-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathchatbot.py
94 lines (69 loc) · 2.7 KB
/
chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import chainlit as cl
# Model
from langchain_openai import ChatOpenAI
# Prompt
from langchain_core.prompts import ChatPromptTemplate
# Tool
from tools import get_company_profile_tool, get_competitors_tool
# Agent
from langchain.agents import create_tool_calling_agent, AgentExecutor
from langchain.agents.format_scratchpad import format_to_openai_functions
# Memory
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_core.chat_history import BaseChatMessageHistory
from langchain_core.prompts import ChatPromptTemplate
import os
from dotenv import load_dotenv
load_dotenv()
rapid_api_key = os.getenv("RAPID_API_KEY")
llm = ChatOpenAI(model_name = "gpt-3.5-turbo", temperature = 0)
store = {}
def get_session_history(session_id: str) -> BaseChatMessageHistory:
if session_id not in store:
store[session_id] = ChatMessageHistory()
return store[session_id]
@cl.set_starters
async def starters():
return [
cl.Starter(
label="Question 1",
message="What is AAPL and META? Is the head quarter located in the same country?"
),
cl.Starter(
label="Question 2",
message="List all competitors of GOOG?"
)
]
@cl.step(type="tool")
async def tool():
input = cl.user_session.get("input")
prompt = ChatPromptTemplate.from_messages([
("system", "you're a helpful assistant"),
("placeholder", "{history}"),
("human", "{input}"),
("placeholder", "{agent_scratchpad}"),
])
tools = [get_company_profile_tool, get_competitors_tool]
agent = create_tool_calling_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose = True, return_intermediate_steps=True)
agent_executor_w_memory = RunnableWithMessageHistory(
agent_executor,
get_session_history,
input_messages_key="input",
history_messages_key="history"
)
response = await agent_executor_w_memory.ainvoke({"input":input},
config={"configurable": {"session_id": "abc123"}},
callbacks=[cl.AsyncLangchainCallbackHandler()])
return response
@cl.on_message
async def chat(message: cl.Message):
cl.user_session.set("input", message.content)
response = await tool()
print(response)
history = get_session_history("abc123")
intermediate_steps = format_to_openai_functions(response['intermediate_steps'])
if len(intermediate_steps) > 0:
history.add_message(intermediate_steps[1])
await cl.Message(response["output"]).send()