-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathutils.py
54 lines (45 loc) · 2.04 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import os
import cv2
import random
import numpy as np
import torch
import torchvision
IMAGE_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.JPG', '.JPEG', '.PNG')
VIDEO_EXTENSIONS = ('.mp4', '.mov', '.avi', '.MP4', '.MOV', '.AVI')
def read_frame_from_videos(frame_root):
if frame_root.endswith(VIDEO_EXTENSIONS): # Video file path
video_name = os.path.basename(frame_root)[:-4]
frames, _, info = torchvision.io.read_video(filename=frame_root, pts_unit='sec', output_format='TCHW') # RGB
fps = info['video_fps']
else:
video_name = os.path.basename(frame_root)
frames = []
fr_lst = sorted(os.listdir(frame_root))
for fr in fr_lst:
frame = cv2.imread(os.path.join(frame_root, fr))[...,[2,1,0]] # RGB, HWC
frames.append(frame)
fps = 24 # default
frames = torch.Tensor(np.array(frames)).permute(0, 3, 1, 2).contiguous() # TCHW
length = frames.shape[0]
return frames, fps, length, video_name
def get_video_paths(input_root):
video_paths = []
for root, _, files in os.walk(input_root):
for file in files:
if file.lower().endswith(VIDEO_EXTENSIONS):
video_paths.append(os.path.join(root, file))
return sorted(video_paths)
def str_to_list(value):
return list(map(int, value.split(',')))
def gen_dilate(alpha, min_kernel_size, max_kernel_size):
kernel_size = random.randint(min_kernel_size, max_kernel_size)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size,kernel_size))
fg_and_unknown = np.array(np.not_equal(alpha, 0).astype(np.float32))
dilate = cv2.dilate(fg_and_unknown, kernel, iterations=1)*255
return dilate.astype(np.float32)
def gen_erosion(alpha, min_kernel_size, max_kernel_size):
kernel_size = random.randint(min_kernel_size, max_kernel_size)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size,kernel_size))
fg = np.array(np.equal(alpha, 255).astype(np.float32))
erode = cv2.erode(fg, kernel, iterations=1)*255
return erode.astype(np.float32)