-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBatchNorm2D.h
180 lines (150 loc) · 8.2 KB
/
BatchNorm2D.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#ifndef LIBDL_BATCHNORM2D_H
#define LIBDL_BATCHNORM2D_H
#include "CNode.h"
#include "../Utils.h"
#define R 4
template<typename D>
class BatchNorm2D : public CNode<D, R> {
public:
BatchNorm2D(
const std::shared_ptr<Tensor<D, R>> &x,
const std::shared_ptr<Tensor<D, 1>> &gamma,
const std::shared_ptr<Tensor<D, 1>> &beta,
Eigen::Tensor<D, 1> mean,
Eigen::Tensor<D, 1> var,
Eigen::Tensor<D, R> xh,
D epsilon,
const std::shared_ptr<Tensor<D, R>> &result)
: CNode<D, R>(Utils::removeOption<std::shared_ptr<CNodeBase>>({x->gradFn, gamma->gradFn, beta->gradFn}), result),
cx(x->gradFn),
cgamma(gamma->gradFn),
cbeta(beta->gradFn),
x(x->data),
gamma(gamma->data),
mean(std::move(mean)),
var(std::move(var)),
epsilon(epsilon),
useRunningAvgVar(false),
xh(std::move(xh)) {}
BatchNorm2D(
const std::shared_ptr<Tensor<D, R>> &x,
const std::shared_ptr<Tensor<D, 1>> &gamma,
const std::shared_ptr<Tensor<D, 1>> &beta,
const std::shared_ptr<Tensor<D, 1>> &runningVar,
Eigen::Tensor<D, R> xh,
D epsilon,
const std::shared_ptr<Tensor<D, R>> &result)
: CNode<D, R>(Utils::removeOption<std::shared_ptr<CNodeBase>>({x->gradFn, gamma->gradFn, beta->gradFn}), result),
cx(x->gradFn),
cgamma(gamma->gradFn),
cbeta(beta->gradFn),
x(x->data),
gamma(gamma->data),
runningVar(runningVar->data),
epsilon(epsilon),
useRunningAvgVar(true),
xh(std::move(xh)) {}
/*
* \brief performs batchnorm on the image like input
*
* \param x a 4d tensor on which batchnorm should be performed with shape (channels, width, height, batchsize)
* \param gamma the gamma parameter of batchnorm with shape (channels,)
* \param beta the beta parameter of batchnorm with shape (channels,)
* \param runningMean running mean of x with shape (channels,)
* \param runningVar running variance of x with shape (channels,)
* \param momentum the momentum parameter of batchnorm
* \param epsilon the epsilon parameter of batchnorm
* \param useRunningAvgVar if running average and variance should be used
*
* \return a new normalized tensor with the same shape as x
* */
static std::shared_ptr<Tensor<D, R>> batchNorm2d(
const std::shared_ptr<Tensor<D, R>> &x,
const std::shared_ptr<Tensor<D, 1>> &gamma,
const std::shared_ptr<Tensor<D, 1>> &beta,
const std::shared_ptr<Tensor<D, 1>> &runningMean,
const std::shared_ptr<Tensor<D, 1>> &runningVar,
D momentum,
D epsilon,
bool useRunningAvgVar) {
if (gamma->data->dimension(0) != x->data->dimension(0))
throw std::invalid_argument("gamma has wrong shape");
if (beta->data->dimension(0) != x->data->dimension(0))
throw std::invalid_argument("beta has wrong shape");
if (runningMean->data->dimension(0) != x->data->dimension(0))
throw std::invalid_argument("runningMean has wrong shape");
if (runningVar->data->dimension(0) != x->data->dimension(0))
throw std::invalid_argument("runningVar has wrong shape");
if (momentum < 0)
throw std::invalid_argument("momentum must not be negative");
if (epsilon < 0)
throw std::invalid_argument("epsilon must not be negative");
const Eigen::array<std::int64_t, R> reshape{x->data->dimension(0), 1, 1, 1};
const Eigen::array<std::int64_t, R> broadcast{1, x->data->dimension(1), x->data->dimension(2), x->data->dimension(3)};
const Eigen::array <std::int64_t, 3> meanDims{1, 2, 3};
std::shared_ptr<Tensor<D, R>> result;
// https://wiki.tum.de/display/lfdv/Batch+Normalization
if (useRunningAvgVar) {
Eigen::Tensor<D, R> xh(x->data->dimensions());
xh.device(GlobalThreadPool::myDevice) = (*x->data - runningMean->data->reshape(reshape).broadcast(broadcast)) /
((*runningVar->data + runningVar->data->constant(epsilon)).sqrt().eval().reshape(reshape).broadcast(broadcast));
auto y = gamma->data->reshape(reshape).broadcast(broadcast) * xh + beta->data->reshape(reshape).broadcast(broadcast);
result = std::make_shared<Tensor<D, R>>(y, x->data->dimensions());
if ((x->needsGradient() || gamma->needsGradient() || beta->needsGradient()) && !CNodeBase::noGrad)
result->setGradFn(std::make_shared<BatchNorm2D<D>>(x, gamma, beta, runningVar, std::move(xh), epsilon, result));
} else {
Eigen::Tensor<D, 1> mean(x->data->dimension(0)), var(x->data->dimension(0));
mean.device(GlobalThreadPool::myDevice) = x->data->mean(meanDims);
auto xm = (*x->data - mean.reshape(reshape).broadcast(broadcast)).eval();
var.device(GlobalThreadPool::myDevice) = xm.square().mean(meanDims);
Eigen::Tensor<D, R> xh(x->data->dimensions());
xh.device(GlobalThreadPool::myDevice) = xm / ((var + var.constant(epsilon)).sqrt().eval().reshape(reshape).broadcast(broadcast));
auto y = gamma->data->reshape(reshape).broadcast(broadcast) * xh + beta->data->reshape(reshape).broadcast(broadcast);
result = std::make_shared<Tensor<D, R>>(y, x->data->dimensions());
runningMean->data->device(GlobalThreadPool::myDevice) = mean.constant(momentum) * mean + runningMean->data->constant(1 - momentum) * *runningMean->data;
runningVar->data->device(GlobalThreadPool::myDevice) = var.constant(momentum) * var + runningVar->data->constant(1 - momentum) * *runningVar->data;
if ((x->needsGradient() || gamma->needsGradient() || beta->needsGradient()) && !CNodeBase::noGrad)
result->setGradFn(std::make_shared<BatchNorm2D<D>>(x, gamma, beta, std::move(mean), std::move(var), std::move(xh), epsilon, result));
}
return result;
}
void computeGradients() override {
// #efficient
const Eigen::array<std::int64_t, R> reshape{x->dimension(0), 1, 1, 1};
const Eigen::array<std::int64_t, R> broadcast{1, x->dimension(1), x->dimension(2), x->dimension(3)};
const Eigen::array <std::int64_t, 3> meanDims{1, 2, 3};
if (cx.has_value()) {
if (useRunningAvgVar) {
cx.value()->addGrad((*gamma / (*runningVar + runningVar->constant(epsilon)).sqrt()).eval().reshape(reshape).broadcast(broadcast) * *CNode<D, R>::grad);
} else {
auto rvpe = (var + var.constant(epsilon)).sqrt().eval();
auto xmm = (*x - mean.reshape(reshape).broadcast(broadcast)).eval();
std::int64_t m = x->dimension(1) * x->dimension(2) * x->dimension(3);
auto dxh = (gamma->reshape(reshape).broadcast(broadcast) * *CNode<D, R>::grad).eval();
auto dv = ((dxh * xmm).sum(meanDims) * var.constant(-.5) / rvpe.cube()).eval();
// auto dm = -dxh.sum(meanDims) / rvpe + dv * xmm.mean(meanDims) * dv.constant(-2);
auto dx = -dxh / rvpe.reshape(reshape).broadcast(broadcast) + dv.reshape(reshape).broadcast(broadcast) * (xmm * xmm.constant(2.f / m) + xmm.constant(1.f / m));
cx.value()->addGrad(dx);
}
}
if (cgamma.has_value())
cgamma.value()->addGrad((xh * *CNode<D, R>::grad).sum(meanDims));
if (cbeta.has_value())
cbeta.value()->addGrad(CNode<D, R>::grad->sum(meanDims));
CNode<D, R>::finishComputeGradient();
}
private:
std::optional<std::shared_ptr<CNode<D, R>>> cx;
std::optional<std::shared_ptr<CNode<D, 1>>> cgamma;
std::optional<std::shared_ptr<CNode<D, 1>>> cbeta;
bool useRunningAvgVar;
D epsilon;
std::shared_ptr<Eigen::Tensor<D, R>> x;
std::shared_ptr<Eigen::Tensor<D, 1>> gamma;
Eigen::Tensor<D, 1> mean;
Eigen::Tensor<D, 1> var;
std::shared_ptr<Eigen::Tensor<D, 1>> runningVar;
Eigen::Tensor<D, R> xh;
};
#undef R
#endif //LIBDL_BATCHNORM2D_H