diff --git a/docs/source/independence_tests_index/kci.rst b/docs/source/independence_tests_index/kci.rst index f3f7351..1123050 100644 --- a/docs/source/independence_tests_index/kci.rst +++ b/docs/source/independence_tests_index/kci.rst @@ -52,7 +52,7 @@ and n_features is the number of features. + Either for specifying parameters of KCI, including: - **KernelX/Y/Z (condition_set)**: ['GaussianKernel', 'LinearKernel', 'PolynomialKernel']. (For 'PolynomialKernel', the default degree is 2. Currently, users can change it by setting the 'degree' of 'class PolynomialKernel()'. + **KernelX/Y/Z (condition_set)**: ['Gaussian', 'Linear', 'Polynomial']. (For 'Polynomial', the default degree is 2. Currently, users can change it by setting the 'degree' of 'class PolynomialKernel()'. **est_width**: set kernel width for Gaussian kernels. - 'empirical': set kernel width using empirical rules (default). @@ -72,4 +72,4 @@ Returns **p**: the p value. -.. [1] Zhang, K., Peters, J., Janzing, D., & Schölkopf, B. (2011, July). Kernel-based Conditional Independence Test and Application in Causal Discovery. In 27th Conference on Uncertainty in Artificial Intelligence (UAI 2011) (pp. 804-813). AUAI Press. \ No newline at end of file +.. [1] Zhang, K., Peters, J., Janzing, D., & Schölkopf, B. (2011, July). Kernel-based Conditional Independence Test and Application in Causal Discovery. In 27th Conference on Uncertainty in Artificial Intelligence (UAI 2011) (pp. 804-813). AUAI Press.