forked from ClausewitzCPU0/SC2AI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathch10_Building_Neural_Network_Model.py
50 lines (42 loc) · 1.37 KB
/
ch10_Building_Neural_Network_Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
"""
建立神经网络模型 应用CNN
"""
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D
from keras.callbacks import TensorBoard
import numpy as np
import os
import random
model = Sequential()
# 增加隐藏卷积层
model.add(Conv2D(32, (3, 3), padding='same', # 32 Features , windows 3*3
input_shape=(176, 200, 3),
activation='relu'))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Conv2D(64, (3, 3), padding='same',
activation='relu'))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Conv2D(128, (3, 3), padding='same',
activation='relu'))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
# 全连接层
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
# 输出层
model.add(Dense(4, activation='softmax'))
# 设置基础参数
learning_rate = 0.0001
opt = keras.optimizers.adam(lr=learning_rate, decay=1e-6)
model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
# 记录日志
tensorboard = TensorBoard(log_dir="logs/stage1")