-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
271 lines (220 loc) · 10.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class ExpLrDecay:
def __init__(self, gamma, min_factor):
self.gamma = gamma
self.min_factor = min_factor
def __call__(self, x):
return max(self.gamma ** x, self.min_factor)
class FrameBuffer:
"""
compresses and saves the frame and the cropped frame (f and fc)
"""
def __init__(self, capacity, frame_size, frame_size_cropped):
assert np.prod(frame_size) % 8 == 0 and np.prod(frame_size_cropped) % 8 == 0, 'otherwise not implemented'
self.capacity = capacity
self.frame_size = frame_size
self.frame_size_cropped = frame_size_cropped
self.n_bit_frame_size = np.prod(frame_size) // 8
self.n_bit_frame_size_cropped = np.prod(frame_size_cropped) // 8
self.frames = np.zeros((capacity, (np.prod(frame_size) + np.prod(frame_size_cropped)) // 8), dtype=np.uint8)
def insert(self, index, f, fc):
# f and fc are bit matrices
# they can be "compressed" with np.packbits
self.frames[index, :self.n_bit_frame_size] = np.packbits(f)
self.frames[index, self.n_bit_frame_size:] = np.packbits(fc)
def __getitem__(self, i):
t = self.frames[i]
f = np.unpackbits(t[..., :self.n_bit_frame_size], axis=-1)
fc = np.unpackbits(t[..., self.n_bit_frame_size:], axis=-1)
f = np.reshape(f, f.shape[:-1] + self.frame_size)
fc = np.reshape(fc, fc.shape[:-1] + self.frame_size_cropped)
return f, fc
class MemoryBuffer:
def __init__(self, capacity_per_level, n_levels, n_frames, frame_size, frame_size_cropped, gamma, device='cuda'):
# each of the six levels occupies one sixth of the memory buffer
total_capacity = capacity_per_level * n_levels
assert 0 <= total_capacity <= np.iinfo(np.int).max
self.frames = FrameBuffer(total_capacity, frame_size, frame_size_cropped)
self.actions = np.zeros((total_capacity,), dtype=np.uint8)
self.rewards = np.zeros((total_capacity,), dtype=np.int8)
self.terminal = np.zeros((total_capacity,), dtype=np.bool)
self.a_n_levels = np.arange(n_levels, dtype=np.int)
self.index = capacity_per_level * self.a_n_levels
self.size = np.zeros(n_levels, dtype=np.int)
self.capacity_per_level = capacity_per_level
self.n_levels = n_levels
self.total_capacity = total_capacity
self.n_frames = n_frames
self.frame_size = frame_size
self.frame_size_cropped = frame_size_cropped
self.a_n_frames = -np.arange(self.n_frames, dtype=np.int)
self.gamma = gamma
self.device = device
self.last_was_terminal = True
def save_warmup(self, save_name):
assert np.all(self.size < self.capacity_per_level)
index = self.index.copy()
# find the last index where the game terminated
# such that just full episodes are saved
for i in range(index.shape[0]):
while index[i] >= 1 and not self.terminal[index[i] - 1]:
index[i] -= 1
# helper function
def pack(a):
return np.array([a[i * self.capacity_per_level:index[i]] for i in range(index.shape[0])], dtype=np.object)
np.savez(
save_name,
index=index,
size=index % self.capacity_per_level,
frames=pack(self.frames.frames),
actions=pack(self.actions),
rewards=pack(self.rewards),
terminal=pack(self.terminal),
)
def load_warmup(self, save_name):
warmup = np.load(save_name, allow_pickle=True)
self.index = warmup['index']
self.size = warmup['size']
# helper function
def unpack(a, s):
for i in range(self.index.shape[0]):
a[i * self.capacity_per_level:self.index[i]] = s[i]
unpack(self.frames.frames, warmup['frames'])
unpack(self.actions, warmup['actions'])
unpack(self.rewards, warmup['rewards'])
unpack(self.terminal, warmup['terminal'])
def insert_first(self, level, f, fc):
# insert the first frame after the agent has died
if not self.last_was_terminal:
raise ValueError('use insert if last wasn\'t terminal')
self.frames.insert(self.index[level], f, fc)
self.last_was_terminal = False
def insert(self, level, a, r, t, f1, fc1):
# insert action, reward, terminal and next frame
if self.last_was_terminal:
raise ValueError('use insert_first after terminal state')
self.actions[self.index[level]] = a
self.rewards[self.index[level]] = r
self.terminal[self.index[level]] = t
self.last_was_terminal = t
# increment / wrap around the index
if self.index[level] < (self.capacity_per_level * (level + 1) - 1):
self.index[level] += 1
else:
self.index[level] = self.capacity_per_level * level
self.size[level] = min(self.size[level] + 1, self.capacity_per_level)
# insert next frame
if not t:
self.frames.insert(self.index[level], f1, fc1)
def make_batch(self, batch_size: int):
assert batch_size % self.n_levels == 0, 'batch_size should be multiple of n_levels'
# randomly draw samples
# draw the same number of samples for each of the six levels
sizes = np.repeat(self.size, batch_size // self.n_levels)
offsets = np.repeat(self.a_n_levels * self.capacity_per_level, batch_size // self.n_levels)
idx = np.random.randint(sizes, dtype=np.int)
idxo = idx + offsets
# extract action, reward and terminal
a = self.actions[idxo]
r = self.rewards[idxo]
t = self.terminal[idxo]
# extract state and next state taking frame stack into account
idxf = (idx[:, np.newaxis] + self.a_n_frames) % self.capacity_per_level
idxfo = idxf + offsets[:, np.newaxis]
f, fc = self.frames[idxfo]
idxf1 = (idxf + 1) % self.capacity_per_level
idxf1o = idxf1 + offsets[:, np.newaxis]
f1, fc1 = self.frames[idxf1o]
# mask out the frames if terminal i. e. if they are from the previous episode
if self.n_frames > 1:
# set frames to zero if terminal
tt = np.logical_not(np.logical_or.accumulate(self.terminal[idxfo[:, 1:]], axis=1).reshape((-1, self.n_frames - 1, 1, 1)))
f[:, 1:] *= tt
fc[:, 1:] *= tt
f1[:, 2:] *= tt[:, :-1]
fc1[:, 2:] *= tt[:, :-1]
# helper function
def to_torch(x, dtype):
return torch.from_numpy(x).to(self.device).to(dtype)
return to_torch(f, torch.float), \
to_torch(fc, torch.float), \
to_torch(a, torch.long), \
to_torch(r, torch.float), \
to_torch(t, torch.bool), \
to_torch(f1, torch.float), \
to_torch(fc1, torch.float)
# f1 is undefined if s terminal or s is at self.index
class NoisyLinear(nn.Module):
"""
NoisyLinear layer with bias
"""
def __init__(self, in_features, out_features, std_init=0.5):
super(NoisyLinear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.std_init = std_init
self.weight_mu = nn.Parameter(torch.empty(out_features, in_features))
self.weight_sigma = nn.Parameter(torch.empty(out_features, in_features))
self.register_buffer('weight_epsilon', torch.empty(out_features, in_features))
self.bias_mu = nn.Parameter(torch.empty(out_features))
self.bias_sigma = nn.Parameter(torch.empty(out_features))
self.register_buffer('bias_epsilon', torch.empty(out_features))
self.reset_parameters()
self.reset_noise()
def reset_parameters(self):
mu_range = 1 / np.sqrt(self.in_features)
self.weight_mu.data.uniform_(-mu_range, mu_range)
self.weight_sigma.data.fill_(self.std_init / np.sqrt(self.in_features))
self.bias_mu.data.uniform_(-mu_range, mu_range)
self.bias_sigma.data.fill_(self.std_init / np.sqrt(self.out_features))
def reset_noise(self):
if self.training:
self.weight_epsilon.normal_()
self.bias_epsilon.normal_()
def forward(self, input):
if self.training:
return F.linear(input, self.weight_mu + self.weight_sigma * self.weight_epsilon,
self.bias_mu + self.bias_sigma * self.bias_epsilon)
else:
return F.linear(input, self.weight_mu, self.bias_mu)
class Network(nn.Module):
def __init__(self, n_frames, n_actions, n_atoms):
super().__init__()
self.n_actions = n_actions
self.n_atoms = n_atoms
self.conv_f = nn.Sequential(
nn.Conv2d(n_frames, 64, 7, stride=3, padding=0),
nn.LeakyReLU(),
nn.Conv2d(64, 128, 5, stride=2, padding=0),
nn.LeakyReLU(),
nn.Conv2d(128, 128, 3, stride=1, padding=0),
nn.LeakyReLU(),
)
self.conv_fc = nn.Sequential(
nn.Conv2d(n_frames, 64, 7, stride=3, padding=0),
nn.LeakyReLU(),
nn.Conv2d(64, 128, 5, stride=2, padding=0),
nn.LeakyReLU(),
nn.Conv2d(128, 128, 3, stride=1, padding=0),
nn.LeakyReLU(),
)
self.conv_f_output_size = 5 * 5 * 128
self.conv_fc_output_size = 5 * 5 * 128
self.h = nn.Sequential(
nn.Linear(self.conv_f_output_size + self.conv_fc_output_size, 1024),
nn.LeakyReLU(),
NoisyLinear(1024, 512),
nn.LeakyReLU(),
NoisyLinear(512, n_actions * n_atoms)
)
def forward(self, f, fc, log=False):
f = self.conv_f(f).view(-1, self.conv_f_output_size)
fc = self.conv_fc(fc).view(-1, self.conv_fc_output_size)
o = self.h(torch.cat((f, fc), dim=1)).view(-1, self.n_actions, self.n_atoms)
return F.log_softmax(o, dim=2) if log else F.softmax(o, dim=2)
def reset_noise(self):
self.h[2].reset_noise()
self.h[4].reset_noise()