-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrainer.py
289 lines (245 loc) · 10.7 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import numpy as np
import torch
import torch.nn.functional as F
from utils import MemoryBuffer, Network, ExpLrDecay
from superhexagon import SuperHexagonInterface
from time import time
import pickle
import os
class Trainer:
def __init__(
self,
capacity_per_level=500000,
warmup_steps=100000,
n_frames=4,
n_atoms=51,
v_min=-1,
v_max=0,
gamma=.99,
device='cuda',
batch_size=48,
lr=0.0000625 * 2,
lr_decay=0.99,
update_target_net_every=25000,
train_every=6,
frame_skip=4,
disable_noisy_after=2000000,
super_hexagon_path='C:\\Program Files (x86)\\Steam\\steamapps\\common\\Super Hexagon\\superhexagon.exe',
run_afap=True
):
# training objects
self.memory_buffer = MemoryBuffer(
capacity_per_level,
SuperHexagonInterface.n_levels,
n_frames,
SuperHexagonInterface.frame_size,
SuperHexagonInterface.frame_size_cropped,
gamma,
device=device
)
self.net = Network(n_frames, SuperHexagonInterface.n_actions, n_atoms).to(device)
self.target_net = Network(n_frames, SuperHexagonInterface.n_actions, n_atoms).to(device)
self.target_net.load_state_dict(self.net.state_dict())
self.optimizer = torch.optim.Adam(self.net.parameters(), lr=lr, eps=1.5e-4)
self.lr_scheduler = torch.optim.lr_scheduler.LambdaLR(self.optimizer, ExpLrDecay(lr_decay, min_factor=.1))
# parameters
self.batch_size = batch_size
self.update_target_net_every = update_target_net_every
self.train_every = train_every
self.frame_skip = frame_skip
self.disable_noisy_after = disable_noisy_after
self.warmup_steps = warmup_steps
self.gamma = gamma
self.device = device
# parameters for distributional
self.n_atoms = n_atoms
self.v_min = v_min
self.v_max = v_max
self.delta_z = (v_max - v_min) / (n_atoms - 1)
self.support = torch.linspace(v_min, v_max, n_atoms, dtype=torch.float, device=device)
self.offset = torch.arange(0, batch_size * n_atoms, n_atoms, device=device).view(-1, 1)
self.m = torch.empty((batch_size, n_atoms), device=device)
# debug and logging stuff
self.list_steps_alive = [[] for _ in range(SuperHexagonInterface.n_levels)]
self.longest_run = [(0, 0)] * SuperHexagonInterface.n_levels
self.total_simulated_steps = [0] * SuperHexagonInterface.n_levels
self.losses = []
self.kls = []
self.times = []
self.iteration = 0
self.super_hexagon_path = super_hexagon_path
self.run_afap = run_afap
def warmup(self, game, log_every):
t = True
for i in range(1, self.warmup_steps + 1):
if i % log_every == 0:
print('Warmup', i)
if t:
self.total_simulated_steps[game.level] += game.simulated_steps
if self.total_simulated_steps[game.level] > self.total_simulated_steps[game.level - 1]:
game.select_level((game.level + 1) % 6)
f, fc = game.reset()
self.memory_buffer.insert_first(game.level, f, fc)
a = np.random.randint(0, 3)
(f, fc), r, t = game.step(a)
self.memory_buffer.insert(game.level, a, r, t, f, fc)
return t
def train(
self,
save_every=50000,
save_name='trainer',
log_every=1000,
):
game = SuperHexagonInterface(self.frame_skip, self.super_hexagon_path, run_afap=self.run_afap, allow_game_restart=True)
# if trainer was loaded, select the level that was played the least
if any(x != 0 for x in self.total_simulated_steps):
game.select_level(np.argmin(self.total_simulated_steps).item())
# init state
f, fc = np.zeros(game.frame_size, dtype=np.bool), np.zeros(game.frame_size_cropped, dtype=np.bool)
sf, sfc = torch.zeros((1, 4, *game.frame_size), device=self.device), torch.zeros((1, 4, *game.frame_size_cropped), device=self.device)
t = True
# run warmup is necessary
if self.iteration == 0:
if os.path.exists('warmup_buffer.npz'):
self.memory_buffer.load_warmup('warmup_buffer.npz')
else:
t = self.warmup(game, log_every)
self.memory_buffer.save_warmup('warmup_buffer.npz')
# trainings loop
last_time = time()
save_when_terminal = False
while True:
self.iteration += 1
# disable noisy
if self.iteration == self.disable_noisy_after:
self.net.eval()
self.target_net.eval()
# log
if self.iteration % log_every == 0 and all(len(l) > 0 for l in self.list_steps_alive):
print(f'{self.iteration} | '
f'{[round(np.mean(np.array(l[-100:])[:, 1]) / 60, 2) for l in self.list_steps_alive]}s | '
f'{[round(r[1] / 60, 2) for r in self.longest_run]}s | '
f'{self.total_simulated_steps} | '
f'{time() - last_time:.2f}s | '
f'{np.mean(self.losses[-log_every:])} | '
f'{np.mean(self.kls[-log_every:])} | '
f'{self.lr_scheduler.get_last_lr()[0]} | '
f'{game.level}')
# indicate that the trainer should be saved the next time the agent dies
if self.iteration % save_every == 0:
save_when_terminal = True
# update target net
if self.iteration % self.update_target_net_every == 0:
self.lr_scheduler.step()
self.target_net.load_state_dict(self.net.state_dict())
# if terminal
if t:
# select next level if this level was played at least as long as the previous level
if self.total_simulated_steps[game.level] > self.total_simulated_steps[game.level - 1]:
game.select_level((game.level + 1) % 6)
f, fc = game.reset()
self.memory_buffer.insert_first(game.level, f, fc)
sf.zero_()
sfc.zero_()
# update state
sf[0, 1:] = sf[0, :-1].clone()
sfc[0, 1:] = sfc[0, :-1].clone()
sf[0, 0] = torch.from_numpy(f).to(self.device)
sfc[0, 0] = torch.from_numpy(fc).to(self.device)
# train
if self.iteration % self.train_every == 0:
loss, kl = self.train_batch()
self.losses.append(loss)
self.kls.append(kl)
# act
with torch.no_grad():
self.net.reset_noise()
a = (self.net(sf, sfc) * self.support).sum(dim=2).argmax(dim=1).item()
(f, fc), r, t = game.step(a)
self.memory_buffer.insert(game.level, a, r, t, f, fc)
# if terminal
if t:
if game.steps_alive > self.longest_run[game.level][1]:
self.longest_run[game.level] = (self.iteration, game.steps_alive)
self.list_steps_alive[game.level].append((self.iteration, game.steps_alive))
self.total_simulated_steps[game.level] += game.simulated_steps
self.times.append(time() - last_time)
if save_when_terminal:
print('saving...')
for _ in range(60):
game.game.step(False)
self.save(save_name)
for _ in range(60):
game.game.step(False)
save_when_terminal = False
def train_batch(self):
# sample minibatch
f, fc, a, r, t, f1, fc1 = self.memory_buffer.make_batch(self.batch_size)
# compute target q distribution
with torch.no_grad():
self.target_net.reset_noise()
qdn = self.target_net(f1, fc1)
an = (qdn * self.support).sum(dim=2).argmax(dim=1)
Tz = (r.unsqueeze(1) + t.logical_not().unsqueeze(1) * self.gamma * self.support).clamp_(self.v_min, self.v_max)
b = (Tz - self.v_min) / self.delta_z
l = b.floor().long()
u = b.ceil().long()
l[(u > 0) & (l == u)] -= 1
u[(l == u)] += 1
vdn = qdn.gather(1, an.view(-1, 1, 1).expand(self.batch_size, -1, self.n_atoms)).view(self.batch_size, self.n_atoms)
self.m.zero_()
self.m.view(-1).index_add_(0, (l + self.offset).view(-1), (vdn * (u - b)).view(-1))
self.m.view(-1).index_add_(0, (u + self.offset).view(-1), (vdn * (b - l)).view(-1))
# forward and backward pass
qld = self.net(f, fc, log=True)
vld = qld.gather(1, a.view(-1, 1, 1).expand(self.batch_size, -1, self.n_atoms)).view(self.batch_size, self.n_atoms)
loss = -torch.sum(self.m * vld, dim=1).mean()
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
kl = F.kl_div(vld.detach(), self.m, reduction='batchmean')
return loss.detach().item(), kl.item()
def save(self, file_name='trainer'):
# first backup the last save file
# in case anything goes wrong
file_name_backup = file_name + '_backup'
if os.path.exists(file_name):
os.rename(file_name, file_name_backup)
# save this object
with open(file_name, 'wb') as f:
pickle.dump(self, f)
# remove backup if nothing went wrong
if os.path.exists(file_name_backup):
os.remove(file_name_backup)
@staticmethod
def load(file_name='trainer'):
with open(file_name, 'rb') as f:
ret = pickle.load(f)
assert ret.memory_buffer.last_was_terminal
return ret
if __name__ == '__main__':
save_name = 'super_hexagon_trainer'
load = os.path.exists(save_name)
if load:
trainer = Trainer.load(save_name)
else:
trainer = Trainer(
capacity_per_level=500000,
warmup_steps=100000,
n_frames=4,
n_atoms=51,
v_min=-1,
v_max=0,
gamma=.99,
device='cuda',
batch_size=48,
lr=0.0000625 * 2,
lr_decay=0.99,
update_target_net_every=25000,
train_every=6,
frame_skip=4,
disable_noisy_after=2000000,
super_hexagon_path='C:\\Program Files (x86)\\Steam\\steamapps\\common\\Super Hexagon\\superhexagon.exe',
run_afap=True
)
trainer.train(save_every=200000, save_name=save_name)