-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy path1uri_file_pgie_iou_tracker_app_sink.py
166 lines (141 loc) · 6.01 KB
/
1uri_file_pgie_iou_tracker_app_sink.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
################################################################################
# The MIT License
#
# Copyright (c) 2019-2023, Prominence AI, Inc.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
################################################################################
################################################################################
#
# The simple example demonstrates how to create a set of Pipeline components,
# specifically:
# - URI Source
# - Primary GST Inference Engine (PGIE)
# - IOU Tracker
# - APP Sink
# ...and how to add them to a new Pipeline and play
#
# A "new_buffer_handler_cb" is added to the APP Sink to process the frame
# and object meta-data for each buffer received
#
################################################################################
#!/usr/bin/env python
import sys
from dsl import *
import pyds
uri_file = "/opt/nvidia/deepstream/deepstream/samples/streams/sample_1080p_h265.mp4"
# Filespecs (Jetson and dGPU) for the Primary GIE
primary_infer_config_file = \
'/opt/nvidia/deepstream/deepstream/samples/configs/deepstream-app/config_infer_primary.txt'
primary_model_engine_file = \
'/opt/nvidia/deepstream/deepstream/samples/models/Primary_Detector/resnet18_trafficcamnet.etlt_b8_gpu0_int8.engine'
# Filespec for the IOU Tracker config file
iou_tracker_config_file = \
'/opt/nvidia/deepstream/deepstream/samples/configs/deepstream-app/config_tracker_IOU.yml'
PGIE_CLASS_ID_VEHICLE = 0
PGIE_CLASS_ID_BICYCLE = 1
PGIE_CLASS_ID_PERSON = 2
PGIE_CLASS_ID_ROADSIGN = 3
def new_buffer_handler_cb(data_type, buffer, user_data):
frame_number=0
#Intiallizing object counter with 0.
obj_counter = {
PGIE_CLASS_ID_VEHICLE:0,
PGIE_CLASS_ID_PERSON:0,
PGIE_CLASS_ID_BICYCLE:0,
PGIE_CLASS_ID_ROADSIGN:0
}
num_rects=0
# Retrieve batch metadata from the gst_buffer
batch_meta = pyds.gst_buffer_get_nvds_batch_meta(buffer)
l_frame = batch_meta.frame_meta_list
while l_frame is not None:
try:
# Note that l_frame.data needs a cast to pyds.NvDsFrameMeta
# The casting is done by pyds.glist_get_nvds_frame_meta()
# The casting also keeps ownership of the underlying memory
# in the C code, so the Python garbage collector will leave
# it alone.
frame_meta = pyds.glist_get_nvds_frame_meta(l_frame.data)
except StopIteration:
break
frame_number=frame_meta.frame_num
num_rects = frame_meta.num_obj_meta
l_obj=frame_meta.obj_meta_list
while l_obj is not None:
try:
# Casting l_obj.data to pyds.NvDsObjectMeta
obj_meta=pyds.glist_get_nvds_object_meta(l_obj.data)
except StopIteration:
break
obj_counter[obj_meta.class_id] += 1
try:
l_obj=l_obj.next
except StopIteration:
break
frame_stats = \
"Frame Number={} Number of Objects={} Vehicle_count={} Person_count={}".format(
frame_number, num_rects, obj_counter[PGIE_CLASS_ID_VEHICLE],
obj_counter[PGIE_CLASS_ID_PERSON])
print(frame_stats)
try:
l_frame=l_frame.next
except StopIteration:
break
return DSL_FLOW_OK
def main(args):
# Since we're not using args, we can Let DSL initialize GST on first call
while True:
# New URI File Source using the filespec defined above
retval = dsl_source_uri_new('uri-source', uri_file, False, False, 0)
if retval != DSL_RETURN_SUCCESS:
break
# New Primary GIE using the filespecs above with interval = 0
retval = dsl_infer_gie_primary_new('primary-gie',
primary_infer_config_file, primary_model_engine_file, 0)
if retval != DSL_RETURN_SUCCESS:
break
# New IOU Tracker, setting operational width and hieght
retval = dsl_tracker_new('iou-tracker', iou_tracker_config_file, 480, 272)
if retval != DSL_RETURN_SUCCESS:
break
# New App Sink created to provide new buffers to process by calling
# the new_buffer_handler_cb callback function defined above.
retval = dsl_sink_app_new('app-sink', DSL_SINK_APP_DATA_TYPE_BUFFER,
new_buffer_handler_cb, None)
if retval != DSL_RETURN_SUCCESS:
break
# Add all the components to our pipeline
retval = dsl_pipeline_new_component_add_many('pipeline',
['uri-source', 'primary-gie', 'iou-tracker', 'app-sink', None])
if retval != DSL_RETURN_SUCCESS:
break
# Play the pipeline
retval = dsl_pipeline_play('pipeline')
if retval != DSL_RETURN_SUCCESS:
break
dsl_main_loop_run()
retval = DSL_RETURN_SUCCESS
break
# Print out the final result
print(dsl_return_value_to_string(retval))
dsl_pipeline_delete_all()
dsl_component_delete_all()
if __name__ == '__main__':
sys.exit(main(sys.argv))