-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPopulation.js
280 lines (195 loc) · 8.57 KB
/
Population.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
// GENETIC EXPERIENCE MANAGEMENT
// by Paul Prae
// First created December 5th, 2014
// TODO: Unit Test thoroughly
// TODO: A Generation should probably be its own class
// TODO: Learn how to override methods properly
// TODO: Figure out how to set things up so there are methods that alter 'this' object's properties versus those of an object that is passed in.
function Population(numberOfIndividuals, numberOfTraits, possibleTraits, desiredTraits){
var Individual = require('./Individual');
// PROPERTIES
// TODO: Configuration file.
var defaultPossibleTraits = new Array( "red", "blue", "yellow", "green", "turquoise", "purple", "orange", "brown", "black", "white");
var defaultDesiredTraits = new Array("turquoise", "purple");
var defaultNumberOfIndividuals = 10;
var defaultNumberOfTraits = 3;
var defaultChanceOfMutation = 0.05;
this.numberOfIndividuals = typeof numberOfIndividuals !== 'undefined' ? numberOfIndividuals : defaultNumberOfIndividuals;
this.numberOfTraits = typeof numberOfTraits !== 'undefined' ? numberOfTraits : defaultNumberOfTraits;
this.possibleTraits = typeof possibleTraits !== 'undefined' ? possibleTraits : defaultPossibleTraits;
this.desiredTraits = typeof desiredTraits !== 'undefined' ? desiredTraits : defaultDesiredTraits;
this.newGeneration = function(numberOfIndividuals, numberOfTraits, possibleTraits){
var numberOfIndividuals = typeof numberOfIndividuals !== 'undefined' ? numberOfIndividuals : defaultNumberOfIndividuals;
var numberOfTraits = typeof numberOfTraits !== 'undefined' ? numberOfTraits : defaultNumberOfTraits;
var possibleTraits = typeof possibleTraits !== 'undefined' ? possibleTraits : defaultPossibleTraits;
var generation = new Array();
for (var i = 0; i < this.numberOfIndividuals; i++) {
var individual = new Individual(this.numberOfTraits, this.possibleTraits);
generation.push(individual);
}
return generation;
}
this.lastGeneration = new Array();
this.currentGeneration = this.newGeneration();
// GENETIC OPERATORS
//TODO: test more
// TODO: make work right
this.evolve = function(desiredTraits, generation){
this.lastGeneration = this.currentGeneration;
var desiredTraits = typeof desiredTraits !== 'undefined' ? desiredTraits : this.desiredTraits;
var generation = typeof generation !== 'undefined' ? generation : this.currentGeneration;
var mostFitParent = this.findAMostFitIndividual(generation);
var selection = this.selectFitMembers(generation.length, generation);
var nextGeneration = new Array();
var indexOfUnfitChild = null;
nextGeneration = this.crossoverGeneration(selection);
nextGeneration = this.mutateGeneration(defaultChanceOfMutation, nextGeneration);
indexOfUnfitChild = this.findIndexOfALeastFitIndividual(nextGeneration);
nextGeneration[indexOfUnfitChild] = mostFitParent;
this.currentGeneration = nextGeneration;
return nextGeneration;
}
this.evaluate = function(desiredTraits, generation){
var desiredTraits = typeof desiredTraits !== 'undefined' ? desiredTraits : this.desiredTraits;
var generation = typeof generation !== 'undefined' ? generation : this.currentGeneration;
for (var i = 0; i < generation.length; i++) {
generation[i].evaluate(desiredTraits);
}
return generation;
}
this.averageFitness = function(generation){
var generation = typeof generation !== 'undefined' ? generation : this.currentGeneration;
var totalFitness = 0;
for (var i = 0; i < generation.length; i++) {
totalFitness += generation[i].fitness;
}
return (totalFitness / generation.length);
}
// TODO: Always make sure previous fittest individuals survive.
// TODO: When choosing random individuals, always choose fittest members.
this.selectFitMembers = function(numberOfIndividuals, generation){
var numberOfIndividuals = typeof numberOfIndividuals !== 'undefined' ? numberOfIndividuals : defaultNumberOfIndividuals;
var generation = typeof generation !== 'undefined' ? generation : this.currentGeneration;
var fitIndividuals = this.allFitIndividuals(generation);
var selection = new Array();
for (var i = 0; i < numberOfIndividuals; i++) {
if(i < fitIndividuals.length){
selection.push(fitIndividuals[i]);
} else {
selection.push(this.findRandomFitIndividual(fitIndividuals));
}
};
return selection;
}
this.mutateGeneration = function(chance, generation){
var generation = typeof generation !== 'undefined' ? generation : this.currentGeneration;
var chance = typeof chance !== 'undefined' ? chance : defaultChanceOfMutation;
for (var i = 0; i < generation.length; i++) {
generation[i].mutate();
}
return generation;
}
this.crossoverGeneration = function(generation, crossoverPoint){
var generation = typeof generation !== 'undefined' ? generation : this.currentGeneration;
var crossoverPoint = typeof crossoverPoint !== 'undefined' ? crossoverPoint : Math.floor(generation[0].traits.length / 2);
var nextGeneration = new Array();
for (var i = 0; i < generation.length; i++) {
nextGeneration.push(this.crossover(generation[i]));
}
return nextGeneration;
}
// TODO: Do a real crossover and prouce two children
this.crossover = function(individual, mate, crossoverPoint, generation){
// this default mate selection will drive fitness up. yay! except watch for local maximums.
var mate = typeof mate !== 'undefined' ? mate : this.findRandomFitOrFitterIndividual();
var crossoverPoint = typeof crossoverPoint !== 'undefined' ? crossoverPoint : Math.floor(individual.traits.length / 2);
var generation = typeof generation !== 'undefined' ? generation : this.currentGeneration;
var child = new Individual();
for (var i = 0; i < child.traits.length; i++) {
if(i < crossoverPoint){
child.traits[i] = individual.traits[i];
} else {
child.traits[i] = mate.traits[i];
}
}
child.evaluate();
return child;
}
this.findAMostFitIndividual = function(generation){
var generation = typeof generation !== 'undefined' ? generation : this.currentGeneration;
var fittest = new Individual();
for (var i = 0; i < generation.length; i++) {
if(generation[i].fitness >= fittest.fitness){
fittest = generation[i];
}
}
return fittest;
}
this.findALeastFitIndividual = function(generation){
var generation = typeof generation !== 'undefined' ? generation : this.currentGeneration;
var leastFit = new Individual();
var leastFitIndex = 0;
for (var i = 0; i < generation.length; i++) {
if(generation[i].fitness <= leastFit.fitness){
leastFit = generation[i];
leastFitIndex = i;
}
}
return leastFit;
}
this.findIndexOfALeastFitIndividual = function(generation){
var generation = typeof generation !== 'undefined' ? generation : this.currentGeneration;
var leastFit = new Individual();
var leastFitIndex = 0;
for (var i = 0; i < generation.length; i++) {
if(generation[i].fitness <= leastFit.fitness){
leastFit = generation[i];
leastFitIndex = i;
}
}
return leastFitIndex;
}
this.findRandomFitOrFitterIndividual = function(fitness, generation){
var fitness = typeof fitness !== 'undefined' ? fitness : 1;
var fitOrFitterIndividuals = this.allFitIndividuals(generation, fitness);
var generation = typeof generation !== 'undefined' ? generation : this.currentGeneration;
if (fitOrFitterIndividuals.length != 0){
var randomInt = this.getRandomInt(0, fitOrFitterIndividuals.length - 1);
return fitOrFitterIndividuals[randomInt];
}
return null;
}
this.findRandomFitIndividual = function(generation){
var generation = typeof generation !== 'undefined' ? generation : this.currentGeneration;
var fitIndividuals = this.allFitIndividuals(generation);
if (fitIndividuals.length > 0){
var randomInt = this.getRandomInt(0, fitIndividuals.length - 1);
return fitIndividuals[randomInt];
}
return null;
}
this.allFitIndividuals = function(generation, fitness){
var fitness = typeof fitness !== 'undefined' ? fitness : 1;
var generation = typeof generation !== 'undefined' ? generation : this.currentGeneration;
var fitIndividuals = new Array();
for (var i = 0; i < generation.length; i++) {
if(generation[i].fitness >= fitness){
fitIndividuals.push(generation[i]);
}
}
return fitIndividuals;
}
// HELPERS
this.getRandomInt = function(min, max) {
return Math.floor(Math.random() * (max - min + 1)) + min;
}
// PRINTS
this.prettyPrintGeneration = function(generation){
var generation = typeof generation !== 'undefined' ? generation : this.currentGeneration;
for (var i = 0; i < generation.length; i++) {
console.log('(' + i + ')');
generation[i].prettyPrint();
}
}
}
module.exports = Population;