-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtransforms.py
1242 lines (1175 loc) · 44.1 KB
/
transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2020 MIT Probabilistic Computing Project.
# See LICENSE.txt
from collections.abc import Callable
from functools import reduce
from itertools import chain
from itertools import product
from math import isinf
import sympy
from sympy import limit
from sympy.abc import X as symX
from sympy.calculus.util import function_range
from .math_util import isinf_neg
from .math_util import isinf_pos
from .poly import solve_poly_equality
from .poly import solve_poly_inequality
from .sets import EmptySet
from .sets import ExtReals
from .sets import ExtRealsPos
from .sets import FiniteNominal
from .sets import FiniteReal
from .sets import Interval
from .sets import Reals
from .sets import Strings
from .sets import Union
from .sets import convert_sympy
from .sets import make_intersection
from .sets import make_union
from .sets import oo
from .sym_util import get_union
from .sym_util import sympify_number
# ==============================================================================
# Transform base class.
class Transform():
subexpr = None
symbols = None
def get_symbols(self):
return self.symbols
def domain(self):
raise NotImplementedError()
def range(self):
raise NotImplementedError()
def substitute(self, env):
# TODO: Reject following cases, which result in infinite loop:
# (1) env[X] = f(X) // check for self-reference
# (2) env[X] = f(Z); env[Z] = g(X) // detect cycle in digraph
event_prime = self
while expr_in_env(event_prime, env):
event_prime = event_prime.subs(env)
return event_prime
def subs(self, env):
raise NotImplementedError()
def evaluate(self, assignment):
raise NotImplementedError()
def ffwd(self, x):
raise NotImplementedError()
def finv(self, y):
raise NotImplementedError()
def invert(self, ys):
intersection = self.range() & ys
if intersection is EmptySet:
return EmptySet
if isinstance(intersection, FiniteReal):
return self.invert_finite(intersection)
if isinstance(intersection, Interval):
return self.invert_interval(intersection)
if isinstance(intersection, Union):
xs_list = [self.invert(ys_i) for ys_i in intersection.args]
return make_union(*xs_list)
assert False, 'Unknown intersection: %s' % (intersection,)
def invert_finite(self, ys):
raise NotImplementedError()
def invert_interval(self, ys):
# Should be called on subset of range.
raise NotImplementedError()
# Addition.
def __add__number(self, x):
poly_self = polyify(self)
x_val = sympify_number(x)
coeffs_new = list(poly_self.coeffs)
coeffs_new[0] += x_val
return Poly(poly_self.subexpr, coeffs_new)
def __add__poly(self, x):
if not isinstance(x, Transform):
raise TypeError
poly_self = polyify(self)
poly_x = polyify(x)
if poly_x.subexpr != poly_self.subexpr:
raise ValueError('Incompatible subexpressions in "%s + %s"'
% (str(self), x))
sym_poly_a = sympy.Poly(poly_self.symexpr)
sym_poly_b = sympy.Poly(poly_x.symexpr)
sym_poly_c = sym_poly_a + sym_poly_b
coeffs = sym_poly_c.all_coeffs()[::-1]
return Poly(poly_self.subexpr, coeffs)
def __add__(self, x):
# Try to add x as a number.
try:
return self.__add__number(x)
except TypeError:
pass
# Try to add x as a polynomial.
try:
return self.__add__poly(x)
except TypeError:
pass
# Failed.
return NotImplemented
def __radd__(self, x):
# Prevent infinite recursion from polymorphism.
if not isinstance(x, Transform):
return self + x
return NotImplemented
# Multiplication.
def __mul__number(self, x):
poly_self = polyify(self)
x_val = sympify_number(x)
coeffs = [x_val*c for c in poly_self.coeffs]
return Poly(poly_self.subexpr, coeffs)
def __mul__event(self, x):
if not isinstance(x, Event):
raise TypeError
return Piecewise((self,), (x,))
def __mul__poly(self, x):
if not isinstance(x, Transform):
raise TypeError
poly_self = polyify(self)
poly_x = polyify(x)
if poly_x.subexpr != poly_self.subexpr:
raise ValueError('Incompatible subexpressions in "%s * %s"'
% (str(self), x))
sym_poly_a = sympy.Poly(poly_self.symexpr, symX)
sym_poly_b = sympy.Poly(poly_x.symexpr, symX)
sym_poly_c = sym_poly_a * sym_poly_b
coeffs = sym_poly_c.all_coeffs()[::-1]
return Poly(poly_self.subexpr, coeffs)
def __mul__(self, x):
# Try to multiply x as a number.
try:
return self.__mul__number(x)
except TypeError:
pass
# Try to multiply x as an event.
try:
return self.__mul__event(x)
except TypeError:
pass
# Try to multiply x as a polynomial.
try:
return self.__mul__poly(x)
except TypeError:
pass
# Failed.
return NotImplemented
def __rmul__(self, x):
# Prevent infinite recursion from polymorphism.
if not isinstance(x, Transform):
return self * x
return NotImplemented
# Division by x.
def __truediv__number(self, x):
x_val = sympify_number(x)
return sympy.Rational(1, x_val) * self
def __truediv__(self, x):
# Try to divide by x as a number.
try:
return self.__truediv__number(x)
except TypeError:
pass
# Failed.
return NotImplemented
# Division by self.
def __rtruediv__number(self, x):
x_val = sympify_number(x)
return Reciprocal(self) if (x_val == 1) else x_val * Reciprocal(self)
def __rtruediv__(self, x):
# Try to divide by x as a number.
try:
return self.__rtruediv__number(x)
except TypeError:
pass
# Failed.
return NotImplemented
# Subtraction.
def __sub__(self, x):
return self + (-1 * x)
def __rsub__(self, x):
return self - x
# Negation.
def __neg__(self):
return -1 * self
# Absolute value.
def __abs__(self):
return Abs(self)
# Power (self**x).
def __pow__integer(self, x):
if 0 < x:
return Pow(self, x)
if x < 0:
return 1 / Pow(self, -x)
raise ValueError('Cannot raise %s to %s' % (str(self), x))
def __pow__rational(self, x):
(numer, denom) = x.as_numer_denom()
if numer == 1:
return Radical(self, denom)
if numer == -1:
return 1 / Radical(self, denom)
if denom == 1:
return self.__pow__integer(numer)
# TODO: Consider default choice x**(a/b) = (x**(a))**(1/b)
raise ValueError('Cannot raise %s to %s' % (str(self), x))
def __pow__number(self, x):
x_val = sympify_number(x)
if isinstance(x_val, (sympy.Integer, int)):
return self.__pow__integer(x_val)
if isinstance(x_val, sympy.Rational):
return self.__pow__rational(x_val)
# TODO: Convert floating-point power to rational.
# if isinstance(x_val, sympy.Float):
# x_val_rat = sympy.Rational(x_val)
# return self.__pow__rational(x_val_rat)
raise ValueError(
'Cannot raise %s to irrational or floating-point power %s'
% (str(self), x))
def __pow__tuple(self, x):
if not isinstance(x, tuple):
raise TypeError
numer = sympify_number(x[0])
denom = sympify_number(x[1])
return self.__pow__rational(sympy.Rational(numer, denom))
def __pow__(self, x):
# Try to raise to x as a number.
try:
return self.__pow__number(x)
except TypeError:
pass
# Try to raise to x as a tuple.
try:
return self.__pow__tuple(x)
except TypeError:
pass
# Failed.
return NotImplemented
# Exponentiation (x**self)
def __rpow__number(self, x):
x_val = sympify_number(x)
if x_val <= 0:
raise ValueError('Base must be positive, not %s' % (x,))
return Exponential(self, x_val)
def __rpow__(self, x):
try:
return self.__rpow__number(x)
except TypeError:
pass
# Failed to exponentiate.
return NotImplemented
# Comparison.
# TODO: Considering (X < Y) to mean (X - Y < 0)
# Complication: X and Y may not have a natural ordering.
def __le__(self, x):
# self <= x
try:
x_val = sympify_number(x)
interval = Interval(-oo, x_val)
return EventInterval(self, interval)
except TypeError:
return NotImplemented
def __lt__(self, x):
# self < x
try:
x_val = sympify_number(x)
interval = Interval(-oo, x_val, right_open=True)
return EventInterval(self, interval)
except TypeError:
return NotImplemented
def __ge__(self, x):
# self >= x
try:
x_val = sympify_number(x)
interval = Interval(x_val, oo)
return EventInterval(self, interval)
except TypeError:
return NotImplemented
def __gt__(self, x):
# self > x
try:
x_val = sympify_number(x)
interval = Interval(x_val, oo, left_open=True)
return EventInterval(self, interval)
except TypeError:
return NotImplemented
# Containment
def __lshift__(self, x):
if x is EmptySet:
return EventFiniteReal(self, x)
if isinstance(x, FiniteReal):
return EventFiniteReal(self, x)
if isinstance(x, FiniteNominal):
return EventFiniteNominal(self, x)
if isinstance(x, Interval):
return EventInterval(self, x)
if isinstance(x, (list, tuple, set, frozenset)):
values = list(x)
values_num = [v for v in values if not isinstance(v, str)]
values_str = [v for v in values if isinstance(v, str)]
if values_num and values_str:
event_num = EventFiniteReal(self, FiniteReal(*values_num))
event_str = EventFiniteNominal(self, FiniteNominal(*values_str))
return EventOr([event_num, event_str])
if values_num:
return EventFiniteReal(self, FiniteReal(*values_num))
if values_str:
return EventFiniteNominal(self, FiniteNominal(*values_str))
return EventFiniteReal(self, EmptySet)
if isinstance(x, Union):
events = [self << y for y in x.args]
return reduce(lambda state, event: state | event, events)
return NotImplemented
# ==============================================================================
# Injective (one-to-one) Transforms.
class Injective(Transform):
def invert_finite(self, ys):
ys_prime = make_union(*[self.finv(y) for y in ys])
return self.subexpr.invert(ys_prime)
def invert_interval(self, ys):
assert isinstance(ys, Interval)
(a, b) = (ys.left, ys.right)
a_prime = next(iter(self.finv(a)))
b_prime = next(iter(self.finv(b)))
ys_prime = transform_interval(ys, a_prime, b_prime)
return self.subexpr.invert(ys_prime)
class Identity(Injective):
def __init__(self, token):
assert isinstance(token, str)
self.subexpr = self
self.token = token
self.hash = hash((self.__class__, self.token))
self.symbols = frozenset({self})
def domain(self):
return ExtReals
def range(self):
return ExtReals
def subs(self, env):
if not expr_in_env(self, env):
return self
return env[self]
def evaluate(self, assignment):
if self not in assignment:
raise ValueError('Cannot evaluate %s on %s' % (str(self), assignment))
return self.ffwd(assignment[self])
def ffwd(self, x):
# assert x in self.domain()
return x
def finv(self, y):
if not y in self.range():
return EmptySet
return FiniteReal(y)
def invert_finite(self, ys):
return ys
def invert_interval(self, ys):
return ys
def __eq__(self, x):
return isinstance(x, Identity) and self.token == x.token
def __repr__(self):
return 'Identity(%s)' % (repr(self.token),)
def __str__(self):
return self.token
def __hash__(self):
return self.hash
def __rshift__(self, f):
if isinstance(f, Callable):
return f(self)
# if isinstance(f, dict):
# from .spe import NominalLeaf
# return NominalLeaf(self, f)
return NotImplemented
class Radical(Injective):
def __init__(self, subexpr, degree):
assert degree != 0
self.subexpr = make_subexpr(subexpr, self)
self.degree = degree
def domain(self):
return ExtRealsPos
def range(self):
return ExtRealsPos
def subs(self, env):
if not expr_in_env(self, env):
return self
subexpr_prime = self.subexpr.subs(env)
return Radical(subexpr_prime, self.degree)
def evaluate(self, assignment):
x = self.subexpr.evaluate(assignment)
return self.ffwd(x)
def ffwd(self, x):
assert x in self.domain()
return sympy.Pow(x, sympy.Rational(1, self.degree))
def finv(self, y):
if y not in self.range():
return EmptySet
if isinf_pos(y):
return FiniteReal(oo)
return FiniteReal(sympy.Pow(y, sympy.Rational(self.degree, 1)))
def __eq__(self, x):
return isinstance(x, Radical) \
and self.subexpr == x.subexpr \
and self.degree == x.degree
def __repr__(self):
return 'Radical(%s, degree=%s)' \
% (repr(self.subexpr), repr(self.degree),)
def __str__(self):
return '(%s)**(1, %d)' % (str(self.subexpr), self.degree)
def __hash__(self):
x = (self.__class__, self.subexpr, self.degree)
return hash(x)
class Exponential(Injective):
def __init__(self, subexpr, base):
assert base > 0
self.subexpr = make_subexpr(subexpr, self)
self.base = base
def domain(self):
return ExtReals
def range(self):
return ExtRealsPos
def subs(self, env):
if not expr_in_env(self, env):
return self
subexpr_prime = self.subexpr.subs(env)
return Exponential(subexpr_prime, self.base)
def evaluate(self, assignment):
x = self.subexpr.evaluate(assignment)
return self.ffwd(x)
def ffwd(self, x):
assert x in self.domain()
return sympy.Pow(self.base, x)
def finv(self, y):
if not y in self.range():
return EmptySet
if isinf_pos(y):
return FiniteReal(oo)
if y <= 0:
return FiniteReal(-oo)
return FiniteReal(sympy.log(y, self.base))
def __eq__(self, x):
return isinstance(x, Exponential) \
and self.subexpr == x.subexpr \
and self.base == x.base
def __repr__(self):
return 'Exponential(%s, base=%s)' \
% (repr(self.subexpr), repr(self.base),)
def __str__(self):
if self.base == sympy.E:
return 'exp(%s)' % (str(self.subexpr),)
return '%s**(%s)' % (self.base, str(self.subexpr))
def __hash__(self):
x = (self.__class__, self.subexpr, self.base)
return hash(x)
class Logarithm(Injective):
def __init__(self, subexpr, base):
assert base > 1
self.subexpr = make_subexpr(subexpr, self)
self.base = base
def domain(self):
return ExtRealsPos
def range(self):
return ExtReals
def subs(self, env):
if not expr_in_env(self, env):
return self
subexpr_prime = self.subexpr.subs(env)
return Logarithm(subexpr_prime, self.base)
def evaluate(self, assignment):
x = self.subexpr.evaluate(assignment)
return self.ffwd(x)
def ffwd(self, x):
assert x in self.domain()
return {sympy.log(x, self.base) if x > 0 else -oo}
def finv(self, y):
if not y in self.range():
return EmptySet
if isinf_pos(y):
return FiniteReal(oo)
return FiniteReal(sympy.Pow(self.base, y))
def __eq__(self, x):
return isinstance(x, Logarithm) \
and self.subexpr == x.subexpr \
and self.base == x.base
def __repr__(self):
return 'Logarithm(%s, base=%s)' \
% (repr(self.subexpr), repr(self.base))
def __str__(self):
if self.base == sympy.E:
return 'ln(%s)' % (str(self.subexpr),)
if self.base == 2:
return 'log2(%s)' % (str(self.subexpr),)
return 'log(%s; %s)' % (str(self.subexpr), self.base)
def __hash__(self):
x = (self.__class__, self.subexpr, self.base)
return hash(x)
# ==============================================================================
# Non-injective real-valued Transforms.
class Abs(Transform):
def __init__(self, subexpr):
self.subexpr = make_subexpr(subexpr, self)
def domain(self):
return ExtReals
def range(self):
return ExtRealsPos
def subs(self, env):
if not expr_in_env(self, env):
return self
subexpr_prime = self.subexpr.subs(env)
return Abs(subexpr_prime)
def evaluate(self, assignment):
x = self.subexpr.evaluate(assignment)
return self.ffwd(x)
def ffwd(self, x):
assert x in self.domain()
return x if x > 0 else -x
def finv(self, y):
if not y in self.range():
return EmptySet
return FiniteReal(y, -y)
def invert_finite(self, ys):
ys_prime = make_union(*[self.finv(y) for y in ys])
return self.subexpr.invert(ys_prime)
def invert_interval(self, ys):
assert isinstance(ys, Interval)
(a, b) = (ys.left, ys.right)
ys_pos = transform_interval(ys, a, b)
ys_neg = transform_interval(ys, -b, -a, flip=True)
ys_prime = ys_pos | ys_neg
return self.subexpr.invert(ys_prime)
def __eq__(self, x):
return isinstance(x, Abs) and self.subexpr == x.subexpr
def __repr__(self):
return 'Abs(%s)' % (repr(self.subexpr))
def __str__(self):
return '|%s|' % (str(self.subexpr),)
def __hash__(self):
x = (self.__class__, self.subexpr)
return hash(x)
def __abs__(self):
return Abs(self.subexpr)
class Reciprocal(Transform):
def __init__(self, subexpr):
self.subexpr = make_subexpr(subexpr, self)
def domain(self):
# return ExtReals - sympy.FiniteSet(0)
return FiniteReal(oo, -oo) | Interval.Ropen(-oo, 0) | Interval.Lopen(0, oo)
def range(self):
return Interval.Ropen(-oo, 0) | Interval.Lopen(0, oo)
def subs(self, env):
if not expr_in_env(self, env):
return self
subexpr_prime = self.subexpr.subs(env)
return Reciprocal(subexpr_prime)
def evaluate(self, assignment):
x = self.subexpr.evaluate(assignment)
return self.ffwd(x)
def ffwd(self, x):
assert x in self.domain()
return 0 if isinf(x) else sympy.Pow(x, -1)
def finv(self, y):
if y not in self.range():
return EmptySet
if y == 0:
return FiniteReal(-oo, oo)
return FiniteReal(sympy.Pow(y, -1))
def invert_finite(self, ys):
ys_prime = make_union(*[self.finv(y) for y in ys])
return self.subexpr.invert(ys_prime)
def invert_interval(self, ys):
(a, b) = (ys.left, ys.right)
if (0 <= a < b):
assert 0 < a or ys.left_open
a_inv = sympy.Pow(a, -1) if 0 < a else oo
b_inv = sympy.Pow(b, -1) if (not isinf(b)) else 0
ys_prime = transform_interval(ys, b_inv, a_inv, flip=True)
return self.subexpr.invert(ys_prime)
if (a < b <= 0):
assert b < 0 or ys.right_open
a_inv = sympy.Pow(a, -1) if (not isinf(a)) else 0
b_inv = sympy.Pow(b, -1) if b < 0 else -oo
ys_prime = transform_interval(ys, b_inv, a_inv, flip=True)
return self.subexpr.invert(ys_prime)
assert False, 'Impossible Reciprocal interval: %s ' % (ys,)
def __eq__(self, x):
return isinstance(x, Reciprocal) \
and self.subexpr == x.subexpr
def __repr__(self):
return 'Reciprocal(%s)' % (repr(self.subexpr),)
def __str__(self):
return '(1/%s)' % (str(self.subexpr),)
def __hash__(self):
x = (self.__class__, self.subexpr)
return hash(x)
class Poly(Transform):
def __init__(self, subexpr, coeffs):
assert len(coeffs) > 1
self.subexpr = make_subexpr(subexpr, self)
self.coeffs = tuple(coeffs)
self.degree = len(coeffs) - 1
self.symexpr = make_sympy_polynomial(coeffs)
def domain(self):
return ExtReals
def range(self):
result = function_range(self.symexpr, symX, sympy.Reals)
if isinstance(result, sympy.FiniteSet):
return FiniteReal(*[float(x) for x in result.args])
pos_inf = FiniteReal(oo) if result.right == oo else EmptySet
neg_inf = FiniteReal(-oo) if result.left == -oo else EmptySet
return make_union(convert_sympy(result), pos_inf, neg_inf)
def subs(self, env):
if not expr_in_env(self, env):
return self
subexpr_prime = self.subexpr.subs(env)
return Poly(subexpr_prime, self.coeffs)
def evaluate(self, assignment):
x = self.subexpr.evaluate(assignment)
return self.ffwd(x)
def ffwd(self, x):
assert x in self.domain()
return self.symexpr.subs(symX, x) \
if not isinf(x) else limit(self.symexpr, symX, x)
def finv(self, y):
if not y in self.range():
return EmptySet
return solve_poly_equality(self.symexpr, y)
def invert_finite(self, ys):
ys_prime = make_union(*[self.finv(y) for y in ys])
return self.subexpr.invert(ys_prime)
def invert_interval(self, ys):
assert isinstance(ys, Interval)
(a, b) = (ys.left, ys.right)
(lo, ro) = (not ys.left_open, ys.right_open)
ys_prime_a = solve_poly_inequality(self.symexpr, a, lo, extended=False)
ys_prime_b = solve_poly_inequality(self.symexpr, b, ro, extended=False)
ys_prime = ys_prime_b & (~ys_prime_a)
return self.subexpr.invert(ys_prime)
def __eq__(self, x):
return isinstance(x, Poly) \
and self.subexpr == x.subexpr \
and self.coeffs == x.coeffs
def __neg__(self):
return Poly(self.subexpr, [-c for c in self.coeffs])
def __repr__(self):
return 'Poly(%s, coeffs=%s)' \
% (repr(self.subexpr), repr(self.coeffs))
def __str__(self):
ss = str(self.subexpr)
def term_to_str(i, c):
if c == 0:
return ''
if i == 0:
return str(c)
if i == 1:
return '%s(%s)' % (str(c), ss) if c != 1 else ss
if i < len(self.coeffs):
return '%s*(%s)**%d' % (str(c), ss, i) if c != 1 \
else '(%s)**%d' % (ss, i)
assert False
terms = [term_to_str(i, c) for i, c in enumerate(self.coeffs)]
return ' + '.join([t for t in terms if t])
def __hash__(self):
x = (self.__class__, self.subexpr, self.coeffs)
return hash(x)
# ==============================================================================
# Non-injective Piecewise Transform.
class Piecewise(Transform):
def __init__(self, subexprs, events):
self.subexprs = [make_subexpr(subexpr) for subexpr in subexprs]
self.events = [make_event(event) for event in events]
self.symbols = get_piecewise_symbol(self.subexprs, self.events)
self.domains = get_piecewise_domains(self.events)
def domain(self):
return make_union(*self.domains)
def range(self):
ranges = [subexpr.range() for subexpr in self.subexprs]
return make_union(*ranges)
def subs(self, env):
if not expr_in_env(self, env):
return self
# TODO: Check whether this logic is correct.
subexprs_prime = [subexpr.subs(env) for subexpr in self.subexprs]
events_prime = [event.subs(env) for event in self.events]
return Piecewise(subexprs_prime, events_prime)
def evaluate(self, assignment):
raise NotImplementedError()
def ffwd(self, x):
index = next(i for i, domain in enumerate(self.domains) if x in domain)
return self.subexprs[index].ffwd(x)
def finv(self, y):
xs_list = get_piecewise_inverse(lambda subexpr: subexpr.finv(y),
self.subexprs, self.domains)
return make_union(*xs_list)
def invert_finite(self, ys):
xs_list = get_piecewise_inverse(lambda subexpr: subexpr.invert(ys),
self.subexprs, self.domains)
return make_union(*xs_list)
def invert_interval(self, ys):
xs_list = get_piecewise_inverse(lambda subexpr: subexpr.invert(ys),
self.subexprs, self.domains)
return make_union(*xs_list)
def __add__(self, x):
if isinstance(x, Piecewise):
subexprs = self.subexprs + x.subexprs
events = self.events + x.events
return Piecewise(subexprs, events)
return super().__add__(x)
def __eq__(self, x):
return isinstance(x, Piecewise) \
and self.subexprs == x.subexprs \
and self.events == x.events
def __repr__(self):
return 'Piecewise(%s, events=%s)' \
% (repr(self.subexprs), repr(self.events))
def __str__(self):
strings = [
'(%s) * Indicator[%s]' % (str(subexpr), str(event))
for subexpr, event in zip(self.subexprs, self.events)
]
return ' + '.join(strings)
def __hash__(self):
x = (self.__class__, self.subexprs, self.events)
return hash(x)
def get_piecewise_symbol(subexprs, events):
if len(subexprs) != len(events):
raise ValueError('Piecewise requires same no. of subexprs and events.')
symbols_subexprs = get_union([subexpr.get_symbols() for subexpr in subexprs])
if len(symbols_subexprs) > 1:
raise ValueError('Piecewise cannot have multi-symbol subexpressions.')
symbols_events = get_union([event.get_symbols() for event in events])
if len(symbols_subexprs) > 1:
raise ValueError('Piecewise cannot have multi-symbol events.')
if symbols_subexprs != symbols_events:
raise ValueError('Piecewise events and subexprs need same symbols.')
return symbols_subexprs
def get_piecewise_domains(events):
domains = [event.solve() for event in events]
for i, di in enumerate(domains):
for j, dj in enumerate(domains):
if i == j:
continue
intersection = di & dj
if intersection is not EmptySet:
raise ValueError('Piecewise events %s and %s overlap'
% (di, dj))
return domains
def get_piecewise_inverse(f_inv, subexprs, domains):
inverses = [f_inv(subexpr) for subexpr in subexprs]
intersections = [i & d for i, d in zip(inverses, domains)]
return make_union(intersections)
# ==============================================================================
# Non-injective Boolean-valued Transforms.
class Event(Transform):
def range(self):
return FiniteReal(0, 1)
def __mul__(self, x):
if isinstance(x, Transform):
return Piecewise((x,), (self,))
return super().__mul__(x)
# Event methods.
def solve(self):
if len(self.symbols) > 1:
raise ValueError('Cannot solve multi-symbol Event.')
return self.invert(FiniteReal(1))
def to_dnf(self):
dnf = self.to_dnf_list()
simplify_event = lambda x, E: x[0] if len(x)==1 else E(x)
events = [simplify_event(conjunction, EventAnd) for conjunction in dnf]
return simplify_event(events, EventOr)
def to_dnf_list(self):
raise NotImplementedError()
def __and__(self, event):
# Naive implementation (no simplification):
# return EventAnd([self, event])
raise NotImplementedError()
def __or__(self, event):
raise NotImplementedError()
# Naive implementation (no simplification):
# return EventOr([self, event])
def __invert__(self):
raise NotImplementedError()
def __xor__(self, event):
if isinstance(event, Event):
return (self & ~event) | (~self & event)
return NotImplemented
class EventBasic(Event):
subexpr = None
values = None
def domain(self):
return self.subexpr.domain()
def solve(self):
if isinstance(self.subexpr, Identity):
return self.values
return super().solve()
def subs(self, env):
if not expr_in_env(self, env):
return self
subexpr_prime = self.subexpr.subs(env)
return type(self)(subexpr_prime, self.values)
def evaluate(self, assignment):
x = self.subexpr.evaluate(assignment)
return self.ffwd(x)
def ffwd(self, x):
return x in self.values
# Disable < on Events.
def __gt__(self, x):
raise TypeError()
def __ge__(self, x):
raise TypeError()
def __lt__(self, x):
raise TypeError()
def __le__(self, x):
raise TypeError()
# Event methods.
def to_dnf_list(self):
return [[self]]
def __and__(self, event):
# Simplify.
if isinstance(event, EventBasic):
if event.subexpr == self.subexpr:
intersection = self.values & event.values
if intersection is EmptySet:
return EventFiniteReal(self.subexpr, EmptySet)
if isinstance(intersection, FiniteReal):
return EventFiniteReal(self.subexpr, intersection)
if isinstance(intersection, FiniteNominal):
return EventFiniteNominal(self.subexpr, intersection)
if isinstance(intersection, Interval):
return EventInterval(self.subexpr, intersection)
# Linearize but do not simplify.
if isinstance(event, EventAnd):
events = (self,) + event.subexprs
return EventAnd(events)
if isinstance(event, (EventBasic, EventOr)):
return EventAnd([self, event])
return NotImplemented
def __or__(self, event):
# Simplify.
if isinstance(event, EventBasic):
if event.subexpr == self.subexpr:
union = self.values | event.values
if union is EmptySet:
return EventFiniteReal(self.subexpr, EmptySet)
if isinstance(union, FiniteReal):
return EventFiniteReal(self.subexpr, union)
if isinstance(union, FiniteNominal):
return EventFiniteNominal(self.subexpr, union)
if isinstance(union, Interval):
return EventInterval(self.subexpr, union)
# Linearize but do not simplify.
if isinstance(event, EventOr):
events = (self,) + event.subexprs
return EventOr(events)
if isinstance(event, (EventBasic, EventAnd)):
return EventOr([self, event])
return NotImplemented
def __eq__(self, event):
return isinstance(event, type(self)) \
and (self.values == event.values) \
and (self.subexpr == event.subexpr)
def __hash__(self):
x = (self.__class__, self.subexpr, self.values)
return hash(x)
class EventInterval(EventBasic):
def __init__(self, subexpr, values):
assert isinstance(values, Interval)
self.subexpr = make_subexpr(subexpr, self)
self.values = values
def finv(self, y):
if y not in self.range():
return EmptySet
if y == 1:
return self.values
if y == 0:
return ~self.values
def invert_finite(self, ys):
ys_prime = make_union(*[self.finv(y) for y in ys])
return self.subexpr.invert(ys_prime)
# Support chaining notation (a < X) < b
# Overrides the behavior of < from Transform.
def __compute_gte__(self, x, left_open):
# x < (Y < b)
if not isinf_neg(self.values.left):
raise ValueError('cannot compute %s < %s' % (x, str(self)))
xn = sympify_number(x)
# TODO: Replace interval_tmp
interval_tmp = sympy.Interval(
xn, self.values.right,
left_open=left_open,
right_open=self.values.right_open)
interval = convert_sympy(interval_tmp)
if isinstance(interval, Interval):
return EventInterval(self.subexpr, interval)
if isinstance(interval, FiniteReal) or interval is EmptySet:
return EventFiniteReal(self.subexpr, interval)
assert False, 'Unknown interval: %s' % (interval,)
def __compute_lte__(self, x, right_open):
# (a < Y) < x
if not isinf_pos(self.values.right):
raise ValueError('cannot compute %s < %s' % (str(self), x))
xn = sympify_number(x)
# TODO: Replace interval_tmp
interval_tmp = sympy.Interval(
self.values.left, xn,
left_open=self.values.left_open,
right_open=right_open)
interval = convert_sympy(interval_tmp)
if isinstance(interval, Interval):
return EventInterval(self.subexpr, interval)
if isinstance(interval, FiniteReal) or interval is EmptySet:
return EventFiniteReal(self.subexpr, interval)
assert False, 'Unknown interval: %s' % (interval,)
def __gt__(self, x):
return self.__compute_gte__(x, True)
def __ge__(self, x):
return self.__compute_gte__(x, False)
def __lt__(self, x):
return self.__compute_lte__(x, True)
def __le__(self, x):
return self.__compute_lte__(x, False)
def __invert__(self):
values_not = ~self.values
if values_not is EmptySet:
return EventFiniteReal(self.subexpr, values_not)
if isinstance(values_not, Interval):
return EventInterval(self.subexpr, values_not)
if isinstance(values_not, Union):
assert len(values_not.args) == 2
event_l = EventInterval(self.subexpr, values_not.args[0])
event_r = EventInterval(self.subexpr, values_not.args[1])
return EventOr([event_l, event_r])
assert False, 'Unknown complemented interval: %s' % (values_not,)
def __repr__(self):
return 'EventInterval(%s, values=%s)' \
% (repr(self.subexpr), repr(self.values))
def __str__(self):
sym = str(self.subexpr)
comp_l = '<' if self.values.left_open else '<='
(x_l, x_r) = (self.values.left, self.values.right)
comp_r = '<' if self.values.right_open else '<='
if isinf_neg(x_l):
result = '%s %s %s' % (sym, comp_r, x_r)
elif isinf_pos(x_r):
result = '%s %s %s' % (x_l, comp_l, sym)
else:
# Python-style parenthesis are required for
# rendering condition(E) in spe_to_sppl.py
result = '(%s %s %s) %s %s' % (x_l, comp_l, sym, comp_r, x_r)
return result
class EventFiniteReal(EventBasic):