-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathblazeface_landmark.py
77 lines (58 loc) · 2.39 KB
/
blazeface_landmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from blazebase import BlazeLandmark, BlazeBlock
class BlazeFaceLandmark(BlazeLandmark):
"""The face landmark model from MediaPipe.
"""
def __init__(self):
super(BlazeFaceLandmark, self).__init__()
# size of ROIs used for input
self.resolution = 192
self._define_layers()
def _define_layers(self):
self.backbone1 = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=2, padding=0, bias=True),
nn.PReLU(16),
BlazeBlock(16, 16, 3, act='prelu'),
BlazeBlock(16, 16, 3, act='prelu'),
BlazeBlock(16, 32, 3, 2, act='prelu'),
BlazeBlock(32, 32, 3, act='prelu'),
BlazeBlock(32, 32, 3, act='prelu'),
BlazeBlock(32, 64, 3, 2, act='prelu'),
BlazeBlock(64, 64, 3, act='prelu'),
BlazeBlock(64, 64, 3, act='prelu'),
BlazeBlock(64, 128, 3, 2, act='prelu'),
BlazeBlock(128, 128, 3, act='prelu'),
BlazeBlock(128, 128, 3, act='prelu'),
BlazeBlock(128, 128, 3, 2, act='prelu'),
BlazeBlock(128, 128, 3, act='prelu'),
BlazeBlock(128, 128, 3, act='prelu'),
)
# facial_landmark head
self.backbone2a = nn.Sequential(
BlazeBlock(128, 128, 3, 2, act='prelu'),
BlazeBlock(128, 128, 3, act='prelu'),
BlazeBlock(128, 128, 3, act='prelu'),
nn.Conv2d(128, 32, 1, padding=0, bias=True),
nn.PReLU(32),
BlazeBlock(32, 32, 3, act='prelu'),
nn.Conv2d(32, 1404, 3, padding=0, bias=True)
)
self.backbone2b = nn.Sequential(
BlazeBlock(128, 128, 3, 2, act='prelu'),
nn.Conv2d(128, 32, 1, padding=0, bias=True),
nn.PReLU(32),
BlazeBlock(32, 32, 3, act='prelu'),
nn.Conv2d(32, 1, 3, padding=0, bias=True)
)
def forward(self, x):
if x.shape[0] == 0:
return torch.zeros((0,)), torch.zeros((0, 468, 3))
#x = F.pad(x, (0, 1, 0, 1), "reflect", 0)
x = nn.ReflectionPad2d((1, 0, 1, 0))(x)
x = self.backbone1(x)
landmarks = self.backbone2a(x).view(-1, 468, 3) / 192
flag = self.backbone2b(x).sigmoid().view(-1)
return flag, landmarks