-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathretinaNet.py
74 lines (54 loc) · 2.15 KB
/
retinaNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# import keras
import keras
# import keras_retinanet
from keras_retinanet import models
from keras_retinanet.utils.image import read_image_bgr, preprocess_image, resize_image
from keras_retinanet.utils.visualization import draw_box, draw_caption
from keras_retinanet.utils.colors import label_color
# import miscellaneous modules
import matplotlib.pyplot as plt
import cv2
import os
import numpy as np
import time
# set tf backend to allow memory to grow, instead of claiming everything
import tensorflow as tf
def get_session():
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
return tf.Session(config=config)
# use this environment flag to change which GPU to use
#os.environ["CUDA_VISIBLE_DEVICES"] = "1"
# set the modified tf session as backend in keras
keras.backend.tensorflow_backend.set_session(get_session())
class retinaNet:
def __init__(self, model_path, detection_threshold):
self.model_path = model_path
self.label_names = {0: 'Biker', 1: 'Car', 2: 'Bus', 3: 'Cart', 4: 'Skater', 5: 'Pedestrian'}
self.detection_threshold = detection_threshold
print("[INFO] loading model...")
# load retinanet model
self.model = models.load_model(model_path, backbone_name='resnet50')
def forward(self, image):
image = preprocess_image(image)
image, scale = resize_image(image)
# process image
boxes, scores, labels = self.model.predict_on_batch(np.expand_dims(image, axis=0))
# correct for image scale
boxes /= scale
predicted_ann = []
# visualize detections
for box, score, label in zip(boxes[0], scores[0], labels[0]):
# scores are sorted so we can break
if score < self.detection_threshold:
break
record = {}
boxCoord = []
boxCoord.append(int(box[1]))#y1
boxCoord.append(int(box[0]))#x1
boxCoord.append(int(box[3]))#y2
boxCoord.append(int(box[2]))#x2
record['bbox'] = boxCoord
record['label'] = self.label_names[label]
predicted_ann.append(record)
return predicted_ann