlJPEkQtHrF1lh84foqCkoFJdd2d3y231ZQmRb1eC3YJRKebSbq9zcOKXS11dZa1AOedq3vKjdr6U6Hi1qpAAlX5297fc6i3solKp0Li7oXF3w7k00amKubgYw6nTGI4fo/jYcYqPHqXoyBGMZ85QkpJCXkoKeZs3W+trvLzQd+2CvksXdJ07o+/SBW3btqjkYZ7NnqIolKRnYDh5AuO5c5RkZFKSWbZkUJKWTklqKorRWGlbtasrHoMH4T1yJK49ezog+sszmxXMioJZofRVwWS2fFbKvS+/Tin9XHGd2VyzfZiVS8e1qVdhnU09pYr9lVunlH6uch+KYl1XKfZqzr/ac6wQu7XeFdYpCqX7sn1vVhSev70z9/Rs7ZCfvyRIDZAxLZ3c0ouT98j77NrWYDJwNOsoiRcSOXz+MEcuHCHxYmKVt9frNXo6+3Sma8uudHUPoZuzF21KSlDnpMD5s3Div+WSnxTLbMdXonYCj2DbxMerte17V195SraDqXU69J06VnpcjSk3l6LDhyk+fNjyl/7hwxQfP44pO5v87TvI377j0j5cXa3Jkr5zZ/Rdu6Br1066RuqAUnpBMdlcKC0XWVO5zybzpYtNVeUVL2Im86WLYcV9Viw3mW0vnubSfZpMZtxOJOL15z48jh/G82QizoX5Vz4nlYpCD2+y/FuTGdyO9FYdSGofidFJizkRTEf2Wc67NJ4qk4cq1lmTB3M1F+rSdbVJMoTjFRprONyiHjSIBOndd9/ljTfeIDU1le7du7Nw4UL6XObOhdWrV/Piiy9y6tQpwsPDee2117j99tut6xVFIS4ujo8++oisrCxuuOEG3n//fcLDw611Lly4wLRp0/j6669Rq9Xce++9vPPOO7i7u9frudZEztfrwGTCpWfPyzY35xpyOXLhiM1yIutElWOGdGpnwnW+dHX2pKvZia7FBtrlZ+F0eC/kra9Z8qPSWFp5qkx+WlvK3fyk5acR03h44Nanj82dQ+biYoqPHqPo0J8UHT5M0Z+HKE5MxFxQQOHevRTuvTTtAVotmvYd0HSMQNU2FFVIG5Q2oSgBgShqNSaz7UX/0sWucrnZXMXFvcLFv2IScdmLe7nyS8lBufJydS0XTC4lBRUSiLK/ck1VHMNc7hjVldvGS4XvouFdnDVmE13Pn+SG5D/ol3IQ36Jsm/UmlZoU15akuPlwUe/JBb0HF3UeXNR7cEHnSYarN+f1XpjK/9tQCBzMvLYnUk/UKtCoVahUKst7lQq1SoVabflc/r1GZamnqWKd2rpd5XoqlcqyX3W5euWOW7bO+l5F6X6rqFe2P7VtvcutKx+fTUxVxF5lvUqxX/pcqV65dUFeeof9XB2eIK1atYrp06ezePFioqOjmT9/PrGxsSQmJuLv71+p/vbt2xk9ejTx8fHccccdrFixguHDh7Nv3z66desGwOuvv86CBQtYtmwZYWFhvPjii8TGxnLo0CH0esuXPXbsWFJSUti0aRNGo5GJEycyZcoUVqxYcU3PvyrZ36wHsE6prygK6QXpJF681Cp05Pxhzuafq3J7T0VF5xKFiMICIooKiDAYCTUaceJ49QdVqcG9dMyPVytLwlPxvXtAg597p/JfweX+Qq74V3K5v8bL/rqsWG6ucIGz+UvaejGturz8X6tVXfwrXdyt+6jYFF92Ma1wcb9C+ZVaG2y/iwrxViw3g1lxx6T0RmnXG3WoidZ5GXTIOkf77HN0yDpL++xk3AxFmA4fwnT4kM3PxajWkOzmy1l3P866+5Pm1pJMvRcZLl5kuniT5+wik1Taqeyid+kCc+lCWKm89IKrVlsuQLbrsZaXvepLigm4cI7AjDO0PX2I0JMH0Rdf6pI3aF0407E7aaGdyWzTiZzANqi0TtZ9OKlUBKpVBFe4OFuTh4oXXXU19a6QZJT/DiolGeWTgsskIDXdh029CrGLpsnhM2lHR0dz/fXXs2jRIgDMZjMhISFMmzaNGTNmVKo/cuRI8vPz+eabb6xlffv2JSoqisWLF6MoCsHBwTz99NM888wzAGRnZxMQEMDSpUsZNWoUhw8fpkuXLuzevZvevXsDsHHjRm6//XbOnj1LcHDwFeOur5m00/fv5/zoMZg1ata/cD2HVakcM2SQpVQ9C3NQSQkRxQYiDEYiDAY6FxsINJko/59ssdabIr0/hTo/CnV+5Ov8KND5ka/1I1/rS67Wn3ynFpSonKq9WF7p4n+pvGL/edl620ShuvKKLQPVlVeZCDWwv7qbG5ViJrDgAu2zztE+J4XWeRm0yksnOC8Tnany+JPyDBpn8vXuFGldKNS5UKx1oUjnisnJCUWtAbUaRa1B0VR8r0FRq0GjsSxqy6ui0aDSqC3rnZwsg+NL96PWqCxjp9Rq1Go1qtJFrSl9Lb0IolKhwZKIqNSgQYWq7AKKJZ9Tq1WWcutFtbRcBWouXXAtfxlbylBheV9abr3YltunChUadbmysot5WTyl21LFP9+V/kmv9Nkyx5q5sMAy/URBAeaCQkrOn6ckNQXDmbMYz5yptF+NtzfuAwficetg3Pr1Q301j90RwoEaxUzaBoOBvXv3MrPc4zPUajWDBg1ix44dVW6zY8cOpk+fblMWGxvL2rVrATh58iSpqakMGjTIut7Ly4vo6Gh27NjBqFGj2LFjB97e3tbkCGDQoEGo1Wp27tzJ3XffXem4xcXFFJebwyYnJ6dW53wlX78zkX7A/jCFTw3lZmxWFMKMRiIMRjoXG+hkMNCqWEOxyZs0JYA0WvCX0oKfFW/SlBaWhRZkKN4UF2nhsuGeL12aPpWqqr+kbf+CtJarbf/atW5X4a9x61+k5f4qt1lfrhnZttz22LZ/+ds2U1csrxwvNnXLmqpt6leMt0L5ZVsbrNtWaG2oeI5V/EWtmM0Yk1MwnDxpWU6dtNxZl5ZGSWoqposX0ZqMaPMvQn4tZtxspMrmv3LcCIvLc/L3R9epE/puXXHv3x+X665DpZHuc9F8ODRByszMxGQyERAQYFMeEBDAkSNHqtwmNTW1yvqpqanW9WVll6tTsfvOycmJli1bWutUFB8fz0svvVTDM6u9FkU6StTFHA+Hm3OcaGlwx83gi7okkCz8uaD2YYOqJSs0LTG4uVZq9r10MYMgtYpWVZRXbn4v/ev2ChdEm/JyTd22F8pL+6qUFFS8uFsv6LYJhKqKcttEobrycglHNV0Jcqv6tadSq9G2boW2dSu46cZK683FxZSkpWHKzrFMT5CbhznPMqeTYjSCyYxiKgGTCcVkBlMJismMUlJaZjZZXktMpfXMKCbTpXqmEigxWcoUxTJPlGKmtAm06vcVf0+q+LVRVSystE1VG11pm2tzHJXWGbWLK2oXF9SuLqhcXHBq6YNTYADOQcHoOobLfFii2WvYA0oakJkzZ9q0XOXk5BASElLnxxmybBOaPAMvuntck8khhXA0tU6Htk0bR4chhBA2HJog+fr6otFoSEtLsylPS0sjMDCwym0CAwMvW7/sNS0tjaCgIJs6UVFR1jrp6ek2+ygpKeHChQvVHlen06G7BgmLq84TJC8SQgghHMqhk9FotVp69epFQkKCtcxsNpOQkEBMTEyV28TExNjUB9i0aZO1flhYGIGBgTZ1cnJy2Llzp7VOTEwMWVlZ7C13e/LmzZsxm81ER0fX2fkJIYQQonFyeBfb9OnTGT9+PL1796ZPnz7Mnz+f/Px8Jk6cCMC4ceNo1aoV8fHxADzxxBMMGDCAefPmMXToUFauXMmePXv48MMPAcsYkyeffJI5c+YQHh5uvc0/ODiY4cOHA9C5c2eGDBnC5MmTWbx4MUajkalTpzJq1Kga3cEmhBBCiKbN4QnSyJEjycjIYNasWaSmphIVFcXGjRutg6yTkpJQl5t1uV+/fqxYsYIXXniB559/nvDwcNauXWudAwng2WefJT8/nylTppCVlcWNN97Ixo0brXMgAXz22WdMnTqVv/3tb9aJIhcsWHDtTlwIIYQQDZbD50FqrOprHiQhhBBC1J+aXr/lgVhCCCGEEBVIgiSEEEIIUYEkSEIIIYQQFUiCJIQQQghRgSRIQgghhBAVSIIkhBBCCFGBJEhCCCGEEBVIgiSEEEIIUYEkSEIIIYQQFTj8USONVdkE5Dk5OQ6ORAghhBA1VXbdvtKDRCRBqqXc3FwAQkJCHByJEEIIIeyVm5uLl5dXtevlWWy1ZDabSU5OxsPDA5VKVWf7zcnJISQkhDNnzsgz3hog+fk0XPKzabjkZ9NwNcefjaIo5ObmEhwcjFpd/UgjaUGqJbVaTevWrett/56ens3ml7Uxkp9PwyU/m4ZLfjYNV3P72Vyu5aiMDNIWQgghhKhAEiQhhBBCiAokQWpgdDodcXFx6HQ6R4ciqiA/n4ZLfjYNl/xsGi752VRPBmkLIYQQQlQgLUhCCCGEEBVIgiSEEEIIUYEkSEIIIYQQFUiCJIQQQghRgSRIDcy7775LaGgoer2e6Ohodu3a5eiQmpTZs2ejUqlsloiICOv6oqIiHnvsMXx8fHB3d+fee+8lLS3NZh9JSUkMHToUV1dX/P39+ec//0lJSYlNnR9//JGePXui0+no0KEDS5cuvRan16j89NNP3HnnnQQHB6NSqVi7dq3NekVRmDVrFkFBQbi4uDBo0CCOHj1qU+fChQuMHTsWT09PvL29mTRpEnl5eTZ1fv/9d2666Sb0ej0hISG8/vrrlWJZvXo1ERER6PV6IiMj2bBhQ52fb2NypZ/NhAkTKv13NGTIEJs68rOpH/Hx8Vx//fV4eHjg7+/P8OHDSUxMtKlzLf8da9LXLEU0GCtXrlS0Wq3yySefKH/++acyefJkxdvbW0lLS3N0aE1GXFyc0rVrVyUlJcW6ZGRkWNc//PDDSkhIiJKQkKDs2bNH6du3r9KvXz/r+pKSEqVbt27KoEGDlP379ysbNmxQfH19lZkzZ1rrnDhxQnF1dVWmT5+uHDp0SFm4cKGi0WiUjRs3XtNzbeg2bNig/Otf/1K++OILBVC+/PJLm/Vz/7+9u41pq2zjAP4v0CJboWV2a2EKggOmCMhmVvFlMVvlxbep0SFZyMaHqchmSKYuJhMSPyi+xGS+DI2JwyWGOaObycwwk5fpCMPBgK1C6iA4ollpBhaKoMP2ej4snId2Gw97RlvW/X9Jk/ac65ze51z0vq+c05tWVYlOp5MDBw5IV1eXPPbYY5KUlCQTExNKTH5+vmRlZcmxY8fkp59+kmXLlklRUZGyfmRkRIxGo2zYsEGsVqvU1tZKVFSUfPLJJ0pMc3OzhIeHy9tvvy3d3d2yY8cOUavVcurUKb+fg/nqf+Vm48aNkp+f7/U5Gh4e9ophbvwjLy9Pdu/eLVarVTo7O+Whhx6ShIQEGRsbU2IC1Y+F+pjFAmkeWbVqlZSVlSmv3W63xMfHy5tvvhnEVoWWyspKycrKuuQ6p9MparVavvrqK2VZT0+PAJCWlhYRuTBwhIWFid1uV2Kqq6slJiZG/vnnHxEReeWVVyQ9Pd1r34WFhZKXlzfHRxM6fAdhj8cjJpNJ3nnnHWWZ0+mUyMhIqa2tFRGR7u5uASDHjx9XYg4dOiQqlUr++OMPERHZtWuXxMbGKrkREdm+fbukpaUpr9evXy8PP/ywV3vMZrM899xzc3qM16rLFUjr1q277DbMTeA4HA4BIEeOHBGRwPZjoT5m8RbbPHH+/Hm0t7fDYrEoy8LCwmCxWNDS0hLEloWe06dPIz4+HsnJydiwYQMGBgYAAO3t7ZicnPTKwfLly5GQkKDkoKWlBRkZGTAajUpMXl4eRkdH8csvvygx0/cxFcM8zl5/fz/sdrvXedTpdDCbzV650Ov1uOuuu5QYi8WCsLAwtLa2KjGrV6+GRqNRYvLy8mCz2fDnn38qMczXlWtqasKSJUuQlpaG0tJSDA0NKeuYm8AZGRkBACxatAhA4Pqx62HMYoE0T5w7dw5ut9vrDxYAjEYj7HZ7kFoVesxmM2pqalBXV4fq6mr09/fj/vvvh8vlgt1uh0ajgV6v99pmeg7sdvslczS1bqaY0dFRTExM+OnIQsvUuZzp82C327FkyRKv9REREVi0aNGc5Iufu8vLz8/Hnj17UF9fj7feegtHjhxBQUEB3G43AOYmUDweD8rLy3HvvffijjvuAICA9WPXw5gVEewGEAVSQUGB8jwzMxNmsxmJiYnYt28foqKigtgyomvHM888ozzPyMhAZmYmbr31VjQ1NWHt2rVBbNn1paysDFarFUePHg12U0ISryDNEwaDAeHh4RfNNBgcHITJZApSq0KfXq9Hamoqent7YTKZcP78eTidTq+Y6TkwmUyXzNHUupliYmJiWITN0tS5nOnzYDKZ4HA4vNb/+++/GB4enpN88XM3e8nJyTAYDOjt7QXA3ATCli1bcPDgQTQ2NuKmm25SlgeqH7sexiwWSPOERqPBypUrUV9fryzzeDyor69HTk5OEFsW2sbGxtDX14e4uDisXLkSarXaKwc2mw0DAwNKDnJycnDq1Cmvzv/w4cOIiYnB7bffrsRM38dUDPM4e0lJSTCZTF7ncXR0FK2trV65cDqdaG9vV2IaGhrg8XhgNpuVmB9//BGTk5NKzOHDh5GWlobY2Fglhvm6Or///juGhoYQFxcHgLnxJxHBli1bsH//fjQ0NCApKclrfaD6setizAr2t8Tpv/bu3SuRkZFSU1Mj3d3d8uyzz4per/eaaUBXZ9u2bdLU1CT9/f3S3NwsFotFDAaDOBwOEbkwPTYhIUEaGhqkra1NcnJyJCcnR9l+anpsbm6udHZ2Sl1dnSxevPiS02Nffvll6enpkY8++ojT/C/B5XJJR0eHdHR0CAB57733pKOjQ86cOSMiF6b56/V6+fbbb+XkyZOybt26S07zz87OltbWVjl69KikpKR4TSV3Op1iNBqluLhYrFar7N27VxYsWHDRVPKIiAh59913paenRyorK6/7qeQz5cblcslLL70kLS0t0t/fLz/88IOsWLFCUlJS5O+//1b2wdz4R2lpqeh0OmlqavL6Nwvj4+NKTKD6sVAfs1ggzTMffPCBJCQkiEajkVWrVsmxY8eC3aSQUlhYKHFxcaLRaGTp0qVSWFgovb29yvqJiQl54YUXJDY2VhYsWCBPPPGEnD171msfv/32mxQUFEhUVJQYDAbZtm2bTE5OesU0NjbKnXfeKRqNRpKTk2X37t2BOLxrSmNjowC46LFx40YRuTDV/7XXXhOj0SiRkZGydu1asdlsXvsYGhqSoqIi0Wq1EhMTIyUlJeJyubxiurq65L777pPIyEhZunSpVFVVXdSWffv2SWpqqmg0GklPT5fvvvvOb8d9LZgpN+Pj45KbmyuLFy8WtVotiYmJsnnz5osGRebGPy6VFwBefUwg+7FQHrNUIiKBvmpFRERENJ/xO0hEREREPlggEREREflggURERETkgwUSERERkQ8WSEREREQ+WCARERER+WCBREREROSDBRIRERGRDxZIRBQyNm3ahMcffzzg71tTUwOVSgWVSoXy8vJZbbNp0yZlmwMHDvi1fUR05SKC3QAiotlQqVQzrq+srMTOnTsRrB8HiImJgc1mw8KFC2cVv3PnTlRVVSk/8EpE8wsLJCK6Jpw9e1Z5/uWXX6KiogI2m01ZptVqodVqg9E0ABcKOJPJNOt4nU4HnU7nxxYR0dXgLTYiuiaYTCblodPplIJk6qHVai+6xfbAAw9g69atKC8vR2xsLIxGIz799FP89ddfKCkpQXR0NJYtW4ZDhw55vZfVakVBQQG0Wi2MRiOKi4tx7ty5K27zrl27kJKSghtuuAFGoxFPPfXU1Z4GIgoQFkhEFNI+//xzGAwG/Pzzz9i6dStKS0vx9NNP45577sGJEyeQm5uL4uJijI+PAwCcTifWrFmD7OxstLW1oa6uDoODg1i/fv0VvW9bWxtefPFFvP7667DZbKirq8Pq1av9cYhE5Ae8xUZEIS0rKws7duwAALz66quoqqqCwWDA5s2bAQAVFRWorq7GyZMncffdd+PDDz9EdnY23njjDWUfn332GW6++Wb8+uuvSE1NndX7DgwMYOHChXjkkUcQHR2NxMREZGdnz/0BEpFf8AoSEYW0zMxM5Xl4eDhuvPFGZGRkKMuMRiMAwOFwAAC6urrQ2NiofKdJq9Vi+fLlAIC+vr5Zv++DDz6IxMREJCcno7i4GF988YVylYqI5j8WSEQU0tRqtddrlUrltWxqdpzH4wEAjI2N4dFHH0VnZ6fX4/Tp01d0iyw6OhonTpxAbW0t4uLiUFFRgaysLDidzqs/KCLyO95iIyKaZsWKFfj6669xyy23ICLi6rrIiIgIWCwWWCwWVFZWQq/Xo6GhAU8++eQctZaI/IVXkIiIpikrK8Pw8DCKiopw/Phx9PX14fvvv0dJSQncbves93Pw4EG8//776OzsxJkzZ7Bnzx54PB6kpaX5sfVENFdYIBERTRMfH4/m5ma43W7k5uYiIyMD5eXl0Ov1CAubfZep1+vxzTffYM2aNbjtttvw8ccfo7a2Funp6X5sPRHNFZUE69/OEhGFiJqaGpSXl/9f3y9SqVTYv39/UH4ihYguj1eQiIjmwMjICLRaLbZv3z6r+Oeffz6o//mbiGbGK0hERFfJ5XJhcHAQwIVbawaD4X9u43A4MDo6CgCIi4ub9W+4EVFgsEAiIiIi8sFbbEREREQ+WCARERER+WCBREREROSDBRIRERGRDxZIRERERD5YIBERERH5YIFERERE5IMFEhEREZGP/wCVnyyJSebY9QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "Q_SEI_n = sol5[\"Loss of capacity to negative SEI [A.h]\"].entries\n", + "Q_SEI_p = sol5[\"Loss of capacity to positive SEI [A.h]\"].entries\n", + "Q_SEI_cr = sol5[\"Loss of capacity to positive SEI on cracks [A.h]\"].entries\n", + "Q_pl = sol5[\"Loss of capacity to positive lithium plating [A.h]\"].entries\n", + "plt.figure()\n", + "plt.plot(t, Q_SEI_n, label=\"Negative SEI\")\n", + "plt.plot(t, Q_SEI_p, label=\"Positive SEI\")\n", + "plt.plot(t, Q_SEI_cr, label=\"SEI on cracks\")\n", + "plt.plot(t, Q_pl, label=\"Lithium plating\")\n", + "plt.xlabel(\"Time [s]\")\n", + "plt.ylabel(\"Loss of lithium inventory [A.h]\")\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "5f326c29-b3da-4932-a9de-240346e908a6", + "metadata": {}, + "source": [ + "SEI on the porous electrode has a smaller effect on the cell resistance, because it is spread over the microstructure and is therefore much thinner." + ] + }, + { + "cell_type": "code", + "execution_count": 11, "id": "faa82d38", "metadata": {}, "outputs": [ @@ -344,16 +414,17 @@ "text": [ "[1] Weilong Ai, Ludwig Kraft, Johannes Sturm, Andreas Jossen, and Billy Wu. Electrochemical thermal-mechanical modelling of stress inhomogeneity in lithium-ion pouch cells. Journal of The Electrochemical Society, 167(1):013512, 2019. doi:10.1149/2.0122001JES.\n", "[2] Joel A. E. Andersson, Joris Gillis, Greg Horn, James B. Rawlings, and Moritz Diehl. CasADi – A software framework for nonlinear optimization and optimal control. Mathematical Programming Computation, 11(1):1–36, 2019. doi:10.1007/s12532-018-0139-4.\n", - "[3] Chang-Hui Chen, Ferran Brosa Planella, Kieran O'Regan, Dominika Gastol, W. Dhammika Widanage, and Emma Kendrick. Development of Experimental Techniques for Parameterization of Multi-scale Lithium-ion Battery Models. Journal of The Electrochemical Society, 167(8):080534, 2020. doi:10.1149/1945-7111/ab9050.\n", - "[4] Rutooj Deshpande, Mark Verbrugge, Yang-Tse Cheng, John Wang, and Ping Liu. Battery cycle life prediction with coupled chemical degradation and fatigue mechanics. Journal of the Electrochemical Society, 159(10):A1730, 2012. doi:10.1149/2.049210jes.\n", - "[5] Marc Doyle, Thomas F. Fuller, and John Newman. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. Journal of the Electrochemical society, 140(6):1526–1533, 1993. doi:10.1149/1.2221597.\n", - "[6] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, and others. Array programming with NumPy. Nature, 585(7825):357–362, 2020. doi:10.1038/s41586-020-2649-2.\n", - "[7] Scott G. Marquis. Long-term degradation of lithium-ion batteries. PhD thesis, University of Oxford, 2020.\n", - "[8] Simon E. J. O'Kane, Ian D. Campbell, Mohamed W. J. Marzook, Gregory J. Offer, and Monica Marinescu. Physical origin of the differential voltage minimum associated with lithium plating in li-ion batteries. Journal of The Electrochemical Society, 167(9):090540, may 2020. URL: https://doi.org/10.1149/1945-7111/ab90ac, doi:10.1149/1945-7111/ab90ac.\n", - "[9] Simon E. J. O'Kane, Weilong Ai, Ganesh Madabattula, Diego Alonso-Alvarez, Robert Timms, Valentin Sulzer, Jacqueline Sophie Edge, Billy Wu, Gregory J. Offer, and Monica Marinescu. Lithium-ion battery degradation: how to model it. Phys. Chem. Chem. Phys., 24:7909-7922, 2022. URL: http://dx.doi.org/10.1039/D2CP00417H, doi:10.1039/D2CP00417H.\n", - "[10] Valentin Sulzer, Scott G. Marquis, Robert Timms, Martin Robinson, and S. Jon Chapman. Python Battery Mathematical Modelling (PyBaMM). Journal of Open Research Software, 9(1):14, 2021. doi:10.5334/jors.309.\n", - "[11] Lars Ole Valøen and Jan N Reimers. Transport properties of lipf6-based li-ion battery electrolytes. Journal of The Electrochemical Society, 152(5):A882, 2005.\n", - "[12] Shanshan Xu, Kuan-Hung Chen, Neil P Dasgupta, Jason B Siegel, and Anna G Stefanopoulou. Evolution of dead lithium growth in lithium metal batteries: experimentally validated model of the apparent capacity loss. Journal of The Electrochemical Society, 166(14):A3456, 2019.\n", + "[3] Von DAG Bruggeman. Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. i. dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen. Annalen der physik, 416(7):636–664, 1935.\n", + "[4] Chang-Hui Chen, Ferran Brosa Planella, Kieran O'Regan, Dominika Gastol, W. Dhammika Widanage, and Emma Kendrick. Development of Experimental Techniques for Parameterization of Multi-scale Lithium-ion Battery Models. Journal of The Electrochemical Society, 167(8):080534, 2020. doi:10.1149/1945-7111/ab9050.\n", + "[5] Rutooj Deshpande, Mark Verbrugge, Yang-Tse Cheng, John Wang, and Ping Liu. Battery cycle life prediction with coupled chemical degradation and fatigue mechanics. Journal of the Electrochemical Society, 159(10):A1730, 2012. doi:10.1149/2.049210jes.\n", + "[6] Marc Doyle, Thomas F. Fuller, and John Newman. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. Journal of the Electrochemical society, 140(6):1526–1533, 1993. doi:10.1149/1.2221597.\n", + "[7] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, and others. Array programming with NumPy. Nature, 585(7825):357–362, 2020. doi:10.1038/s41586-020-2649-2.\n", + "[8] Scott G. Marquis. Long-term degradation of lithium-ion batteries. PhD thesis, University of Oxford, 2020.\n", + "[9] Simon E. J. O'Kane, Ian D. Campbell, Mohamed W. J. Marzook, Gregory J. Offer, and Monica Marinescu. Physical origin of the differential voltage minimum associated with lithium plating in li-ion batteries. Journal of The Electrochemical Society, 167(9):090540, may 2020. URL: https://doi.org/10.1149/1945-7111/ab90ac, doi:10.1149/1945-7111/ab90ac.\n", + "[10] Simon E. J. O'Kane, Weilong Ai, Ganesh Madabattula, Diego Alonso-Alvarez, Robert Timms, Valentin Sulzer, Jacqueline Sophie Edge, Billy Wu, Gregory J. Offer, and Monica Marinescu. Lithium-ion battery degradation: how to model it. Phys. Chem. Chem. Phys., 24:7909-7922, 2022. URL: http://dx.doi.org/10.1039/D2CP00417H, doi:10.1039/D2CP00417H.\n", + "[11] Valentin Sulzer, Scott G. Marquis, Robert Timms, Martin Robinson, and S. Jon Chapman. Python Battery Mathematical Modelling (PyBaMM). Journal of Open Research Software, 9(1):14, 2021. doi:10.5334/jors.309.\n", + "[12] Lars Ole Valøen and Jan N Reimers. Transport properties of lipf6-based li-ion battery electrolytes. Journal of The Electrochemical Society, 152(5):A882, 2005.\n", + "[13] Shanshan Xu, Kuan-Hung Chen, Neil P Dasgupta, Jason B Siegel, and Anna G Stefanopoulou. Evolution of dead lithium growth in lithium metal batteries: experimentally validated model of the apparent capacity loss. Journal of The Electrochemical Society, 166(14):A3456, 2019.\n", "\n" ] } @@ -387,7 +458,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.10" + "version": "3.10.12" } }, "nbformat": 4, diff --git a/docs/source/examples/notebooks/models/lithium-plating.ipynb b/docs/source/examples/notebooks/models/lithium-plating.ipynb index e84fdbb1ac..184f12638d 100644 --- a/docs/source/examples/notebooks/models/lithium-plating.ipynb +++ b/docs/source/examples/notebooks/models/lithium-plating.ipynb @@ -46,9 +46,9 @@ "parameter_values = pybamm.ParameterValues(\"OKane2022\")\n", "parameter_values.update({\"Ambient temperature [K]\": 268.15})\n", "parameter_values.update({\"Upper voltage cut-off [V]\": 4.21})\n", - "# parameter_values.update({\"Lithium plating kinetic rate constant [m.s-1]\": 1E-9})\n", - "parameter_values.update({\"Lithium plating transfer coefficient\": 0.5})\n", - "parameter_values.update({\"Dead lithium decay constant [s-1]\": 1e-4})" + "# parameter_values.update({\"Negative lithium plating kinetic rate constant [m.s-1]\": 1E-9})\n", + "parameter_values.update({\"Negative lithium plating transfer coefficient\": 0.5})\n", + "parameter_values.update({\"Negative dead lithium decay constant [s-1]\": 1e-4})" ] }, { @@ -366,7 +366,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.10.12" }, "toc": { "base_numbering": 1, diff --git a/docs/source/examples/notebooks/models/loss_of_active_materials.ipynb b/docs/source/examples/notebooks/models/loss_of_active_materials.ipynb index 1ce1cca826..dcb1dac7c5 100644 --- a/docs/source/examples/notebooks/models/loss_of_active_materials.ipynb +++ b/docs/source/examples/notebooks/models/loss_of_active_materials.ipynb @@ -632,7 +632,7 @@ "# Changing secondary SEI solvent diffusivity to show different degradation between phases\n", "parameter_values.update(\n", " {\n", - " \"Secondary: Outer SEI solvent diffusivity [m2.s-1]\": 2.5000000000000002e-24,\n", + " \"Secondary: Negative outer SEI solvent diffusivity [m2.s-1]\": 2.5000000000000002e-24,\n", " }\n", ")\n", "\n", @@ -722,7 +722,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.10.12" }, "toc": { "base_numbering": 1, diff --git a/docs/source/examples/notebooks/simulations_and_experiments/rpt-experiment.ipynb b/docs/source/examples/notebooks/simulations_and_experiments/rpt-experiment.ipynb index fe06dadffe..5d7bd092b4 100644 --- a/docs/source/examples/notebooks/simulations_and_experiments/rpt-experiment.ipynb +++ b/docs/source/examples/notebooks/simulations_and_experiments/rpt-experiment.ipynb @@ -57,7 +57,7 @@ "source": [ "model = pybamm.lithium_ion.SPM({\"SEI\": \"ec reaction limited\"})\n", "parameter_values = pybamm.ParameterValues(\"Mohtat2020\")\n", - "parameter_values.update({\"SEI kinetic rate constant [m.s-1]\": 1e-14})" + "parameter_values.update({\"Negative SEI kinetic rate constant [m.s-1]\": 1e-14})" ] }, { @@ -450,7 +450,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.10" + "version": "3.10.12" } }, "nbformat": 4, diff --git a/docs/source/examples/notebooks/simulations_and_experiments/simulating-long-experiments.ipynb b/docs/source/examples/notebooks/simulations_and_experiments/simulating-long-experiments.ipynb index c7f1f0e634..a3e97facfd 100644 --- a/docs/source/examples/notebooks/simulations_and_experiments/simulating-long-experiments.ipynb +++ b/docs/source/examples/notebooks/simulations_and_experiments/simulating-long-experiments.ipynb @@ -64,7 +64,7 @@ "outputs": [], "source": [ "parameter_values = pybamm.ParameterValues(\"Mohtat2020\")\n", - "parameter_values.update({\"SEI kinetic rate constant [m.s-1]\": 1e-14})\n", + "parameter_values.update({\"Negative SEI kinetic rate constant [m.s-1]\": 1e-14})\n", "spm = pybamm.lithium_ion.SPM({\"SEI\": \"ec reaction limited\"})" ] }, @@ -1950,7 +1950,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.10" + "version": "3.10.12" }, "toc": { "base_numbering": 1, diff --git a/src/pybamm/input/parameters/lithium_ion/Ai2020.py b/src/pybamm/input/parameters/lithium_ion/Ai2020.py index f578d59fa5..d80f20cee2 100644 --- a/src/pybamm/input/parameters/lithium_ion/Ai2020.py +++ b/src/pybamm/input/parameters/lithium_ion/Ai2020.py @@ -533,28 +533,28 @@ def get_parameter_values(): return { "chemistry": "lithium_ion", # sei - "Ratio of lithium moles to SEI moles": 2.0, - "Inner SEI reaction proportion": 0.5, - "Inner SEI partial molar volume [m3.mol-1]": 9.585e-05, - "Outer SEI partial molar volume [m3.mol-1]": 9.585e-05, - "SEI reaction exchange current density [A.m-2]": 1.5e-07, - "SEI resistivity [Ohm.m]": 200000.0, - "Outer SEI solvent diffusivity [m2.s-1]": 2.5000000000000002e-22, - "Bulk solvent concentration [mol.m-3]": 2636.0, - "Inner SEI open-circuit potential [V]": 0.1, - "Outer SEI open-circuit potential [V]": 0.8, - "Inner SEI electron conductivity [S.m-1]": 8.95e-14, - "Inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, - "Lithium interstitial reference concentration [mol.m-3]": 15.0, - "Initial inner SEI thickness [m]": 2.5e-09, - "Initial outer SEI thickness [m]": 2.5e-09, - "Initial inner SEI on cracks thickness [m]": 2.5e-13, # avoid division by zero - "Initial outer SEI on cracks thickness [m]": 2.5e-13, # avoid division by zero - "EC initial concentration in electrolyte [mol.m-3]": 4541.0, - "EC diffusivity [m2.s-1]": 2e-18, - "SEI kinetic rate constant [m.s-1]": 1e-12, - "SEI open-circuit potential [V]": 0.4, - "SEI growth activation energy [J.mol-1]": 0.0, + "Ratio of lithium moles to negative SEI moles": 2.0, + "Negative inner SEI reaction proportion": 0.5, + "Negative inner SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Negative outer SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Negative SEI reaction exchange current density [A.m-2]": 1.5e-07, + "Negative SEI resistivity [Ohm.m]": 200000.0, + "Negative outer SEI solvent diffusivity [m2.s-1]": 2.5000000000000002e-22, + "Bulk solvent concentration for negative SEI [mol.m-3]": 2636.0, + "Negative inner SEI open-circuit potential [V]": 0.1, + "Negative outer SEI open-circuit potential [V]": 0.8, + "Negative inner SEI electron conductivity [S.m-1]": 8.95e-14, + "Negative inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, + "Negative lithium interstitial reference concentration [mol.m-3]": 15.0, + "Initial negative inner SEI thickness [m]": 2.5e-09, + "Initial negative outer SEI thickness [m]": 2.5e-09, + "Initial negative inner SEI on cracks thickness [m]": 2.5e-13, + "Initial negative outer SEI on cracks thickness [m]": 2.5e-13, + "Negative EC initial concentration in electrolyte [mol.m-3]": 4541.0, + "EC diffusivity through negative SEI [m2.s-1]": 2e-18, + "Negative SEI kinetic rate constant [m.s-1]": 1e-12, + "Negative SEI open-circuit potential [V]": 0.4, + "Negative SEI growth activation energy [J.mol-1]": 0.0, "Negative electrode reaction-driven LAM factor [m3.mol-1]": 0.0, "Positive electrode reaction-driven LAM factor [m3.mol-1]": 0.0, # cell diff --git a/src/pybamm/input/parameters/lithium_ion/Chen2020.py b/src/pybamm/input/parameters/lithium_ion/Chen2020.py index b3655513a1..1bd0fb279f 100644 --- a/src/pybamm/input/parameters/lithium_ion/Chen2020.py +++ b/src/pybamm/input/parameters/lithium_ion/Chen2020.py @@ -226,26 +226,26 @@ def get_parameter_values(): return { "chemistry": "lithium_ion", # sei - "Ratio of lithium moles to SEI moles": 2.0, - "Inner SEI reaction proportion": 0.5, - "Inner SEI partial molar volume [m3.mol-1]": 9.585e-05, - "Outer SEI partial molar volume [m3.mol-1]": 9.585e-05, - "SEI reaction exchange current density [A.m-2]": 1.5e-07, - "SEI resistivity [Ohm.m]": 200000.0, - "Outer SEI solvent diffusivity [m2.s-1]": 2.5000000000000002e-22, - "Bulk solvent concentration [mol.m-3]": 2636.0, - "Inner SEI open-circuit potential [V]": 0.1, - "Outer SEI open-circuit potential [V]": 0.8, - "Inner SEI electron conductivity [S.m-1]": 8.95e-14, - "Inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, - "Lithium interstitial reference concentration [mol.m-3]": 15.0, - "Initial inner SEI thickness [m]": 2.5e-09, - "Initial outer SEI thickness [m]": 2.5e-09, - "EC initial concentration in electrolyte [mol.m-3]": 4541.0, - "EC diffusivity [m2.s-1]": 2e-18, - "SEI kinetic rate constant [m.s-1]": 1e-12, - "SEI open-circuit potential [V]": 0.4, - "SEI growth activation energy [J.mol-1]": 0.0, + "Ratio of lithium moles to negative SEI moles": 2.0, + "Negative inner SEI reaction proportion": 0.5, + "Negative inner SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Negative outer SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Negative SEI reaction exchange current density [A.m-2]": 1.5e-07, + "Negative SEI resistivity [Ohm.m]": 200000.0, + "Negative outer SEI solvent diffusivity [m2.s-1]": 2.5000000000000002e-22, + "Bulk solvent concentration for negative SEI [mol.m-3]": 2636.0, + "Negative inner SEI open-circuit potential [V]": 0.1, + "Negative outer SEI open-circuit potential [V]": 0.8, + "Negative inner SEI electron conductivity [S.m-1]": 8.95e-14, + "Negative inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, + "Negative lithium interstitial reference concentration [mol.m-3]": 15.0, + "Initial negative inner SEI thickness [m]": 2.5e-09, + "Initial negative outer SEI thickness [m]": 2.5e-09, + "Negative EC initial concentration in electrolyte [mol.m-3]": 4541.0, + "EC diffusivity through negative SEI [m2.s-1]": 2e-18, + "Negative SEI kinetic rate constant [m.s-1]": 1e-12, + "Negative SEI open-circuit potential [V]": 0.4, + "Negative SEI growth activation energy [J.mol-1]": 0.0, "Negative electrode reaction-driven LAM factor [m3.mol-1]": 0.0, "Positive electrode reaction-driven LAM factor [m3.mol-1]": 0.0, # cell diff --git a/src/pybamm/input/parameters/lithium_ion/Chen2020_composite.py b/src/pybamm/input/parameters/lithium_ion/Chen2020_composite.py index 69b622a7c5..3b4a3cc2b0 100644 --- a/src/pybamm/input/parameters/lithium_ion/Chen2020_composite.py +++ b/src/pybamm/input/parameters/lithium_ion/Chen2020_composite.py @@ -327,46 +327,51 @@ def get_parameter_values(): return { "chemistry": "lithium_ion", # sei - "Primary: Ratio of lithium moles to SEI moles": 2.0, - "Primary: Inner SEI reaction proportion": 0.5, - "Primary: Inner SEI partial molar volume [m3.mol-1]": 9.585e-05, - "Primary: Outer SEI partial molar volume [m3.mol-1]": 9.585e-05, - "Primary: SEI reaction exchange current density [A.m-2]": 1.5e-07, - "Primary: SEI resistivity [Ohm.m]": 200000.0, - "Primary: Outer SEI solvent diffusivity [m2.s-1]": 2.5000000000000002e-22, - "Primary: Bulk solvent concentration [mol.m-3]": 2636.0, - "Primary: Inner SEI open-circuit potential [V]": 0.1, - "Primary: Outer SEI open-circuit potential [V]": 0.8, - "Primary: Inner SEI electron conductivity [S.m-1]": 8.95e-14, - "Primary: Inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, - "Primary: Lithium interstitial reference concentration [mol.m-3]": 15.0, - "Primary: Initial inner SEI thickness [m]": 2.5e-09, - "Primary: Initial outer SEI thickness [m]": 2.5e-09, - "Primary: EC initial concentration in electrolyte [mol.m-3]": 4541.0, - "Primary: EC diffusivity [m2.s-1]": 2e-18, - "Primary: SEI kinetic rate constant [m.s-1]": 1e-12, - "Primary: SEI open-circuit potential [V]": 0.4, - "Primary: SEI growth activation energy [J.mol-1]": 0.0, - "Secondary: Ratio of lithium moles to SEI moles": 2.0, - "Secondary: Inner SEI reaction proportion": 0.5, - "Secondary: Inner SEI partial molar volume [m3.mol-1]": 9.585e-05, - "Secondary: Outer SEI partial molar volume [m3.mol-1]": 9.585e-05, - "Secondary: SEI reaction exchange current density [A.m-2]": 1.5e-07, - "Secondary: SEI resistivity [Ohm.m]": 200000.0, - "Secondary: Outer SEI solvent diffusivity [m2.s-1]": 2.5000000000000002e-22, - "Secondary: Bulk solvent concentration [mol.m-3]": 2636.0, - "Secondary: Inner SEI open-circuit potential [V]": 0.1, - "Secondary: Outer SEI open-circuit potential [V]": 0.8, - "Secondary: Inner SEI electron conductivity [S.m-1]": 8.95e-14, - "Secondary: Inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, - "Secondary: Lithium interstitial reference concentration [mol.m-3]": 15.0, - "Secondary: Initial inner SEI thickness [m]": 2.5e-09, - "Secondary: Initial outer SEI thickness [m]": 2.5e-09, - "Secondary: EC initial concentration in electrolyte [mol.m-3]": 4541.0, - "Secondary: EC diffusivity [m2.s-1]": 2e-18, - "Secondary: SEI kinetic rate constant [m.s-1]": 1e-12, - "Secondary: SEI open-circuit potential [V]": 0.4, - "Secondary: SEI growth activation energy [J.mol-1]": 0.0, + "Primary: Ratio of lithium moles to negative SEI moles": 2.0, + "Primary: Negative inner SEI reaction proportion": 0.5, + "Primary: Negative inner SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Primary: Negative outer SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Primary: Negative SEI reaction exchange current density [A.m-2]": 1.5e-07, + "Primary: Negative SEI resistivity [Ohm.m]": 200000.0, + "Primary: Negative outer SEI solvent diffusivity [m2.s-1]" + "": 2.5000000000000002e-22, + "Primary: Bulk solvent concentration for negative SEI [mol.m-3]": 2636.0, + "Primary: Negative inner SEI open-circuit potential [V]": 0.1, + "Primary: Negative outer SEI open-circuit potential [V]": 0.8, + "Primary: Negative inner SEI electron conductivity [S.m-1]": 8.95e-14, + "Primary: Negative inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, + "Primary: Negative lithium interstitial reference concentration [mol.m-3]" + "": 15.0, + "Primary: Initial negative inner SEI thickness [m]": 2.5e-09, + "Primary: Initial negative outer SEI thickness [m]": 2.5e-09, + "Primary: Negative EC initial concentration in electrolyte [mol.m-3]": 4541.0, + "Primary: EC diffusivity through negative SEI [m2.s-1]": 2e-18, + "Primary: Negative SEI kinetic rate constant [m.s-1]": 1e-12, + "Primary: Negative SEI open-circuit potential [V]": 0.4, + "Primary: Negative SEI growth activation energy [J.mol-1]": 0.0, + "Secondary: Ratio of lithium moles to negative SEI moles": 2.0, + "Secondary: Negative inner SEI reaction proportion": 0.5, + "Secondary: Negative inner SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Secondary: Negative outer SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Secondary: Negative SEI reaction exchange current density [A.m-2]": 1.5e-07, + "Secondary: Negative SEI resistivity [Ohm.m]": 200000.0, + "Secondary: Negative outer SEI solvent diffusivity [m2.s-1]" + "": 2.5000000000000002e-22, + "Secondary: Bulk solvent concentration for negative SEI [mol.m-3]": 2636.0, + "Secondary: Negative inner SEI open-circuit potential [V]": 0.1, + "Secondary: Negative outer SEI open-circuit potential [V]": 0.8, + "Secondary: Negative inner SEI electron conductivity [S.m-1]": 8.95e-14, + "Secondary: Negative inner SEI lithium interstitial diffusivity [m2.s-1]" + "": 1e-20, + "Secondary: Negative lithium interstitial reference concentration [mol.m-3]" + "": 15.0, + "Secondary: Initial negative inner SEI thickness [m]": 2.5e-09, + "Secondary: Initial negative outer SEI thickness [m]": 2.5e-09, + "Secondary: Negative EC initial concentration in electrolyte [mol.m-3]": 4541.0, + "Secondary: EC diffusivity through negative SEI [m2.s-1]": 2e-18, + "Secondary: Negative SEI kinetic rate constant [m.s-1]": 1e-12, + "Secondary: Negative SEI open-circuit potential [V]": 0.4, + "Secondary: Negative SEI growth activation energy [J.mol-1]": 0.0, "Positive electrode reaction-driven LAM factor [m3.mol-1]": 0.0, # cell "Negative current collector thickness [m]": 1.2e-05, diff --git a/src/pybamm/input/parameters/lithium_ion/Chen2020_composite_halfcell.py b/src/pybamm/input/parameters/lithium_ion/Chen2020_composite_halfcell.py new file mode 100644 index 0000000000..30234c7c35 --- /dev/null +++ b/src/pybamm/input/parameters/lithium_ion/Chen2020_composite_halfcell.py @@ -0,0 +1,441 @@ +import pybamm +import os +import numpy as np + + +def li_metal_electrolyte_exchange_current_density_Xu2019(c_e, c_Li, T): + """ + Exchange-current density for Butler-Volmer reactions between li metal and LiPF6 in + EC:DMC. + + References + ---------- + .. [1] Xu, Shanshan, Chen, Kuan-Hung, Dasgupta, Neil P., Siegel, Jason B. and + Stefanopoulou, Anna G. "Evolution of Dead Lithium Growth in Lithium Metal Batteries: + Experimentally Validated Model of the Apparent Capacity Loss." Journal of The + Electrochemical Society 166.14 (2019): A3456-A3463. + + Parameters + ---------- + c_e : :class:`pybamm.Symbol` + Electrolyte concentration [mol.m-3] + c_Li : :class:`pybamm.Symbol` + Pure metal lithium concentration [mol.m-3] + T : :class:`pybamm.Symbol` + Temperature [K] + + Returns + ------- + :class:`pybamm.Symbol` + Exchange-current density [A.m-2] + """ + m_ref = 3.5e-8 * pybamm.constants.F # (A/m2)(mol/m3) - includes ref concentrations + + return m_ref * c_Li**0.7 * c_e**0.3 + + +def graphite_LGM50_electrolyte_exchange_current_density_Chen2020( + c_e, c_s_surf, c_s_max, T +): + """ + Exchange-current density for Butler-Volmer reactions between graphite and LiPF6 in + EC:DMC. + + References + ---------- + .. [1] Chang-Hui Chen, Ferran Brosa Planella, Kieran O’Regan, Dominika Gastol, W. + Dhammika Widanage, and Emma Kendrick. "Development of Experimental Techniques for + Parameterization of Multi-scale Lithium-ion Battery Models." Journal of the + Electrochemical Society 167 (2020): 080534. + + Parameters + ---------- + c_e : :class:`pybamm.Symbol` + Electrolyte concentration [mol.m-3] + c_s_surf : :class:`pybamm.Symbol` + Particle concentration [mol.m-3] + c_s_max : :class:`pybamm.Symbol` + Maximum particle concentration [mol.m-3] + T : :class:`pybamm.Symbol` + Temperature [K] + + Returns + ------- + :class:`pybamm.Symbol` + Exchange-current density [A.m-2] + """ + m_ref = 6.48e-7 # (A/m2)(m3/mol)**1.5 - includes ref concentrations + E_r = 35000 + arrhenius = np.exp(E_r / pybamm.constants.R * (1 / 298.15 - 1 / T)) + + return m_ref * arrhenius * c_e**0.5 * c_s_surf**0.5 * (c_s_max - c_s_surf) ** 0.5 + + +def silicon_ocp_lithiation_Mark2016(sto): + """ + silicon Open-circuit Potential (OCP) as a a function of the + stoichiometry. The fit is taken from the Enertech cell [1], which is only accurate + for 0 < sto < 1. + + References + ---------- + .. [1] Verbrugge M, Baker D, Xiao X. Formulation for the treatment of multiple + electrochemical reactions and associated speciation for the Lithium-Silicon + electrode[J]. Journal of The Electrochemical Society, 2015, 163(2): A262. + + Parameters + ---------- + sto: double + stoichiometry of material (li-fraction) + + Returns + ------- + :class:`pybamm.Symbol` + OCP [V] + """ + p1 = -96.63 + p2 = 372.6 + p3 = -587.6 + p4 = 489.9 + p5 = -232.8 + p6 = 62.99 + p7 = -9.286 + p8 = 0.8633 + + U_lithiation = ( + p1 * sto**7 + + p2 * sto**6 + + p3 * sto**5 + + p4 * sto**4 + + p5 * sto**3 + + p6 * sto**2 + + p7 * sto + + p8 + ) + return U_lithiation + + +def silicon_ocp_delithiation_Mark2016(sto): + """ + silicon Open-circuit Potential (OCP) as a a function of the + stoichiometry. The fit is taken from the Enertech cell [1], which is only accurate + for 0 < sto < 1. + + References + ---------- + .. [1] Verbrugge M, Baker D, Xiao X. Formulation for the treatment of multiple + electrochemical reactions and associated speciation for the Lithium-Silicon + electrode[J]. Journal of The Electrochemical Society, 2015, 163(2): A262. + + Parameters + ---------- + sto: double + stoichiometry of material (li-fraction) + + Returns + ------- + :class:`pybamm.Symbol` + OCP [V] + """ + p1 = -51.02 + p2 = 161.3 + p3 = -205.7 + p4 = 140.2 + p5 = -58.76 + p6 = 16.87 + p7 = -3.792 + p8 = 0.9937 + + U_delithiation = ( + p1 * sto**7 + + p2 * sto**6 + + p3 * sto**5 + + p4 * sto**4 + + p5 * sto**3 + + p6 * sto**2 + + p7 * sto + + p8 + ) + return U_delithiation + + +def silicon_LGM50_electrolyte_exchange_current_density_Chen2020( + c_e, c_s_surf, c_s_max, T +): + """ + Exchange-current density for Butler-Volmer reactions between silicon and LiPF6 in + EC:DMC. + + References + ---------- + .. [1] Chang-Hui Chen, Ferran Brosa Planella, Kieran O’Regan, Dominika Gastol, W. + Dhammika Widanage, and Emma Kendrick. "Development of Experimental Techniques for + Parameterization of Multi-scale Lithium-ion Battery Models." Journal of the + Electrochemical Society 167 (2020): 080534. + + Parameters + ---------- + c_e : :class:`pybamm.Symbol` + Electrolyte concentration [mol.m-3] + c_s_surf : :class:`pybamm.Symbol` + Particle concentration [mol.m-3] + c_s_max : :class:`pybamm.Symbol` + Maximum particle concentration [mol.m-3] + T : :class:`pybamm.Symbol` + Temperature [K] + + Returns + ------- + :class:`pybamm.Symbol` + Exchange-current density [A.m-2] + """ + + m_ref = ( + 6.48e-7 * 28700 / 278000 + ) # (A/m2)(m3/mol)**1.5 - includes ref concentrations + E_r = 35000 + arrhenius = np.exp(E_r / pybamm.constants.R * (1 / 298.15 - 1 / T)) + + return m_ref * arrhenius * c_e**0.5 * c_s_surf**0.5 * (c_s_max - c_s_surf) ** 0.5 + + +def electrolyte_diffusivity_Nyman2008(c_e, T): + """ + Diffusivity of LiPF6 in EC:EMC (3:7) as a function of ion concentration. The data + comes from [1] + + References + ---------- + .. [1] A. Nyman, M. Behm, and G. Lindbergh, "Electrochemical characterisation and + modelling of the mass transport phenomena in LiPF6-EC-EMC electrolyte," + Electrochim. Acta, vol. 53, no. 22, pp. 6356–6365, 2008. + + Parameters + ---------- + c_e: :class:`pybamm.Symbol` + Dimensional electrolyte concentration + T: :class:`pybamm.Symbol` + Dimensional temperature + + Returns + ------- + :class:`pybamm.Symbol` + Solid diffusivity + """ + + D_c_e = 8.794e-11 * (c_e / 1000) ** 2 - 3.972e-10 * (c_e / 1000) + 4.862e-10 + + # Nyman et al. (2008) does not provide temperature dependence + + return D_c_e + + +def electrolyte_conductivity_Nyman2008(c_e, T): + """ + Conductivity of LiPF6 in EC:EMC (3:7) as a function of ion concentration. The data + comes from [1]. + + References + ---------- + .. [1] A. Nyman, M. Behm, and G. Lindbergh, "Electrochemical characterisation and + modelling of the mass transport phenomena in LiPF6-EC-EMC electrolyte," + Electrochim. Acta, vol. 53, no. 22, pp. 6356–6365, 2008. + + Parameters + ---------- + c_e: :class:`pybamm.Symbol` + Dimensional electrolyte concentration + T: :class:`pybamm.Symbol` + Dimensional temperature + + Returns + ------- + :class:`pybamm.Symbol` + Solid diffusivity + """ + + sigma_e = ( + 0.1297 * (c_e / 1000) ** 3 - 2.51 * (c_e / 1000) ** 1.5 + 3.329 * (c_e / 1000) + ) + + # Nyman et al. (2008) does not provide temperature dependence + + return sigma_e + + +# Load data in the appropriate format +path, _ = os.path.split(os.path.abspath(__file__)) +graphite_ocp_Enertech_Ai2020_data = pybamm.parameters.process_1D_data( + "graphite_ocp_Enertech_Ai2020.csv", path=path +) + + +def graphite_ocp_Enertech_Ai2020(sto): + name, (x, y) = graphite_ocp_Enertech_Ai2020_data + return pybamm.Interpolant(x, y, sto, name=name, interpolator="cubic") + + +# Call dict via a function to avoid errors when editing in place +def get_parameter_values(): + """ + Parameters for a composite graphite/silicon negative electrode, from the paper + :footcite:t:`Ai2022`, based on the paper :footcite:t:`Chen2020`, and references + therein. + + SEI parameters are example parameters for composite SEI on silicon/graphite. Both + phases use the same values, from the paper :footcite:t:`Yang2017` + """ + + return { + "chemistry": "lithium_ion", + # sei + "Ratio of lithium moles to negative SEI moles": 2.0, + "Negative inner SEI reaction proportion": 0.5, + "Negative inner SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Negative outer SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Negative SEI reaction exchange current density [A.m-2]": 1.5e-07, + "Negative SEI resistivity [Ohm.m]": 200000.0, + "Negative outer SEI solvent diffusivity [m2.s-1]": 2.5000000000000002e-22, + "Bulk solvent concentration for negative SEI [mol.m-3]": 2636.0, + "Negative inner SEI open-circuit potential [V]": 0.1, + "Negative outer SEI open-circuit potential [V]": 0.8, + "Negative inner SEI electron conductivity [S.m-1]": 8.95e-14, + "Negative inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, + "Negative lithium interstitial reference concentration [mol.m-3]": 15.0, + "Initial negative inner SEI thickness [m]": 2.5e-09, + "Initial negative outer SEI thickness [m]": 2.5e-09, + "Negative EC initial concentration in electrolyte [mol.m-3]": 4541.0, + "EC diffusivity through negative SEI [m2.s-1]": 2e-18, + "Negative SEI kinetic rate constant [m.s-1]": 1e-12, + "Negative SEI open-circuit potential [V]": 0.4, + "Negative SEI growth activation energy [J.mol-1]": 0.0, + "Primary: Ratio of lithium moles to positive SEI moles": 2.0, + "Primary: Positive inner SEI reaction proportion": 0.5, + "Primary: Positive inner SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Primary: Posituve outer SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Primary: Positive SEI reaction exchange current density [A.m-2]": 1.5e-07, + "Primary: Positive SEI resistivity [Ohm.m]": 200000.0, + "Primary: Positive outer SEI solvent diffusivity [m2.s-1]" + "": 2.5000000000000002e-22, + "Primary: Bulk solvent concentration for positive SEI [mol.m-3]": 2636.0, + "Primary: Positive inner SEI open-circuit potential [V]": 0.1, + "Primary: Positive outer SEI open-circuit potential [V]": 0.8, + "Primary: Positive inner SEI electron conductivity [S.m-1]": 8.95e-14, + "Primary: Positive inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, + "Primary: Positive lithium interstitial reference concentration [mol.m-3]" + "": 15.0, + "Primary: Initial positive inner SEI thickness [m]": 2.5e-09, + "Primary: Initial positive outer SEI thickness [m]": 2.5e-09, + "Primary: Positive EC initial concentration in electrolyte [mol.m-3]": 4541.0, + "Primary: EC diffusivity through positive SEI [m2.s-1]": 2e-18, + "Primary: Positive SEI kinetic rate constant [m.s-1]": 1e-12, + "Primary: Positive SEI open-circuit potential [V]": 0.4, + "Primary: Positive SEI growth activation energy [J.mol-1]": 0.0, + "Secondary: Ratio of lithium moles to positive SEI moles": 2.0, + "Secondary: Positive inner SEI reaction proportion": 0.5, + "Secondary: Positive inner SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Secondary: Positive outer SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Secondary: Positive SEI reaction exchange current density [A.m-2]": 1.5e-07, + "Secondary: Positive SEI resistivity [Ohm.m]": 200000.0, + "Secondary: Positive outer SEI solvent diffusivity [m2.s-1]" + "": 2.5000000000000002e-22, + "Secondary: Bulk solvent concentration for positive SEI [mol.m-3]": 2636.0, + "Secondary: Positive inner SEI open-circuit potential [V]": 0.1, + "Secondary: Positive outer SEI open-circuit potential [V]": 0.8, + "Secondary: Positive inner SEI electron conductivity [S.m-1]": 8.95e-14, + "Secondary: Positive inner SEI lithium interstitial diffusivity [m2.s-1]" + "": 1e-20, + "Secondary: Positive lithium interstitial reference concentration [mol.m-3]" + "": 15.0, + "Secondary: Initial positive inner SEI thickness [m]": 2.5e-09, + "Secondary: Initial positive outer SEI thickness [m]": 2.5e-09, + "Secondary: Positive EC initial concentration in electrolyte [mol.m-3]": 4541.0, + "Secondary: EC diffusivity through positive SEI [m2.s-1]": 2e-18, + "Secondary: Positive SEI kinetic rate constant [m.s-1]": 1e-12, + "Secondary: Positive SEI open-circuit potential [V]": 0.4, + "Secondary: Positive SEI growth activation energy [J.mol-1]": 0.0, + # cell + "Negative current collector thickness [m]": 1.2e-05, + "Negative electrode thickness [m]": 0.0007, + "Positive current collector thickness [m]": 1.2e-05, + "Positive electrode thickness [m]": 8.52e-05, + "Separator thickness [m]": 1.2e-05, + "Electrode height [m]": 0.065, + "Electrode width [m]": 1.58, + "Cell cooling surface area [m2]": 0.00531, + "Cell volume [m3]": 2.42e-05, + "Cell thermal expansion coefficient [m.K-1]": 1.1e-06, + "Positive current collector conductivity [S.m-1]": 58411000.0, + "Positive current collector density [kg.m-3]": 8960.0, + "Positive current collector specific heat capacity [J.kg-1.K-1]": 385.0, + "Positive current collector thermal conductivity [W.m-1.K-1]": 401.0, + "Nominal cell capacity [A.h]": 5.0, + "Current function [A]": 5.0, + "Contact resistance [Ohm]": 0, + # negative electrode + "Negative electrode OCP [V]": 0.0, + "Negative electrode conductivity [S.m-1]": 10776000.0, + "Negative electrode OCP entropic change [V.K-1]": 0.0, + "Exchange-current density for lithium metal electrode [A.m-2]" + "": li_metal_electrolyte_exchange_current_density_Xu2019, + "Negative electrode charge transfer coefficient": 0.5, + "Negative electrode double-layer capacity [F.m-2]": 0.2, + # positive electrode + "Positive electrode conductivity [S.m-1]": 215.0, + "Primary: Maximum concentration in positive electrode [mol.m-3]": 28700.0, + "Primary: Initial concentration in positive electrode [mol.m-3]": 27700.0, + "Primary: Positive particle diffusivity [m2.s-1]": 5.5e-14, + "Primary: Positive electrode OCP [V]": graphite_ocp_Enertech_Ai2020, + "Positive electrode porosity": 0.25, + "Primary: Positive electrode active material volume fraction": 0.735, + "Primary: Positive particle radius [m]": 5.86e-06, + "Positive electrode Bruggeman coefficient (electrolyte)": 1.5, + "Positive electrode Bruggeman coefficient (electrode)": 0, + "Positive electrode charge transfer coefficient": 0.5, + "Positive electrode double-layer capacity [F.m-2]": 0.2, + "Primary: Positive electrode exchange-current density [A.m-2]" + "": graphite_LGM50_electrolyte_exchange_current_density_Chen2020, + "Primary: Positive electrode density [kg.m-3]": 1657.0, + "Positive electrode specific heat capacity [J.kg-1.K-1]": 700.0, + "Positive electrode thermal conductivity [W.m-1.K-1]": 1.7, + "Primary: Positive electrode OCP entropic change [V.K-1]": 0.0, + "Secondary: Maximum concentration in positive electrode [mol.m-3]": 278000.0, + "Secondary: Initial concentration in positive electrode [mol.m-3]": 276610.0, + "Secondary: Positive particle diffusivity [m2.s-1]": 1.67e-14, + "Secondary: Positive electrode lithiation OCP [V]" + "": silicon_ocp_lithiation_Mark2016, + "Secondary: Positive electrode delithiation OCP [V]" + "": silicon_ocp_delithiation_Mark2016, + "Secondary: Positive electrode active material volume fraction": 0.015, + "Secondary: Positive particle radius [m]": 1.52e-06, + "Secondary: Positive electrode exchange-current density [A.m-2]" + "": silicon_LGM50_electrolyte_exchange_current_density_Chen2020, + "Secondary: Positive electrode density [kg.m-3]": 2650.0, + "Secondary: Positive electrode OCP entropic change [V.K-1]": 0.0, + # separator + "Separator porosity": 0.47, + "Separator Bruggeman coefficient (electrolyte)": 1.5, + "Separator density [kg.m-3]": 397.0, + "Separator specific heat capacity [J.kg-1.K-1]": 700.0, + "Separator thermal conductivity [W.m-1.K-1]": 0.16, + # electrolyte + "Initial concentration in electrolyte [mol.m-3]": 1000.0, + "Cation transference number": 0.2594, + "Thermodynamic factor": 1.0, + "Electrolyte diffusivity [m2.s-1]": electrolyte_diffusivity_Nyman2008, + "Electrolyte conductivity [S.m-1]": electrolyte_conductivity_Nyman2008, + # experiment + "Reference temperature [K]": 298.15, + "Total heat transfer coefficient [W.m-2.K-1]": 10.0, + "Ambient temperature [K]": 298.15, + "Number of electrodes connected in parallel to make a cell": 1.0, + "Number of cells connected in series to make a battery": 1.0, + "Lower voltage cut-off [V]": 0.005, + "Upper voltage cut-off [V]": 1.5, + "Open-circuit voltage at 0% SOC [V]": 0.005, + "Open-circuit voltage at 100% SOC [V]": 1.5, + "Initial concentration in positive electrode [mol.m-3]": 29866.0, + "Initial temperature [K]": 298.15, + # citations + "citations": ["Chen2020", "Ai2022", "Xu2019"], + } diff --git a/src/pybamm/input/parameters/lithium_ion/Ecker2015.py b/src/pybamm/input/parameters/lithium_ion/Ecker2015.py index 05fbbb2fd7..a3b10a0367 100644 --- a/src/pybamm/input/parameters/lithium_ion/Ecker2015.py +++ b/src/pybamm/input/parameters/lithium_ion/Ecker2015.py @@ -316,9 +316,9 @@ def plating_exchange_current_density_OKane2020(c_e, c_Li, T): Exchange-current density [A.m-2] """ - k_plating = pybamm.Parameter("Lithium plating kinetic rate constant [m.s-1]") + k_pl = pybamm.Parameter("Negative lithium plating kinetic rate constant [m.s-1]") - return pybamm.constants.F * k_plating * c_e + return pybamm.constants.F * k_pl * c_e def stripping_exchange_current_density_OKane2020(c_e, c_Li, T): @@ -350,9 +350,9 @@ def stripping_exchange_current_density_OKane2020(c_e, c_Li, T): Exchange-current density [A.m-2] """ - k_plating = pybamm.Parameter("Lithium plating kinetic rate constant [m.s-1]") + k_pl = pybamm.Parameter("Negative lithium plating kinetic rate constant [m.s-1]") - return pybamm.constants.F * k_plating * c_Li + return pybamm.constants.F * k_pl * c_Li def SEI_limited_dead_lithium_OKane2022(L_sei): @@ -374,9 +374,9 @@ def SEI_limited_dead_lithium_OKane2022(L_sei): Dead lithium decay rate [s-1] """ - gamma_0 = pybamm.Parameter("Dead lithium decay constant [s-1]") - L_inner_0 = pybamm.Parameter("Initial inner SEI thickness [m]") - L_outer_0 = pybamm.Parameter("Initial outer SEI thickness [m]") + gamma_0 = pybamm.Parameter("Negative dead lithium decay constant [s-1]") + L_inner_0 = pybamm.Parameter("Initial negative inner SEI thickness [m]") + L_outer_0 = pybamm.Parameter("Initial negative outer SEI thickness [m]") L_sei_0 = L_inner_0 + L_outer_0 gamma = gamma_0 * L_sei_0 / L_sei @@ -502,37 +502,37 @@ def get_parameter_values(): "chemistry": "lithium_ion", # lithium plating "Lithium metal partial molar volume [m3.mol-1]": 1.3e-05, - "Lithium plating kinetic rate constant [m.s-1]": 1e-10, - "Exchange-current density for plating [A.m-2]" + "Negative lithium plating kinetic rate constant [m.s-1]": 1e-10, + "Exchange-current density for negative lithium plating [A.m-2]" "": plating_exchange_current_density_OKane2020, - "Exchange-current density for stripping [A.m-2]" + "Exchange-current density for negative lithium stripping [A.m-2]" "": stripping_exchange_current_density_OKane2020, - "Initial plated lithium concentration [mol.m-3]": 0.0, - "Typical plated lithium concentration [mol.m-3]": 1000.0, - "Lithium plating transfer coefficient": 0.5, - "Dead lithium decay constant [s-1]": 1e-06, - "Dead lithium decay rate [s-1]": SEI_limited_dead_lithium_OKane2022, + "Initial negative lithium plating concentration [mol.m-3]": 0.0, + "Negative lithium plating reference concentration [mol.m-3]": 1000.0, + "Negative lithium plating transfer coefficient": 0.5, + "Negative dead lithium decay constant [s-1]": 1e-06, + "Negative dead lithium decay rate [s-1]": SEI_limited_dead_lithium_OKane2022, # sei - "Ratio of lithium moles to SEI moles": 2.0, - "Inner SEI reaction proportion": 0.5, - "Inner SEI partial molar volume [m3.mol-1]": 9.585e-05, - "Outer SEI partial molar volume [m3.mol-1]": 9.585e-05, - "SEI reaction exchange current density [A.m-2]": 1.5e-07, - "SEI resistivity [Ohm.m]": 200000.0, - "Outer SEI solvent diffusivity [m2.s-1]": 2.5000000000000002e-22, - "Bulk solvent concentration [mol.m-3]": 2636.0, - "Inner SEI open-circuit potential [V]": 0.1, - "Outer SEI open-circuit potential [V]": 0.8, - "Inner SEI electron conductivity [S.m-1]": 8.95e-14, - "Inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, - "Lithium interstitial reference concentration [mol.m-3]": 15.0, - "Initial inner SEI thickness [m]": 2.5e-09, - "Initial outer SEI thickness [m]": 2.5e-09, - "EC initial concentration in electrolyte [mol.m-3]": 4541.0, - "EC diffusivity [m2.s-1]": 2e-18, - "SEI kinetic rate constant [m.s-1]": 1e-12, - "SEI open-circuit potential [V]": 0.4, - "SEI growth activation energy [J.mol-1]": 0.0, + "Ratio of lithium moles to negative SEI moles": 2.0, + "Negative inner SEI reaction proportion": 0.5, + "Negative inner SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Negative outer SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Negative SEI reaction exchange current density [A.m-2]": 1.5e-07, + "Negative SEI resistivity [Ohm.m]": 200000.0, + "Negative outer SEI solvent diffusivity [m2.s-1]": 2.5000000000000002e-22, + "Bulk solvent concentration for negative SEI [mol.m-3]": 2636.0, + "Negative inner SEI open-circuit potential [V]": 0.1, + "Negative outer SEI open-circuit potential [V]": 0.8, + "Negative inner SEI electron conductivity [S.m-1]": 8.95e-14, + "Negative inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, + "Negative lithium interstitial reference concentration [mol.m-3]": 15.0, + "Initial negative inner SEI thickness [m]": 2.5e-09, + "Initial negative outer SEI thickness [m]": 2.5e-09, + "Negative EC initial concentration in electrolyte [mol.m-3]": 4541.0, + "EC diffusivity through negative SEI [m2.s-1]": 2e-18, + "Negative SEI kinetic rate constant [m.s-1]": 1e-12, + "Negative SEI open-circuit potential [V]": 0.4, + "Negative SEI growth activation energy [J.mol-1]": 0.0, "Negative electrode reaction-driven LAM factor [m3.mol-1]": 0.0, "Positive electrode reaction-driven LAM factor [m3.mol-1]": 0.0, # cell diff --git a/src/pybamm/input/parameters/lithium_ion/Ecker2015_graphite_halfcell.py b/src/pybamm/input/parameters/lithium_ion/Ecker2015_graphite_halfcell.py index 267f55e774..0f24aaa309 100644 --- a/src/pybamm/input/parameters/lithium_ion/Ecker2015_graphite_halfcell.py +++ b/src/pybamm/input/parameters/lithium_ion/Ecker2015_graphite_halfcell.py @@ -203,9 +203,9 @@ def plating_exchange_current_density_OKane2020(c_e, c_Li, T): Exchange-current density [A.m-2] """ - k_plating = pybamm.Parameter("Lithium plating kinetic rate constant [m.s-1]") + k_pl = pybamm.Parameter("Positive lithium plating kinetic rate constant [m.s-1]") - return pybamm.constants.F * k_plating * c_e + return pybamm.constants.F * k_pl * c_e def stripping_exchange_current_density_OKane2020(c_e, c_Li, T): @@ -237,9 +237,9 @@ def stripping_exchange_current_density_OKane2020(c_e, c_Li, T): Exchange-current density [A.m-2] """ - k_plating = pybamm.Parameter("Lithium plating kinetic rate constant [m.s-1]") + k_pl = pybamm.Parameter("Positive lithium plating kinetic rate constant [m.s-1]") - return pybamm.constants.F * k_plating * c_Li + return pybamm.constants.F * k_pl * c_Li def SEI_limited_dead_lithium_OKane2022(L_sei): @@ -261,9 +261,9 @@ def SEI_limited_dead_lithium_OKane2022(L_sei): Dead lithium decay rate [s-1] """ - gamma_0 = pybamm.Parameter("Dead lithium decay constant [s-1]") - L_inner_0 = pybamm.Parameter("Initial inner SEI thickness [m]") - L_outer_0 = pybamm.Parameter("Initial outer SEI thickness [m]") + gamma_0 = pybamm.Parameter("Positive dead lithium decay constant [s-1]") + L_inner_0 = pybamm.Parameter("Initial positive inner SEI thickness [m]") + L_outer_0 = pybamm.Parameter("Initial positive outer SEI thickness [m]") L_sei_0 = L_inner_0 + L_outer_0 gamma = gamma_0 * L_sei_0 / L_sei @@ -424,37 +424,57 @@ def get_parameter_values(): return { "chemistry": "lithium_ion", # lithium plating - "Lithium plating kinetic rate constant [m.s-1]": 1e-10, - "Exchange-current density for plating [A.m-2]" + "Positive lithium plating kinetic rate constant [m.s-1]": 1e-10, + "Exchange-current density for positive lithium plating [A.m-2]" "": plating_exchange_current_density_OKane2020, - "Exchange-current density for stripping [A.m-2]" + "Exchange-current density for positive lithium stripping [A.m-2]" "": stripping_exchange_current_density_OKane2020, - "Initial plated lithium concentration [mol.m-3]": 0.0, - "Typical plated lithium concentration [mol.m-3]": 1000.0, - "Lithium plating transfer coefficient": 0.5, - "Dead lithium decay constant [s-1]": 1e-06, - "Dead lithium decay rate [s-1]": SEI_limited_dead_lithium_OKane2022, + "Initial positive lithium plating concentration [mol.m-3]": 0.0, + "Positive lithium plating reference concentration [mol.m-3]": 1000.0, + "Positive lithium plating transfer coefficient": 0.5, + "Positive dead lithium decay constant [s-1]": 1e-06, + "Positive dead lithium decay rate [s-1]": SEI_limited_dead_lithium_OKane2022, # sei - "Ratio of lithium moles to SEI moles": 2.0, - "Inner SEI reaction proportion": 0.5, - "Inner SEI partial molar volume [m3.mol-1]": 9.585e-05, - "Outer SEI partial molar volume [m3.mol-1]": 9.585e-05, - "SEI reaction exchange current density [A.m-2]": 1.5e-07, - "SEI resistivity [Ohm.m]": 200000.0, - "Outer SEI solvent diffusivity [m2.s-1]": 2.5000000000000002e-22, - "Bulk solvent concentration [mol.m-3]": 2636.0, - "Inner SEI open-circuit potential [V]": 0.1, - "Outer SEI open-circuit potential [V]": 0.8, - "Inner SEI electron conductivity [S.m-1]": 8.95e-14, - "Inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, - "Lithium interstitial reference concentration [mol.m-3]": 15.0, - "Initial inner SEI thickness [m]": 2.5e-09, - "Initial outer SEI thickness [m]": 2.5e-09, - "EC initial concentration in electrolyte [mol.m-3]": 4541.0, - "EC diffusivity [m2.s-1]": 2e-18, - "SEI kinetic rate constant [m.s-1]": 1e-12, - "SEI open-circuit potential [V]": 0.4, - "SEI growth activation energy [J.mol-1]": 0.0, + "Ratio of lithium moles to negative SEI moles": 2.0, + "Negative inner SEI reaction proportion": 0.5, + "Negative inner SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Negative outer SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Negative SEI reaction exchange current density [A.m-2]": 1.5e-07, + "Negative SEI resistivity [Ohm.m]": 200000.0, + "Negative outer SEI solvent diffusivity [m2.s-1]": 2.5000000000000002e-22, + "Bulk solvent concentration for negative SEI [mol.m-3]": 2636.0, + "Negative inner SEI open-circuit potential [V]": 0.1, + "Negative outer SEI open-circuit potential [V]": 0.8, + "Negative inner SEI electron conductivity [S.m-1]": 8.95e-14, + "Negative inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, + "Negative lithium interstitial reference concentration [mol.m-3]": 15.0, + "Initial negative inner SEI thickness [m]": 2.5e-09, + "Initial negative outer SEI thickness [m]": 2.5e-09, + "Negative EC initial concentration in electrolyte [mol.m-3]": 4541.0, + "EC diffusivity through negative SEI [m2.s-1]": 2e-18, + "Negative SEI kinetic rate constant [m.s-1]": 1e-12, + "Negative SEI open-circuit potential [V]": 0.4, + "Negative SEI growth activation energy [J.mol-1]": 0.0, + "Ratio of lithium moles to positive SEI moles": 2.0, + "Positive inner SEI reaction proportion": 0.5, + "Positive inner SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Positive outer SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Positive SEI reaction exchange current density [A.m-2]": 1.5e-07, + "Positive SEI resistivity [Ohm.m]": 200000.0, + "Positive outer SEI solvent diffusivity [m2.s-1]": 2.5000000000000002e-22, + "Bulk solvent concentration for positive SEI [mol.m-3]": 2636.0, + "Positive inner SEI open-circuit potential [V]": 0.1, + "Positive outer SEI open-circuit potential [V]": 0.8, + "Positive inner SEI electron conductivity [S.m-1]": 8.95e-14, + "Positive inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, + "Positive lithium interstitial reference concentration [mol.m-3]": 15.0, + "Initial positive inner SEI thickness [m]": 2.5e-09, + "Initial positive outer SEI thickness [m]": 2.5e-09, + "Positive EC initial concentration in electrolyte [mol.m-3]": 4541.0, + "EC diffusivity through positive SEI [m2.s-1]": 2e-18, + "Positive SEI kinetic rate constant [m.s-1]": 1e-12, + "Positive SEI open-circuit potential [V]": 0.4, + "Positive SEI growth activation energy [J.mol-1]": 0.0, "Positive electrode reaction-driven LAM factor [m3.mol-1]": 0.0, # cell "Negative current collector thickness [m]": 1.4e-05, diff --git a/src/pybamm/input/parameters/lithium_ion/Marquis2019.py b/src/pybamm/input/parameters/lithium_ion/Marquis2019.py index 16591eac2d..ff9c570877 100644 --- a/src/pybamm/input/parameters/lithium_ion/Marquis2019.py +++ b/src/pybamm/input/parameters/lithium_ion/Marquis2019.py @@ -351,27 +351,26 @@ def get_parameter_values(): return { "chemistry": "lithium_ion", # sei - "Ratio of lithium moles to SEI moles": 2.0, - "Inner SEI reaction proportion": 0.5, - "Inner SEI partial molar volume [m3.mol-1]": 9.585e-05, - "Outer SEI partial molar volume [m3.mol-1]": 9.585e-05, - "SEI growth transfer coefficient": 0.5, - "SEI reaction exchange current density [A.m-2]": 1.5e-07, - "SEI resistivity [Ohm.m]": 200000.0, - "Outer SEI solvent diffusivity [m2.s-1]": 2.5000000000000002e-22, - "Bulk solvent concentration [mol.m-3]": 2636.0, - "Inner SEI open-circuit potential [V]": 0.1, - "Outer SEI open-circuit potential [V]": 0.8, - "Inner SEI electron conductivity [S.m-1]": 8.95e-14, - "Inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, - "Lithium interstitial reference concentration [mol.m-3]": 15.0, - "Initial inner SEI thickness [m]": 2.5e-09, - "Initial outer SEI thickness [m]": 2.5e-09, - "EC initial concentration in electrolyte [mol.m-3]": 4541.0, - "EC diffusivity [m2.s-1]": 2e-18, - "SEI kinetic rate constant [m.s-1]": 1e-12, - "SEI open-circuit potential [V]": 0.4, - "SEI growth activation energy [J.mol-1]": 0.0, + "Ratio of lithium moles to negative SEI moles": 2.0, + "Negative inner SEI reaction proportion": 0.5, + "Negative inner SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Negative outer SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Negative SEI reaction exchange current density [A.m-2]": 1.5e-07, + "Negative SEI resistivity [Ohm.m]": 200000.0, + "Negative outer SEI solvent diffusivity [m2.s-1]": 2.5000000000000002e-22, + "Bulk solvent concentration for negative SEI [mol.m-3]": 2636.0, + "Negative inner SEI open-circuit potential [V]": 0.1, + "Negative outer SEI open-circuit potential [V]": 0.8, + "Negative inner SEI electron conductivity [S.m-1]": 8.95e-14, + "Negative inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, + "Negative lithium interstitial reference concentration [mol.m-3]": 15.0, + "Initial negative inner SEI thickness [m]": 2.5e-09, + "Initial negative outer SEI thickness [m]": 2.5e-09, + "Negative EC initial concentration in electrolyte [mol.m-3]": 4541.0, + "EC diffusivity through negative SEI [m2.s-1]": 2e-18, + "Negative SEI kinetic rate constant [m.s-1]": 1e-12, + "Negative SEI open-circuit potential [V]": 0.4, + "Negative SEI growth activation energy [J.mol-1]": 0.0, "Negative electrode reaction-driven LAM factor [m3.mol-1]": 0.0, "Positive electrode reaction-driven LAM factor [m3.mol-1]": 0.0, # cell diff --git a/src/pybamm/input/parameters/lithium_ion/Mohtat2020.py b/src/pybamm/input/parameters/lithium_ion/Mohtat2020.py index 0176c3f6a0..37c6c034f6 100644 --- a/src/pybamm/input/parameters/lithium_ion/Mohtat2020.py +++ b/src/pybamm/input/parameters/lithium_ion/Mohtat2020.py @@ -338,31 +338,31 @@ def get_parameter_values(): "chemistry": "lithium_ion", # lithium plating "Lithium metal partial molar volume [m3.mol-1]": 1.3e-05, - "Exchange-current density for plating [A.m-2]": 0.001, - "Initial plated lithium concentration [mol.m-3]": 0.0, - "Typical plated lithium concentration [mol.m-3]": 1000.0, - "Lithium plating transfer coefficient": 0.7, + "Exchange-current density for negative lithium plating [A.m-2]": 0.001, + "Initial negative lithium plating concentration [mol.m-3]": 0.0, + "Negative lithium plating reference concentration [mol.m-3]": 1000.0, + "Negative lithium plating transfer coefficient": 0.7, # sei - "Ratio of lithium moles to SEI moles": 2.0, - "Inner SEI reaction proportion": 0.5, - "Inner SEI partial molar volume [m3.mol-1]": 9.585e-05, - "Outer SEI partial molar volume [m3.mol-1]": 9.585e-05, - "SEI reaction exchange current density [A.m-2]": 1.5e-07, - "SEI resistivity [Ohm.m]": 200000.0, - "Outer SEI solvent diffusivity [m2.s-1]": 2.5000000000000002e-22, - "Bulk solvent concentration [mol.m-3]": 2636.0, - "Inner SEI open-circuit potential [V]": 0.1, - "Outer SEI open-circuit potential [V]": 0.8, - "Inner SEI electron conductivity [S.m-1]": 8.95e-14, - "Inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, - "Lithium interstitial reference concentration [mol.m-3]": 15.0, - "Initial inner SEI thickness [m]": 2.5e-09, - "Initial outer SEI thickness [m]": 2.5e-09, - "EC initial concentration in electrolyte [mol.m-3]": 4541.0, - "EC diffusivity [m2.s-1]": 2e-18, - "SEI kinetic rate constant [m.s-1]": 1e-12, - "SEI open-circuit potential [V]": 0.4, - "SEI growth activation energy [J.mol-1]": 0.0, + "Ratio of lithium moles to negative SEI moles": 2.0, + "Negative inner SEI reaction proportion": 0.5, + "Negative inner SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Negative outer SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Negative SEI reaction exchange current density [A.m-2]": 1.5e-07, + "Negative SEI resistivity [Ohm.m]": 200000.0, + "Negative outer SEI solvent diffusivity [m2.s-1]": 2.5000000000000002e-22, + "Bulk solvent concentration for negative SEI [mol.m-3]": 2636.0, + "Negative inner SEI open-circuit potential [V]": 0.1, + "Negative outer SEI open-circuit potential [V]": 0.8, + "Negative inner SEI electron conductivity [S.m-1]": 8.95e-14, + "Negative inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, + "Negative lithium interstitial reference concentration [mol.m-3]": 15.0, + "Initial negative inner SEI thickness [m]": 2.5e-09, + "Initial negative outer SEI thickness [m]": 2.5e-09, + "Negative EC initial concentration in electrolyte [mol.m-3]": 4541.0, + "EC diffusivity through negative SEI [m2.s-1]": 2e-18, + "Negative SEI kinetic rate constant [m.s-1]": 1e-12, + "Negative SEI open-circuit potential [V]": 0.4, + "Negative SEI growth activation energy [J.mol-1]": 0.0, "Negative electrode reaction-driven LAM factor [m3.mol-1]": 0.0, "Positive electrode reaction-driven LAM factor [m3.mol-1]": 0.0, # cell diff --git a/src/pybamm/input/parameters/lithium_ion/NCA_Kim2011.py b/src/pybamm/input/parameters/lithium_ion/NCA_Kim2011.py index 1af610f58a..487b782505 100644 --- a/src/pybamm/input/parameters/lithium_ion/NCA_Kim2011.py +++ b/src/pybamm/input/parameters/lithium_ion/NCA_Kim2011.py @@ -310,26 +310,26 @@ def get_parameter_values(): return { "chemistry": "lithium_ion", # sei - "Ratio of lithium moles to SEI moles": 2.0, - "Inner SEI reaction proportion": 0.5, - "Inner SEI partial molar volume [m3.mol-1]": 9.585e-05, - "Outer SEI partial molar volume [m3.mol-1]": 9.585e-05, - "SEI reaction exchange current density [A.m-2]": 1.5e-07, - "SEI resistivity [Ohm.m]": 200000.0, - "Outer SEI solvent diffusivity [m2.s-1]": 2.5000000000000002e-22, - "Bulk solvent concentration [mol.m-3]": 2636.0, - "Inner SEI open-circuit potential [V]": 0.1, - "Outer SEI open-circuit potential [V]": 0.8, - "Inner SEI electron conductivity [S.m-1]": 8.95e-14, - "Inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, - "Lithium interstitial reference concentration [mol.m-3]": 15.0, - "Initial inner SEI thickness [m]": 2.5e-09, - "Initial outer SEI thickness [m]": 2.5e-09, - "EC initial concentration in electrolyte [mol.m-3]": 4541.0, - "EC diffusivity [m2.s-1]": 2e-18, - "SEI kinetic rate constant [m.s-1]": 1e-12, - "SEI open-circuit potential [V]": 0.4, - "SEI growth activation energy [J.mol-1]": 0.0, + "Ratio of lithium moles to negative SEI moles": 2.0, + "Negative inner SEI reaction proportion": 0.5, + "Negative inner SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Negative outer SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Negative SEI reaction exchange current density [A.m-2]": 1.5e-07, + "Negative SEI resistivity [Ohm.m]": 200000.0, + "Negative outer SEI solvent diffusivity [m2.s-1]": 2.5000000000000002e-22, + "Bulk solvent concentration for negative SEI [mol.m-3]": 2636.0, + "Negative inner SEI open-circuit potential [V]": 0.1, + "Negative outer SEI open-circuit potential [V]": 0.8, + "Negative inner SEI electron conductivity [S.m-1]": 8.95e-14, + "Negative inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, + "Negative lithium interstitial reference concentration [mol.m-3]": 15.0, + "Initial negative inner SEI thickness [m]": 2.5e-09, + "Initial negative outer SEI thickness [m]": 2.5e-09, + "Negative EC initial concentration in electrolyte [mol.m-3]": 4541.0, + "EC diffusivity through negative SEI [m2.s-1]": 2e-18, + "Negative SEI kinetic rate constant [m.s-1]": 1e-12, + "Negative SEI open-circuit potential [V]": 0.4, + "Negative SEI growth activation energy [J.mol-1]": 0.0, "Negative electrode reaction-driven LAM factor [m3.mol-1]": 0.0, "Positive electrode reaction-driven LAM factor [m3.mol-1]": 0.0, # cell diff --git a/src/pybamm/input/parameters/lithium_ion/OKane2022.py b/src/pybamm/input/parameters/lithium_ion/OKane2022.py index 4ccb72bf62..af4ac47f15 100644 --- a/src/pybamm/input/parameters/lithium_ion/OKane2022.py +++ b/src/pybamm/input/parameters/lithium_ion/OKane2022.py @@ -26,9 +26,9 @@ def plating_exchange_current_density_OKane2020(c_e, c_Li, T): Exchange-current density [A.m-2] """ - k_plating = pybamm.Parameter("Lithium plating kinetic rate constant [m.s-1]") + k_pl = pybamm.Parameter("Negative lithium plating kinetic rate constant [m.s-1]") - return pybamm.constants.F * k_plating * c_e + return pybamm.constants.F * k_pl * c_e def stripping_exchange_current_density_OKane2020(c_e, c_Li, T): @@ -60,9 +60,9 @@ def stripping_exchange_current_density_OKane2020(c_e, c_Li, T): Exchange-current density [A.m-2] """ - k_plating = pybamm.Parameter("Lithium plating kinetic rate constant [m.s-1]") + k_pl = pybamm.Parameter("Negative lithium plating kinetic rate constant [m.s-1]") - return pybamm.constants.F * k_plating * c_Li + return pybamm.constants.F * k_pl * c_Li def SEI_limited_dead_lithium_OKane2022(L_sei): @@ -84,9 +84,9 @@ def SEI_limited_dead_lithium_OKane2022(L_sei): Dead lithium decay rate [s-1] """ - gamma_0 = pybamm.Parameter("Dead lithium decay constant [s-1]") - L_inner_0 = pybamm.Parameter("Initial inner SEI thickness [m]") - L_outer_0 = pybamm.Parameter("Initial outer SEI thickness [m]") + gamma_0 = pybamm.Parameter("Negative dead lithium decay constant [s-1]") + L_inner_0 = pybamm.Parameter("Initial negative inner SEI thickness [m]") + L_outer_0 = pybamm.Parameter("Initial negative outer SEI thickness [m]") L_sei_0 = L_inner_0 + L_outer_0 gamma = gamma_0 * L_sei_0 / L_sei @@ -511,39 +511,39 @@ def get_parameter_values(): "chemistry": "lithium_ion", # lithium plating "Lithium metal partial molar volume [m3.mol-1]": 1.3e-05, - "Lithium plating kinetic rate constant [m.s-1]": 1e-09, - "Exchange-current density for plating [A.m-2]" + "Negative lithium plating kinetic rate constant [m.s-1]": 1e-09, + "Exchange-current density for negative lithium plating [A.m-2]" "": plating_exchange_current_density_OKane2020, - "Exchange-current density for stripping [A.m-2]" + "Exchange-current density for negative lithium stripping [A.m-2]" "": stripping_exchange_current_density_OKane2020, - "Initial plated lithium concentration [mol.m-3]": 0.0, - "Typical plated lithium concentration [mol.m-3]": 1000.0, - "Lithium plating transfer coefficient": 0.65, - "Dead lithium decay constant [s-1]": 1e-06, - "Dead lithium decay rate [s-1]": SEI_limited_dead_lithium_OKane2022, + "Initial negative lithium plating concentration [mol.m-3]": 0.0, + "Negative lithium plating reference concentration [mol.m-3]": 1000.0, + "Negative lithium plating transfer coefficient": 0.65, + "Negative dead lithium decay constant [s-1]": 1e-06, + "Negative dead lithium decay rate [s-1]": SEI_limited_dead_lithium_OKane2022, # sei - "Ratio of lithium moles to SEI moles": 1.0, - "Inner SEI reaction proportion": 0.0, - "Inner SEI partial molar volume [m3.mol-1]": 9.585e-05, - "Outer SEI partial molar volume [m3.mol-1]": 9.585e-05, - "SEI reaction exchange current density [A.m-2]": 1.5e-07, - "SEI resistivity [Ohm.m]": 200000.0, - "Outer SEI solvent diffusivity [m2.s-1]": 2.5000000000000002e-22, - "Bulk solvent concentration [mol.m-3]": 2636.0, - "Inner SEI open-circuit potential [V]": 0.1, - "Outer SEI open-circuit potential [V]": 0.8, - "Inner SEI electron conductivity [S.m-1]": 8.95e-14, - "Inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, - "Lithium interstitial reference concentration [mol.m-3]": 15.0, - "Initial inner SEI thickness [m]": 0.0, - "Initial outer SEI thickness [m]": 5e-09, - "Initial inner SEI on cracks thickness [m]": 0, - "Initial outer SEI on cracks thickness [m]": 5e-13, # avoid division by zero - "EC initial concentration in electrolyte [mol.m-3]": 4541.0, - "EC diffusivity [m2.s-1]": 2e-18, - "SEI kinetic rate constant [m.s-1]": 1e-12, - "SEI open-circuit potential [V]": 0.4, - "SEI growth activation energy [J.mol-1]": 38000.0, + "Ratio of lithium moles to negative SEI moles": 1.0, + "Negative inner SEI reaction proportion": 0.0, + "Negative inner SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Negative outer SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Negative SEI reaction exchange current density [A.m-2]": 1.5e-07, + "Negative SEI resistivity [Ohm.m]": 200000.0, + "Negative outer SEI solvent diffusivity [m2.s-1]": 2.5000000000000002e-22, + "Bulk solvent concentration for negative SEI [mol.m-3]": 2636.0, + "Negative inner SEI open-circuit potential [V]": 0.1, + "Negative outer SEI open-circuit potential [V]": 0.8, + "Negative inner SEI electron conductivity [S.m-1]": 8.95e-14, + "Negative inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, + "Negative lithium interstitial reference concentration [mol.m-3]": 15.0, + "Initial negative inner SEI thickness [m]": 0.0, + "Initial negative outer SEI thickness [m]": 5e-09, + "Initial negative inner SEI on cracks thickness [m]": 0, + "Initial negative outer SEI on cracks thickness [m]": 5e-13, + "Negative EC initial concentration in electrolyte [mol.m-3]": 4541.0, + "EC diffusivity through negative SEI [m2.s-1]": 2e-18, + "Negative SEI kinetic rate constant [m.s-1]": 1e-12, + "Negative SEI open-circuit potential [V]": 0.4, + "Negative SEI growth activation energy [J.mol-1]": 38000.0, "Negative electrode reaction-driven LAM factor [m3.mol-1]": 0.0, "Positive electrode reaction-driven LAM factor [m3.mol-1]": 0.0, # cell diff --git a/src/pybamm/input/parameters/lithium_ion/OKane2022_graphite_SiOx_halfcell.py b/src/pybamm/input/parameters/lithium_ion/OKane2022_graphite_SiOx_halfcell.py index c343dd23f4..f17ec09a4c 100644 --- a/src/pybamm/input/parameters/lithium_ion/OKane2022_graphite_SiOx_halfcell.py +++ b/src/pybamm/input/parameters/lithium_ion/OKane2022_graphite_SiOx_halfcell.py @@ -56,9 +56,9 @@ def plating_exchange_current_density_OKane2020(c_e, c_Li, T): Exchange-current density [A.m-2] """ - k_plating = pybamm.Parameter("Lithium plating kinetic rate constant [m.s-1]") + k_pl = pybamm.Parameter("Positive lithium plating kinetic rate constant [m.s-1]") - return pybamm.constants.F * k_plating * c_e + return pybamm.constants.F * k_pl * c_e def stripping_exchange_current_density_OKane2020(c_e, c_Li, T): @@ -90,9 +90,9 @@ def stripping_exchange_current_density_OKane2020(c_e, c_Li, T): Exchange-current density [A.m-2] """ - k_plating = pybamm.Parameter("Lithium plating kinetic rate constant [m.s-1]") + k_pl = pybamm.Parameter("Positive lithium plating kinetic rate constant [m.s-1]") - return pybamm.constants.F * k_plating * c_Li + return pybamm.constants.F * k_pl * c_Li def SEI_limited_dead_lithium_OKane2022(L_sei): @@ -114,9 +114,9 @@ def SEI_limited_dead_lithium_OKane2022(L_sei): Dead lithium decay rate [s-1] """ - gamma_0 = pybamm.Parameter("Dead lithium decay constant [s-1]") - L_inner_0 = pybamm.Parameter("Initial inner SEI thickness [m]") - L_outer_0 = pybamm.Parameter("Initial outer SEI thickness [m]") + gamma_0 = pybamm.Parameter("Positive dead lithium decay constant [s-1]") + L_inner_0 = pybamm.Parameter("Initial positive inner SEI thickness [m]") + L_outer_0 = pybamm.Parameter("Initial positive outer SEI thickness [m]") L_sei_0 = L_inner_0 + L_outer_0 gamma = gamma_0 * L_sei_0 / L_sei @@ -396,40 +396,59 @@ def get_parameter_values(): "chemistry": "lithium_ion", # lithium plating "Lithium metal partial molar volume [m3.mol-1]": 1.3e-05, - "Lithium plating kinetic rate constant [m.s-1]": 1e-09, - "Exchange-current density for plating [A.m-2]" + "Positive lithium plating kinetic rate constant [m.s-1]": 1e-09, + "Exchange-current density for positive lithium plating [A.m-2]" "": plating_exchange_current_density_OKane2020, - "Exchange-current density for stripping [A.m-2]" + "Exchange-current density for positive lithium stripping [A.m-2]" "": stripping_exchange_current_density_OKane2020, - "Initial plated lithium concentration [mol.m-3]": 0.0, - "Typical plated lithium concentration [mol.m-3]": 1000.0, - "Lithium plating transfer coefficient": 0.65, - "Dead lithium decay constant [s-1]": 1e-06, - "Dead lithium decay rate [s-1]": SEI_limited_dead_lithium_OKane2022, + "Initial positive lithium plating concentration [mol.m-3]": 0.0, + "Positive lithium plating reference concentration [mol.m-3]": 1000.0, + "Positive lithium plating transfer coefficient": 0.65, + "Positive dead lithium decay constant [s-1]": 1e-06, + "Positive dead lithium decay rate [s-1]": SEI_limited_dead_lithium_OKane2022, # sei - "Ratio of lithium moles to SEI moles": 1.0, - "Inner SEI reaction proportion": 0.0, - "Inner SEI partial molar volume [m3.mol-1]": 9.585e-05, - "Outer SEI partial molar volume [m3.mol-1]": 9.585e-05, - "SEI reaction exchange current density [A.m-2]": 1.5e-07, - "SEI resistivity [Ohm.m]": 200000.0, - "Outer SEI solvent diffusivity [m2.s-1]": 2.5000000000000002e-22, - "Bulk solvent concentration [mol.m-3]": 2636.0, - "Inner SEI open-circuit potential [V]": 0.1, - "Outer SEI open-circuit potential [V]": 0.8, - "Inner SEI electron conductivity [S.m-1]": 8.95e-14, - "Inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, - "Lithium interstitial reference concentration [mol.m-3]": 15.0, - "Initial inner SEI thickness [m]": 0.0, - "Initial outer SEI thickness [m]": 5e-09, - "Initial inner SEI on cracks thickness [m]": 0, - "Initial outer SEI on cracks thickness [m]": 5e-13, # avoid division by zero - "EC initial concentration in electrolyte [mol.m-3]": 4541.0, - "EC diffusivity [m2.s-1]": 2e-18, - "SEI kinetic rate constant [m.s-1]": 1e-12, - "SEI open-circuit potential [V]": 0.4, - "SEI growth activation energy [J.mol-1]": 38000.0, - "Negative electrode reaction-driven LAM factor [m3.mol-1]": 0.0, + "Ratio of lithium moles to negative SEI moles": 1.0, + "Negative inner SEI reaction proportion": 0.0, + "Negative inner SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Negative outer SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Negative SEI reaction exchange current density [A.m-2]": 1.5e-07, + "Negative SEI resistivity [Ohm.m]": 200000.0, + "Negative outer SEI solvent diffusivity [m2.s-1]": 2.5000000000000002e-22, + "Bulk solvent concentration for negative SEI [mol.m-3]": 2636.0, + "Negative inner SEI open-circuit potential [V]": 0.1, + "Negative outer SEI open-circuit potential [V]": 0.8, + "Negative inner SEI electron conductivity [S.m-1]": 8.95e-14, + "Negative inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, + "Negative lithium interstitial reference concentration [mol.m-3]": 15.0, + "Initial negative inner SEI thickness [m]": 0.0, + "Initial negative outer SEI thickness [m]": 5e-09, + "Negative EC initial concentration in electrolyte [mol.m-3]": 4541.0, + "EC diffusivity through negative SEI [m2.s-1]": 2e-18, + "Negative SEI kinetic rate constant [m.s-1]": 1e-12, + "Negative SEI open-circuit potential [V]": 0.4, + "Negative SEI growth activation energy [J.mol-1]": 38000.0, + "Ratio of lithium moles to positive SEI moles": 1.0, + "Positive inner SEI reaction proportion": 0.0, + "Positive inner SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Positive outer SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Positive SEI reaction exchange current density [A.m-2]": 1.5e-07, + "Positive SEI resistivity [Ohm.m]": 200000.0, + "Positive outer SEI solvent diffusivity [m2.s-1]": 2.5000000000000002e-22, + "Bulk solvent concentration for positive SEI [mol.m-3]": 2636.0, + "Positive inner SEI open-circuit potential [V]": 0.1, + "Positive outer SEI open-circuit potential [V]": 0.8, + "Positive inner SEI electron conductivity [S.m-1]": 8.95e-14, + "Positive inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, + "Positive lithium interstitial reference concentration [mol.m-3]": 15.0, + "Initial positive inner SEI thickness [m]": 0.0, + "Initial positive outer SEI thickness [m]": 5e-09, + "Initial positive inner SEI on cracks thickness [m]": 0, + "Initial positive outer SEI on cracks thickness [m]": 5e-13, + "Positive EC initial concentration in electrolyte [mol.m-3]": 4541.0, + "EC diffusivity through positive SEI [m2.s-1]": 2e-18, + "Positive SEI kinetic rate constant [m.s-1]": 1e-12, + "Positive SEI open-circuit potential [V]": 0.4, + "Positive SEI growth activation energy [J.mol-1]": 38000.0, "Positive electrode reaction-driven LAM factor [m3.mol-1]": 0.0, # cell "Negative current collector thickness [m]": 1.2e-05, diff --git a/src/pybamm/input/parameters/lithium_ion/Ramadass2004.py b/src/pybamm/input/parameters/lithium_ion/Ramadass2004.py index a1e24da7e3..a8ab71ebc4 100644 --- a/src/pybamm/input/parameters/lithium_ion/Ramadass2004.py +++ b/src/pybamm/input/parameters/lithium_ion/Ramadass2004.py @@ -365,26 +365,28 @@ def get_parameter_values(): return { "chemistry": "lithium_ion", # sei - "Ratio of lithium moles to SEI moles": 2.0, - "Inner SEI reaction proportion": 0.5, - "Inner SEI partial molar volume [m3.mol-1]": 9.585e-05, - "Outer SEI partial molar volume [m3.mol-1]": 9.585e-05, - "SEI reaction exchange current density [A.m-2]": 1.5e-06, - "SEI resistivity [Ohm.m]": 200000.0, - "Outer SEI solvent diffusivity [m2.s-1]": 2.5000000000000002e-22, - "Bulk solvent concentration [mol.m-3]": 2636.0, - "Inner SEI open-circuit potential [V]": 0.1, - "Outer SEI open-circuit potential [V]": 0.8, - "Inner SEI electron conductivity [S.m-1]": 8.95e-14, - "Inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, - "Lithium interstitial reference concentration [mol.m-3]": 15.0, - "Initial inner SEI thickness [m]": 2.5e-09, - "Initial outer SEI thickness [m]": 2.5e-09, - "EC initial concentration in electrolyte [mol.m-3]": 4541.0, - "EC diffusivity [m2.s-1]": 2e-18, - "SEI kinetic rate constant [m.s-1]": 1e-12, - "SEI open-circuit potential [V]": 0.0, - "SEI growth activation energy [J.mol-1]": 0.0, + "Ratio of lithium moles to negative SEI moles": 2.0, + "Negative inner SEI reaction proportion": 0.5, + "Negative inner SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Negative outer SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Negative SEI reaction exchange current density [A.m-2]": 1.5e-07, + "Negative SEI resistivity [Ohm.m]": 200000.0, + "Negative outer SEI solvent diffusivity [m2.s-1]": 2.5000000000000002e-22, + "Bulk solvent concentration for negative SEI [mol.m-3]": 2636.0, + "Negative inner SEI open-circuit potential [V]": 0.1, + "Negative outer SEI open-circuit potential [V]": 0.8, + "Negative inner SEI electron conductivity [S.m-1]": 8.95e-14, + "Negative inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, + "Negative lithium interstitial reference concentration [mol.m-3]": 15.0, + "Initial negative inner SEI thickness [m]": 2.5e-09, + "Initial negative outer SEI thickness [m]": 2.5e-09, + "Negative EC initial concentration in electrolyte [mol.m-3]": 4541.0, + "EC diffusivity through negative SEI [m2.s-1]": 2e-18, + "Negative SEI kinetic rate constant [m.s-1]": 1e-12, + "Negative SEI open-circuit potential [V]": 0.4, + "Negative SEI growth activation energy [J.mol-1]": 0.0, + "Negative electrode reaction-driven LAM factor [m3.mol-1]": 0.0, + "Positive electrode reaction-driven LAM factor [m3.mol-1]": 0.0, # cell "Negative current collector thickness [m]": 1.7e-05, "Negative electrode thickness [m]": 8.8e-05, diff --git a/src/pybamm/input/parameters/lithium_ion/Xu2019.py b/src/pybamm/input/parameters/lithium_ion/Xu2019.py index caee487339..76962c3f62 100644 --- a/src/pybamm/input/parameters/lithium_ion/Xu2019.py +++ b/src/pybamm/input/parameters/lithium_ion/Xu2019.py @@ -214,27 +214,26 @@ def get_parameter_values(): return { "chemistry": "lithium_ion", # sei - "Ratio of lithium moles to SEI moles": 2.0, - "Inner SEI reaction proportion": 0.5, - "Inner SEI partial molar volume [m3.mol-1]": 9.585e-05, - "Outer SEI partial molar volume [m3.mol-1]": 9.585e-05, - "SEI reaction exchange current density [A.m-2]": 1.5e-07, - "SEI resistivity [Ohm.m]": 200000.0, - "Outer SEI solvent diffusivity [m2.s-1]": 2.5000000000000002e-22, - "Bulk solvent concentration [mol.m-3]": 2636.0, - "Inner SEI open-circuit potential [V]": 0.1, - "Outer SEI open-circuit potential [V]": 0.8, - "Inner SEI electron conductivity [S.m-1]": 8.95e-14, - "Inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, - "Lithium interstitial reference concentration [mol.m-3]": 15.0, - "Initial inner SEI thickness [m]": 2.5e-09, - "Initial outer SEI thickness [m]": 2.5e-09, - "EC initial concentration in electrolyte [mol.m-3]": 4541.0, - "EC diffusivity [m2.s-1]": 2e-18, - "SEI kinetic rate constant [m.s-1]": 1e-12, - "SEI open-circuit potential [V]": 0.4, - "SEI growth activation energy [J.mol-1]": 0.0, - "Negative electrode reaction-driven LAM factor [m3.mol-1]": 0.0, + "Ratio of lithium moles to negative SEI moles": 2.0, + "Negative inner SEI reaction proportion": 0.5, + "Negative inner SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Negative outer SEI partial molar volume [m3.mol-1]": 9.585e-05, + "Negative SEI reaction exchange current density [A.m-2]": 1.5e-07, + "Negative SEI resistivity [Ohm.m]": 200000.0, + "Negative outer SEI solvent diffusivity [m2.s-1]": 2.5000000000000002e-22, + "Bulk solvent concentration for negative SEI [mol.m-3]": 2636.0, + "Negative inner SEI open-circuit potential [V]": 0.1, + "Negative outer SEI open-circuit potential [V]": 0.8, + "Negative inner SEI electron conductivity [S.m-1]": 8.95e-14, + "Negative inner SEI lithium interstitial diffusivity [m2.s-1]": 1e-20, + "Negative lithium interstitial reference concentration [mol.m-3]": 15.0, + "Initial negative inner SEI thickness [m]": 2.5e-09, + "Initial negative outer SEI thickness [m]": 2.5e-09, + "Negative EC initial concentration in electrolyte [mol.m-3]": 4541.0, + "EC diffusivity through negative SEI [m2.s-1]": 2e-18, + "Negative SEI kinetic rate constant [m.s-1]": 1e-12, + "Negative SEI open-circuit potential [V]": 0.4, + "Negative SEI growth activation energy [J.mol-1]": 0.0, "Positive electrode reaction-driven LAM factor [m3.mol-1]": 0.0, # cell "Negative electrode thickness [m]": 0.0007, diff --git a/src/pybamm/models/submodels/interface/lithium_plating/plating.py b/src/pybamm/models/submodels/interface/lithium_plating/plating.py index f019c3b9d8..9950ca1450 100644 --- a/src/pybamm/models/submodels/interface/lithium_plating/plating.py +++ b/src/pybamm/models/submodels/interface/lithium_plating/plating.py @@ -27,7 +27,7 @@ def __init__(self, param, domain, x_average, options, phase="primary"): def get_fundamental_variables(self): domain, Domain = self.domain_Domain - scale = self.phase_param.c_Li_typ + scale = self.phase_param.c_Li_ref if self.x_average is True: c_plated_Li_av = pybamm.Variable( f"X-averaged {domain} {self.phase_name}lithium plating concentration " diff --git a/src/pybamm/models/submodels/porosity/reaction_driven_porosity.py b/src/pybamm/models/submodels/porosity/reaction_driven_porosity.py index 989c90cd9c..0ead0d1134 100644 --- a/src/pybamm/models/submodels/porosity/reaction_driven_porosity.py +++ b/src/pybamm/models/submodels/porosity/reaction_driven_porosity.py @@ -25,36 +25,63 @@ def __init__(self, param, options, x_average): def get_coupled_variables(self, variables): eps_dict = {} for domain in self.options.whole_cell_domains: + delta_eps_k = 0 if domain == "separator": - delta_eps_k = 0 # separator porosity does not change + pass # separator porosity does not change else: - Domain = domain.split()[0].capitalize() - L_sei_k = variables[f"{Domain} total SEI thickness [m]"] - if Domain == "Negative": - L_sei_0 = self.param.n.prim.L_inner_0 + self.param.n.prim.L_outer_0 - elif Domain == "Positive": - L_sei_0 = self.param.p.prim.L_inner_0 + self.param.p.prim.L_outer_0 - L_pl_k = variables[f"{Domain} lithium plating thickness [m]"] - L_dead_k = variables[f"{Domain} dead lithium thickness [m]"] - L_sei_cr_k = variables[f"{Domain} total SEI on cracks thickness [m]"] + dom = domain.split()[0] + Domain = dom.capitalize() roughness_k = variables[f"{Domain} electrode roughness ratio"] + SEI_option = getattr(self.options, dom)["SEI"] + phases_option = getattr(self.options, dom)["particle phases"] + phases = self.options.phases[dom] + for phase in phases: + if phases_option == "1" and phase == "primary": + # `domain` has one phase + phase_name = "" + pref = "" + else: + # `domain` has more than one phase + phase_name = phase + " " + pref = phase.capitalize() + ": " + L_sei_k = variables[f"{Domain} total {phase_name}SEI thickness [m]"] + if SEI_option == "none": + L_sei_0 = pybamm.Scalar(0) + else: + L_inner_0 = pybamm.Parameter( + f"{pref}Initial {dom} inner SEI thickness [m]" + ) + L_outer_0 = pybamm.Parameter( + f"{pref}Initial {dom} outer SEI thickness [m]" + ) + L_sei_0 = L_inner_0 + L_outer_0 + L_pl_k = variables[ + f"{Domain} {phase_name}lithium plating thickness [m]" + ] + L_dead_k = variables[ + f"{Domain} {phase_name}dead lithium thickness [m]" + ] + L_sei_cr_k = variables[ + f"{Domain} total {phase_name}SEI on cracks thickness [m]" + ] - L_tot = ( - (L_sei_k - L_sei_0) - + L_pl_k - + L_dead_k - + L_sei_cr_k * (roughness_k - 1) - ) + L_tot = ( + (L_sei_k - L_sei_0) + + L_pl_k + + L_dead_k + + L_sei_cr_k * (roughness_k - 1) + ) - a_k = variables[ - f"{Domain} electrode surface area to volume ratio [m-1]" - ] + a_k = variables[ + f"{Domain} electrode {phase_name}" + "surface area to volume ratio [m-1]" + ] - # This assumes a thin film so curvature effects are neglected. - # They could be included (e.g. for a sphere it is - # a_n * (L_tot + L_tot ** 2 / R_n + L_tot ** # 3 / (3 * R_n ** 2))) - # but it is not clear if it is relevant or not. - delta_eps_k = -a_k * L_tot + # This assumes a thin film so curvature effects are neglected. + # They could be included (e.g. for a sphere it is + # a_n * (L_tot + L_tot ** 2 / R_n + L_tot ** # 3 / (3 * R_n ** 2))) + # but it is not clear if it is relevant or not. + delta_eps_k += -a_k * L_tot domain_param = self.param.domain_params[domain.split()[0]] eps_k = domain_param.epsilon_init + delta_eps_k diff --git a/src/pybamm/parameters/lithium_ion_parameters.py b/src/pybamm/parameters/lithium_ion_parameters.py index 3902242d78..342eca8059 100644 --- a/src/pybamm/parameters/lithium_ion_parameters.py +++ b/src/pybamm/parameters/lithium_ion_parameters.py @@ -359,64 +359,83 @@ def _set_parameters(self): # SEI parameters self.V_bar_inner = pybamm.Parameter( - f"{pref}Inner SEI partial molar volume [m3.mol-1]" + f"{pref}{Domain} inner SEI partial molar volume [m3.mol-1]" ) self.V_bar_outer = pybamm.Parameter( - f"{pref}Outer SEI partial molar volume [m3.mol-1]" + f"{pref}{Domain} outer SEI partial molar volume [m3.mol-1]" ) - self.j0_sei = pybamm.Parameter( - f"{pref}SEI reaction exchange current density [A.m-2]" + f"{pref}{Domain} SEI reaction exchange current density [A.m-2]" + ) + self.R_sei = pybamm.Parameter(f"{pref}{Domain} SEI resistivity [Ohm.m]") + self.D_sol = pybamm.Parameter( + f"{pref}{Domain} outer SEI solvent diffusivity [m2.s-1]" + ) + self.c_sol = pybamm.Parameter( + f"{pref}Bulk solvent concentration for {domain} SEI [mol.m-3]" + ) + self.U_inner = pybamm.Parameter( + f"{pref}{Domain} inner SEI open-circuit potential [V]" + ) + self.U_outer = pybamm.Parameter( + f"{pref}{Domain} outer SEI open-circuit potential [V]" ) - - self.R_sei = pybamm.Parameter(f"{pref}SEI resistivity [Ohm.m]") - self.D_sol = pybamm.Parameter(f"{pref}Outer SEI solvent diffusivity [m2.s-1]") - self.c_sol = pybamm.Parameter(f"{pref}Bulk solvent concentration [mol.m-3]") - self.U_inner = pybamm.Parameter(f"{pref}Inner SEI open-circuit potential [V]") - self.U_outer = pybamm.Parameter(f"{pref}Outer SEI open-circuit potential [V]") self.kappa_inner = pybamm.Parameter( - f"{pref}Inner SEI electron conductivity [S.m-1]" + f"{pref}{Domain} inner SEI electron conductivity [S.m-1]" ) self.D_li = pybamm.Parameter( - f"{pref}Inner SEI lithium interstitial diffusivity [m2.s-1]" + f"{pref}{Domain} inner SEI lithium interstitial diffusivity [m2.s-1]" ) self.c_li_0 = pybamm.Parameter( - f"{pref}Lithium interstitial reference concentration [mol.m-3]" + f"{pref}{Domain} lithium interstitial reference concentration [mol.m-3]" + ) + self.L_inner_0 = pybamm.Parameter( + f"{pref}Initial {domain} inner SEI thickness [m]" + ) + self.L_outer_0 = pybamm.Parameter( + f"{pref}Initial {domain} outer SEI thickness [m]" ) - self.L_inner_0 = pybamm.Parameter(f"{pref}Initial inner SEI thickness [m]") - self.L_outer_0 = pybamm.Parameter(f"{pref}Initial outer SEI thickness [m]") + self.L_sei_0 = self.L_inner_0 + self.L_outer_0 self.L_inner_crack_0 = pybamm.Parameter( - f"{pref}Initial inner SEI on cracks thickness [m]" + f"{pref}Initial {domain} inner SEI on cracks thickness [m]" ) self.L_outer_crack_0 = pybamm.Parameter( - f"{pref}Initial outer SEI on cracks thickness [m]" + f"{pref}Initial {domain} outer SEI on cracks thickness [m]" + ) + self.E_sei = pybamm.Parameter( + f"{pref}{Domain} SEI growth activation energy [J.mol-1]" + ) + self.alpha_SEI = pybamm.Parameter( + f"{pref}{Domain} SEI growth transfer coefficient" ) - - self.L_sei_0 = self.L_inner_0 + self.L_outer_0 - self.E_sei = pybamm.Parameter(f"{pref}SEI growth activation energy [J.mol-1]") - self.alpha_SEI = pybamm.Parameter(f"{pref}SEI growth transfer coefficient") self.inner_sei_proportion = pybamm.Parameter( - f"{pref}Inner SEI reaction proportion" + f"{pref}{Domain} inner SEI reaction proportion" + ) + self.z_sei = pybamm.Parameter( + f"{pref}Ratio of lithium moles to {domain} SEI moles" ) - self.z_sei = pybamm.Parameter(f"{pref}Ratio of lithium moles to SEI moles") # EC reaction self.c_ec_0 = pybamm.Parameter( - f"{pref}EC initial concentration in electrolyte [mol.m-3]" + f"{pref}{Domain} EC initial concentration in electrolyte [mol.m-3]" + ) + self.D_ec = pybamm.Parameter( + f"{pref}EC diffusivity through {domain} SEI [m2.s-1]" ) - self.D_ec = pybamm.Parameter(f"{pref}EC diffusivity [m2.s-1]") - self.k_sei = pybamm.Parameter(f"{pref}SEI kinetic rate constant [m.s-1]") - self.U_sei = pybamm.Parameter(f"{pref}SEI open-circuit potential [V]") + self.k_sei = pybamm.Parameter( + f"{pref}{Domain} SEI kinetic rate constant [m.s-1]" + ) + self.U_sei = pybamm.Parameter(f"{pref}{Domain} SEI open-circuit potential [V]") # Lithium plating parameters - self.c_Li_typ = pybamm.Parameter( - f"{pref}Typical plated lithium concentration [mol.m-3]" + self.c_Li_ref = pybamm.Parameter( + f"{pref}{Domain} lithium plating reference concentration [mol.m-3]" ) self.c_plated_Li_0 = pybamm.Parameter( - f"{pref}Initial plated lithium concentration [mol.m-3]" + f"{pref}Initial {domain} lithium plating concentration [mol.m-3]" ) self.alpha_plating = pybamm.Parameter( - f"{pref}Lithium plating transfer coefficient" + f"{pref}{Domain} lithium plating transfer coefficient" ) self.alpha_stripping = 1 - self.alpha_plating @@ -577,27 +596,29 @@ def j0(self, c_e, c_s_surf, T, lithiation=None): def j0_stripping(self, c_e, c_Li, T): """Dimensional exchange-current density for stripping [A.m-2]""" - Domain = self.domain.capitalize() + domain, Domain = self.domain_Domain inputs = { f"{Domain} electrolyte concentration [mol.m-3]": c_e, f"{Domain} plated lithium concentration [mol.m-3]": c_Li, f"{Domain} temperature [K]": T, } return pybamm.FunctionParameter( - f"{self.phase_prefactor}Exchange-current density for stripping [A.m-2]", + f"{self.phase_prefactor}" + f"Exchange-current density for {domain} lithium stripping [A.m-2]", inputs, ) def j0_plating(self, c_e, c_Li, T): """Dimensional exchange-current density for plating [A.m-2]""" - Domain = self.domain.capitalize() + domain, Domain = self.domain_Domain inputs = { f"{Domain} electrolyte concentration [mol.m-3]": c_e, f"{Domain} plated lithium concentration [mol.m-3]": c_Li, f"{Domain} temperature [K]": T, } return pybamm.FunctionParameter( - f"{self.phase_prefactor}Exchange-current density for plating [A.m-2]", + f"{self.phase_prefactor}" + f"Exchange-current density for {domain} lithium plating [A.m-2]", inputs, ) @@ -606,7 +627,7 @@ def dead_lithium_decay_rate(self, L_sei): Domain = self.domain.capitalize() inputs = {f"{Domain} total {self.phase_name}SEI thickness [m]": L_sei} return pybamm.FunctionParameter( - f"{self.phase_prefactor}Dead lithium decay rate [s-1]", inputs + f"{self.phase_prefactor}{Domain} dead lithium decay rate [s-1]", inputs ) def U(self, sto, T, lithiation=None): diff --git a/tests/integration/test_models/test_full_battery_models/test_lithium_ion/base_lithium_ion_half_cell_tests.py b/tests/integration/test_models/test_full_battery_models/test_lithium_ion/base_lithium_ion_half_cell_tests.py index 5dc5b2dc94..9bdee1e565 100644 --- a/tests/integration/test_models/test_full_battery_models/test_lithium_ion/base_lithium_ion_half_cell_tests.py +++ b/tests/integration/test_models/test_full_battery_models/test_lithium_ion/base_lithium_ion_half_cell_tests.py @@ -60,38 +60,84 @@ def test_sei_constant(self): def test_sei_reaction_limited(self): options = {"SEI": "reaction limited"} + parameter_values = pybamm.ParameterValues("Ecker2015_graphite_halfcell") + parameter_values.update( + { + "Positive SEI growth transfer coefficient": 0.2, + "Current function [A]": -0.07826, + }, + check_already_exists=False, + ) self.run_basic_processing_test(options) def test_sei_asymmetric_reaction_limited(self): options = {"SEI": "reaction limited (asymmetric)"} parameter_values = pybamm.ParameterValues("Ecker2015_graphite_halfcell") parameter_values.update( - {"SEI growth transfer coefficient": 0.2, "Current function [A]": -0.07826}, + { + "Positive SEI growth transfer coefficient": 0.2, + "Current function [A]": -0.07826, + }, check_already_exists=False, ) self.run_basic_processing_test(options, parameter_values=parameter_values) def test_sei_solvent_diffusion_limited(self): options = {"SEI": "solvent-diffusion limited"} + parameter_values = pybamm.ParameterValues("Ecker2015_graphite_halfcell") + parameter_values.update( + { + "Positive SEI growth transfer coefficient": 0.2, + "Current function [A]": -0.07826, + }, + check_already_exists=False, + ) self.run_basic_processing_test(options) def test_sei_electron_migration_limited(self): options = {"SEI": "electron-migration limited"} + parameter_values = pybamm.ParameterValues("Ecker2015_graphite_halfcell") + parameter_values.update( + { + "Positive SEI growth transfer coefficient": 0.2, + "Current function [A]": -0.07826, + }, + check_already_exists=False, + ) self.run_basic_processing_test(options) def test_sei_interstitial_diffusion_limited(self): options = {"SEI": "interstitial-diffusion limited"} + parameter_values = pybamm.ParameterValues("Ecker2015_graphite_halfcell") + parameter_values.update( + { + "Positive SEI growth transfer coefficient": 0.2, + "Current function [A]": -0.07826, + }, + check_already_exists=False, + ) self.run_basic_processing_test(options) def test_sei_ec_reaction_limited(self): options = {"SEI": "ec reaction limited"} + parameter_values = pybamm.ParameterValues("Ecker2015_graphite_halfcell") + parameter_values.update( + { + "Positive SEI growth transfer coefficient": 0.2, + "Current function [A]": -0.07826, + }, + check_already_exists=False, + ) self.run_basic_processing_test(options) def test_sei_asymmetric_ec_reaction_limited(self): options = {"SEI": "ec reaction limited (asymmetric)"} parameter_values = pybamm.ParameterValues("Ecker2015_graphite_halfcell") parameter_values.update( - {"SEI growth transfer coefficient": 0.2, "Current function [A]": -0.07826}, + { + "Positive SEI growth transfer coefficient": 0.2, + "Current function [A]": -0.07826, + }, check_already_exists=False, ) self.run_basic_processing_test(options, parameter_values=parameter_values) diff --git a/tests/integration/test_models/test_full_battery_models/test_lithium_ion/base_lithium_ion_tests.py b/tests/integration/test_models/test_full_battery_models/test_lithium_ion/base_lithium_ion_tests.py index 7c176249fd..2b5f875bae 100644 --- a/tests/integration/test_models/test_full_battery_models/test_lithium_ion/base_lithium_ion_tests.py +++ b/tests/integration/test_models/test_full_battery_models/test_lithium_ion/base_lithium_ion_tests.py @@ -180,7 +180,7 @@ def test_sei_asymmetric_reaction_limited(self): options = {"SEI": "reaction limited (asymmetric)"} parameter_values = pybamm.ParameterValues("Marquis2019") parameter_values.update( - {"SEI growth transfer coefficient": 0.2}, + {"Negative SEI growth transfer coefficient": 0.2}, check_already_exists=False, ) self.run_basic_processing_test(options, parameter_values=parameter_values) @@ -211,7 +211,7 @@ def test_sei_asymmetric_ec_reaction_limited(self): } parameter_values = pybamm.ParameterValues("Marquis2019") parameter_values.update( - {"SEI growth transfer coefficient": 0.2}, + {"Negative SEI growth transfer coefficient": 0.2}, check_already_exists=False, ) self.run_basic_processing_test(options, parameter_values=parameter_values) @@ -333,6 +333,7 @@ def test_composite_graphite_silicon_sei(self): "particle phases": ("2", "1"), "open-circuit potential": (("single", "current sigmoid"), "single"), "SEI": "ec reaction limited", + "SEI porosity change": "true", } parameter_values = pybamm.ParameterValues("Chen2020_composite") name = "Negative electrode active material volume fraction" diff --git a/tests/unit/test_experiments/test_simulation_with_experiment.py b/tests/unit/test_experiments/test_simulation_with_experiment.py index 4f981ba04c..b46d59419e 100644 --- a/tests/unit/test_experiments/test_simulation_with_experiment.py +++ b/tests/unit/test_experiments/test_simulation_with_experiment.py @@ -382,7 +382,7 @@ def test_run_experiment_termination_capacity(self): ) model = pybamm.lithium_ion.SPM({"SEI": "ec reaction limited"}) param = pybamm.ParameterValues("Chen2020") - param["SEI kinetic rate constant [m.s-1]"] = 1e-14 + param["Negative SEI kinetic rate constant [m.s-1]"] = 1e-14 sim = pybamm.Simulation(model, experiment=experiment, parameter_values=param) sol = sim.solve(solver=pybamm.CasadiSolver()) C = sol.summary_variables["Capacity [A.h]"] @@ -404,7 +404,7 @@ def test_run_experiment_termination_capacity(self): ) model = pybamm.lithium_ion.SPM({"SEI": "ec reaction limited"}) param = pybamm.ParameterValues("Chen2020") - param["SEI kinetic rate constant [m.s-1]"] = 1e-14 + param["Negative SEI kinetic rate constant [m.s-1]"] = 1e-14 sim = pybamm.Simulation(model, experiment=experiment, parameter_values=param) sol = sim.solve(solver=pybamm.CasadiSolver()) # all but the last value should be above the termination condition diff --git a/tests/unit/test_models/test_full_battery_models/test_lithium_ion/base_lithium_ion_tests.py b/tests/unit/test_models/test_full_battery_models/test_lithium_ion/base_lithium_ion_tests.py index 7b690257dc..ba5714e7af 100644 --- a/tests/unit/test_models/test_full_battery_models/test_lithium_ion/base_lithium_ion_tests.py +++ b/tests/unit/test_models/test_full_battery_models/test_lithium_ion/base_lithium_ion_tests.py @@ -569,6 +569,7 @@ def test_well_posed_composite_different_degradation(self): options = { "particle phases": ("2", "1"), "SEI": ("ec reaction limited", "none"), + "SEI porosity change": "true", "lithium plating": ("reversible", "none"), "open-circuit potential": (("current sigmoid", "single"), "single"), } @@ -577,6 +578,7 @@ def test_well_posed_composite_different_degradation(self): options = { "particle phases": ("2", "1"), "SEI": (("ec reaction limited", "solvent-diffusion limited"), "none"), + "SEI porosity change": "true", "lithium plating": (("reversible", "irreversible"), "none"), "open-circuit potential": (("current sigmoid", "single"), "single"), } diff --git a/tests/unit/test_parameters/test_parameter_sets/test_Ecker2015.py b/tests/unit/test_parameters/test_parameter_sets/test_Ecker2015.py index 4be67175d7..d5ad55c1f2 100644 --- a/tests/unit/test_parameters/test_parameter_sets/test_Ecker2015.py +++ b/tests/unit/test_parameters/test_parameter_sets/test_Ecker2015.py @@ -14,12 +14,15 @@ def test_functions(self): fun_test = { # Lithium plating - "Exchange-current density for plating [A.m-2]": ([1e3, 1e4, T], 9.6485e-3), - "Exchange-current density for stripping [A.m-2]": ( + "Exchange-current density for negative lithium plating [A.m-2]": ( + [1e3, 1e4, T], + 9.6485e-3, + ), + "Exchange-current density for negative lithium stripping [A.m-2]": ( [1e3, 1e4, T], 9.6485e-2, ), - "Dead lithium decay rate [s-1]": ([1e-8], 5e-7), + "Negative dead lithium decay rate [s-1]": ([1e-8], 5e-7), # Negative electrode "Negative particle diffusivity [m2.s-1]": ([sto, T], 1.219e-14), "Negative electrode exchange-current density [A.m-2]": ( diff --git a/tests/unit/test_parameters/test_parameter_sets/test_Ecker2015_graphite_halfcell.py b/tests/unit/test_parameters/test_parameter_sets/test_Ecker2015_graphite_halfcell.py index 6000b997b7..d8db8839d9 100644 --- a/tests/unit/test_parameters/test_parameter_sets/test_Ecker2015_graphite_halfcell.py +++ b/tests/unit/test_parameters/test_parameter_sets/test_Ecker2015_graphite_halfcell.py @@ -13,12 +13,15 @@ def test_functions(self): fun_test = { # Lithium plating - "Exchange-current density for plating [A.m-2]": ([1e3, 1e4, T], 9.6485e-3), - "Exchange-current density for stripping [A.m-2]": ( + "Exchange-current density for positive lithium plating [A.m-2]": ( + [1e3, 1e4, T], + 9.6485e-3, + ), + "Exchange-current density for positive lithium stripping [A.m-2]": ( [1e3, 1e4, T], 9.6485e-2, ), - "Dead lithium decay rate [s-1]": ([1e-8], 5e-7), + "Positive dead lithium decay rate [s-1]": ([1e-8], 5e-7), # Positive electrode "Positive particle diffusivity [m2.s-1]": ([sto, T], 1.219e-14), "Positive electrode exchange-current density [A.m-2]": ( diff --git a/tests/unit/test_parameters/test_parameter_sets/test_OKane2022.py b/tests/unit/test_parameters/test_parameter_sets/test_OKane2022.py index 014b467715..49ff25de76 100644 --- a/tests/unit/test_parameters/test_parameter_sets/test_OKane2022.py +++ b/tests/unit/test_parameters/test_parameter_sets/test_OKane2022.py @@ -14,12 +14,15 @@ def test_functions(self): fun_test = { # Lithium plating - "Exchange-current density for plating [A.m-2]": ([1e3, 1e4, T], 9.6485e-2), - "Exchange-current density for stripping [A.m-2]": ( + "Exchange-current density for negative lithium plating [A.m-2]": ( + [1e3, 1e4, T], + 9.6485e-2, + ), + "Exchange-current density for negative lithium stripping [A.m-2]": ( [1e3, 1e4, T], 9.6485e-1, ), - "Dead lithium decay rate [s-1]": ([1e-8], 5e-7), + "Negative dead lithium decay rate [s-1]": ([1e-8], 5e-7), # Negative electrode "Negative particle diffusivity [m2.s-1]": ([sto, T], 3.3e-14), "Negative electrode exchange-current density [A.m-2]": ( diff --git a/tests/unit/test_parameters/test_parameter_sets/test_OKane2022_negative_halfcell.py b/tests/unit/test_parameters/test_parameter_sets/test_OKane2022_negative_halfcell.py index beebeb35e3..327f074e0b 100644 --- a/tests/unit/test_parameters/test_parameter_sets/test_OKane2022_negative_halfcell.py +++ b/tests/unit/test_parameters/test_parameter_sets/test_OKane2022_negative_halfcell.py @@ -13,12 +13,15 @@ def test_functions(self): fun_test = { # Lithium plating - "Exchange-current density for plating [A.m-2]": ([1e3, 1e4, T], 9.6485e-2), - "Exchange-current density for stripping [A.m-2]": ( + "Exchange-current density for positive lithium plating [A.m-2]": ( + [1e3, 1e4, T], + 9.6485e-2, + ), + "Exchange-current density for positive lithium stripping [A.m-2]": ( [1e3, 1e4, T], 9.6485e-1, ), - "Dead lithium decay rate [s-1]": ([1e-8], 5e-7), + "Positive dead lithium decay rate [s-1]": ([1e-8], 5e-7), # Positive electrode "Positive particle diffusivity [m2.s-1]": ([sto, T], 3.3e-14), "Positive electrode exchange-current density [A.m-2]": (