forked from chrisveness/geodesy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlatlon-spherical.js
663 lines (527 loc) · 25.9 KB
/
latlon-spherical.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Latitude/longitude spherical geodesy tools (c) Chris Veness 2002-2017 */
/* MIT Licence */
/* www.movable-type.co.uk/scripts/latlong.html */
/* www.movable-type.co.uk/scripts/geodesy/docs/module-latlon-spherical.html */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
'use strict';
if (typeof module!='undefined' && module.exports) var Dms = require('./dms'); // ≡ import Dms from 'dms.js'
/**
* Library of geodesy functions for operations on a spherical earth model.
*
* @module latlon-spherical
* @requires dms
*/
/**
* Creates a LatLon point on the earth's surface at the specified latitude / longitude.
*
* @constructor
* @param {number} lat - Latitude in degrees.
* @param {number} lon - Longitude in degrees.
*
* @example
* var p1 = new LatLon(52.205, 0.119);
*/
function LatLon(lat, lon) {
// allow instantiation without 'new'
if (!(this instanceof LatLon)) return new LatLon(lat, lon);
this.lat = Number(lat);
this.lon = Number(lon);
}
/**
* Returns the distance from ‘this’ point to destination point (using haversine formula).
*
* @param {LatLon} point - Latitude/longitude of destination point.
* @param {number} [radius=6371e3] - (Mean) radius of earth (defaults to radius in metres).
* @returns {number} Distance between this point and destination point, in same units as radius.
*
* @example
* var p1 = new LatLon(52.205, 0.119);
* var p2 = new LatLon(48.857, 2.351);
* var d = p1.distanceTo(p2); // 404.3 km
*/
LatLon.prototype.distanceTo = function(point, radius) {
if (!(point instanceof LatLon)) throw new TypeError('point is not LatLon object');
radius = (radius === undefined) ? 6371e3 : Number(radius);
var R = radius;
var φ1 = this.lat.toRadians(), λ1 = this.lon.toRadians();
var φ2 = point.lat.toRadians(), λ2 = point.lon.toRadians();
var Δφ = φ2 - φ1;
var Δλ = λ2 - λ1;
var a = Math.sin(Δφ/2) * Math.sin(Δφ/2)
+ Math.cos(φ1) * Math.cos(φ2)
* Math.sin(Δλ/2) * Math.sin(Δλ/2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c;
return d;
};
/**
* Returns the (initial) bearing from ‘this’ point to destination point.
*
* @param {LatLon} point - Latitude/longitude of destination point.
* @returns {number} Initial bearing in degrees from north.
*
* @example
* var p1 = new LatLon(52.205, 0.119);
* var p2 = new LatLon(48.857, 2.351);
* var b1 = p1.bearingTo(p2); // 156.2°
*/
LatLon.prototype.bearingTo = function(point) {
if (!(point instanceof LatLon)) throw new TypeError('point is not LatLon object');
var φ1 = this.lat.toRadians(), φ2 = point.lat.toRadians();
var Δλ = (point.lon-this.lon).toRadians();
// see http://mathforum.org/library/drmath/view/55417.html
var y = Math.sin(Δλ) * Math.cos(φ2);
var x = Math.cos(φ1)*Math.sin(φ2) -
Math.sin(φ1)*Math.cos(φ2)*Math.cos(Δλ);
var θ = Math.atan2(y, x);
return (θ.toDegrees()+360) % 360;
};
/**
* Returns final bearing arriving at destination destination point from ‘this’ point; the final bearing
* will differ from the initial bearing by varying degrees according to distance and latitude.
*
* @param {LatLon} point - Latitude/longitude of destination point.
* @returns {number} Final bearing in degrees from north.
*
* @example
* var p1 = new LatLon(52.205, 0.119);
* var p2 = new LatLon(48.857, 2.351);
* var b2 = p1.finalBearingTo(p2); // 157.9°
*/
LatLon.prototype.finalBearingTo = function(point) {
if (!(point instanceof LatLon)) throw new TypeError('point is not LatLon object');
// get initial bearing from destination point to this point & reverse it by adding 180°
return ( point.bearingTo(this)+180 ) % 360;
};
/**
* Returns the midpoint between ‘this’ point and the supplied point.
*
* @param {LatLon} point - Latitude/longitude of destination point.
* @returns {LatLon} Midpoint between this point and the supplied point.
*
* @example
* var p1 = new LatLon(52.205, 0.119);
* var p2 = new LatLon(48.857, 2.351);
* var pMid = p1.midpointTo(p2); // 50.5363°N, 001.2746°E
*/
LatLon.prototype.midpointTo = function(point) {
if (!(point instanceof LatLon)) throw new TypeError('point is not LatLon object');
// φm = atan2( sinφ1 + sinφ2, √( (cosφ1 + cosφ2⋅cosΔλ) ⋅ (cosφ1 + cosφ2⋅cosΔλ) ) + cos²φ2⋅sin²Δλ )
// λm = λ1 + atan2(cosφ2⋅sinΔλ, cosφ1 + cosφ2⋅cosΔλ)
// see http://mathforum.org/library/drmath/view/51822.html for derivation
var φ1 = this.lat.toRadians(), λ1 = this.lon.toRadians();
var φ2 = point.lat.toRadians();
var Δλ = (point.lon-this.lon).toRadians();
var Bx = Math.cos(φ2) * Math.cos(Δλ);
var By = Math.cos(φ2) * Math.sin(Δλ);
var x = Math.sqrt((Math.cos(φ1) + Bx) * (Math.cos(φ1) + Bx) + By * By);
var y = Math.sin(φ1) + Math.sin(φ2);
var φ3 = Math.atan2(y, x);
var λ3 = λ1 + Math.atan2(By, Math.cos(φ1) + Bx);
return new LatLon(φ3.toDegrees(), (λ3.toDegrees()+540)%360-180); // normalise to −180..+180°
};
/**
* Returns the point at given fraction between ‘this’ point and specified point.
*
* @param {LatLon} point - Latitude/longitude of destination point.
* @param {number} fraction - Fraction between the two points (0 = this point, 1 = specified point).
* @returns {LatLon} Intermediate point between this point and destination point.
*
* @example
* let p1 = new LatLon(52.205, 0.119);
* let p2 = new LatLon(48.857, 2.351);
* let pMid = p1.intermediatePointTo(p2, 0.25); // 51.3721°N, 000.7073°E
*/
LatLon.prototype.intermediatePointTo = function(point, fraction) {
if (!(point instanceof LatLon)) throw new TypeError('point is not LatLon object');
var φ1 = this.lat.toRadians(), λ1 = this.lon.toRadians();
var φ2 = point.lat.toRadians(), λ2 = point.lon.toRadians();
var sinφ1 = Math.sin(φ1), cosφ1 = Math.cos(φ1), sinλ1 = Math.sin(λ1), cosλ1 = Math.cos(λ1);
var sinφ2 = Math.sin(φ2), cosφ2 = Math.cos(φ2), sinλ2 = Math.sin(λ2), cosλ2 = Math.cos(λ2);
// distance between points
var Δφ = φ2 - φ1;
var Δλ = λ2 - λ1;
var a = Math.sin(Δφ/2) * Math.sin(Δφ/2)
+ Math.cos(φ1) * Math.cos(φ2) * Math.sin(Δλ/2) * Math.sin(Δλ/2);
var δ = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var A = Math.sin((1-fraction)*δ) / Math.sin(δ);
var B = Math.sin(fraction*δ) / Math.sin(δ);
var x = A * cosφ1 * cosλ1 + B * cosφ2 * cosλ2;
var y = A * cosφ1 * sinλ1 + B * cosφ2 * sinλ2;
var z = A * sinφ1 + B * sinφ2;
var φ3 = Math.atan2(z, Math.sqrt(x*x + y*y));
var λ3 = Math.atan2(y, x);
return new LatLon(φ3.toDegrees(), (λ3.toDegrees()+540)%360-180); // normalise lon to −180..+180°
};
/**
* Returns the destination point from ‘this’ point having travelled the given distance on the
* given initial bearing (bearing normally varies around path followed).
*
* @param {number} distance - Distance travelled, in same units as earth radius (default: metres).
* @param {number} bearing - Initial bearing in degrees from north.
* @param {number} [radius=6371e3] - (Mean) radius of earth (defaults to radius in metres).
* @returns {LatLon} Destination point.
*
* @example
* var p1 = new LatLon(51.4778, -0.0015);
* var p2 = p1.destinationPoint(7794, 300.7); // 51.5135°N, 000.0983°W
*/
LatLon.prototype.destinationPoint = function(distance, bearing, radius) {
radius = (radius === undefined) ? 6371e3 : Number(radius);
// sinφ2 = sinφ1⋅cosδ + cosφ1⋅sinδ⋅cosθ
// tanΔλ = sinθ⋅sinδ⋅cosφ1 / cosδ−sinφ1⋅sinφ2
// see www.edwilliams.org/avform.htm#LL
var δ = Number(distance) / radius; // angular distance in radians
var θ = Number(bearing).toRadians();
var φ1 = this.lat.toRadians();
var λ1 = this.lon.toRadians();
var sinφ1 = Math.sin(φ1), cosφ1 = Math.cos(φ1);
var sinδ = Math.sin(δ), cosδ = Math.cos(δ);
var sinθ = Math.sin(θ), cosθ = Math.cos(θ);
var sinφ2 = sinφ1*cosδ + cosφ1*sinδ*cosθ;
var φ2 = Math.asin(sinφ2);
var y = sinθ * sinδ * cosφ1;
var x = cosδ - sinφ1 * sinφ2;
var λ2 = λ1 + Math.atan2(y, x);
return new LatLon(φ2.toDegrees(), (λ2.toDegrees()+540)%360-180); // normalise to −180..+180°
};
/**
* Returns the point of intersection of two paths defined by point and bearing.
*
* @param {LatLon} p1 - First point.
* @param {number} brng1 - Initial bearing from first point.
* @param {LatLon} p2 - Second point.
* @param {number} brng2 - Initial bearing from second point.
* @returns {LatLon|null} Destination point (null if no unique intersection defined).
*
* @example
* var p1 = LatLon(51.8853, 0.2545), brng1 = 108.547;
* var p2 = LatLon(49.0034, 2.5735), brng2 = 32.435;
* var pInt = LatLon.intersection(p1, brng1, p2, brng2); // 50.9078°N, 004.5084°E
*/
LatLon.intersection = function(p1, brng1, p2, brng2) {
if (!(p1 instanceof LatLon)) throw new TypeError('p1 is not LatLon object');
if (!(p2 instanceof LatLon)) throw new TypeError('p2 is not LatLon object');
// see www.edwilliams.org/avform.htm#Intersection
var φ1 = p1.lat.toRadians(), λ1 = p1.lon.toRadians();
var φ2 = p2.lat.toRadians(), λ2 = p2.lon.toRadians();
var θ13 = Number(brng1).toRadians(), θ23 = Number(brng2).toRadians();
var Δφ = φ2-φ1, Δλ = λ2-λ1;
// angular distance p1-p2
var δ12 = 2*Math.asin( Math.sqrt( Math.sin(Δφ/2)*Math.sin(Δφ/2)
+ Math.cos(φ1)*Math.cos(φ2)*Math.sin(Δλ/2)*Math.sin(Δλ/2) ) );
if (δ12 == 0) return null;
// initial/final bearings between points
var θa = Math.acos( ( Math.sin(φ2) - Math.sin(φ1)*Math.cos(δ12) ) / ( Math.sin(δ12)*Math.cos(φ1) ) );
if (isNaN(θa)) θa = 0; // protect against rounding
var θb = Math.acos( ( Math.sin(φ1) - Math.sin(φ2)*Math.cos(δ12) ) / ( Math.sin(δ12)*Math.cos(φ2) ) );
var θ12 = Math.sin(λ2-λ1)>0 ? θa : 2*Math.PI-θa;
var θ21 = Math.sin(λ2-λ1)>0 ? 2*Math.PI-θb : θb;
var α1 = θ13 - θ12; // angle 2-1-3
var α2 = θ21 - θ23; // angle 1-2-3
if (Math.sin(α1)==0 && Math.sin(α2)==0) return null; // infinite intersections
if (Math.sin(α1)*Math.sin(α2) < 0) return null; // ambiguous intersection
var α3 = Math.acos( -Math.cos(α1)*Math.cos(α2) + Math.sin(α1)*Math.sin(α2)*Math.cos(δ12) );
var δ13 = Math.atan2( Math.sin(δ12)*Math.sin(α1)*Math.sin(α2), Math.cos(α2)+Math.cos(α1)*Math.cos(α3) );
var φ3 = Math.asin( Math.sin(φ1)*Math.cos(δ13) + Math.cos(φ1)*Math.sin(δ13)*Math.cos(θ13) );
var Δλ13 = Math.atan2( Math.sin(θ13)*Math.sin(δ13)*Math.cos(φ1), Math.cos(δ13)-Math.sin(φ1)*Math.sin(φ3) );
var λ3 = λ1 + Δλ13;
return new LatLon(φ3.toDegrees(), (λ3.toDegrees()+540)%360-180); // normalise to −180..+180°
};
/**
* Returns (signed) distance from ‘this’ point to great circle defined by start-point and end-point.
*
* @param {LatLon} pathStart - Start point of great circle path.
* @param {LatLon} pathEnd - End point of great circle path.
* @param {number} [radius=6371e3] - (Mean) radius of earth (defaults to radius in metres).
* @returns {number} Distance to great circle (-ve if to left, +ve if to right of path).
*
* @example
* var pCurrent = new LatLon(53.2611, -0.7972);
* var p1 = new LatLon(53.3206, -1.7297);
* var p2 = new LatLon(53.1887, 0.1334);
* var d = pCurrent.crossTrackDistanceTo(p1, p2); // -307.5 m
*/
LatLon.prototype.crossTrackDistanceTo = function(pathStart, pathEnd, radius) {
if (!(pathStart instanceof LatLon)) throw new TypeError('pathStart is not LatLon object');
if (!(pathEnd instanceof LatLon)) throw new TypeError('pathEnd is not LatLon object');
var R = (radius === undefined) ? 6371e3 : Number(radius);
var δ13 = pathStart.distanceTo(this, R) / R;
var θ13 = pathStart.bearingTo(this).toRadians();
var θ12 = pathStart.bearingTo(pathEnd).toRadians();
var δxt = Math.asin(Math.sin(δ13) * Math.sin(θ13-θ12));
return δxt * R;
};
/**
* Returns how far ‘this’ point is along a path from from start-point, heading towards end-point.
* That is, if a perpendicular is drawn from ‘this’ point to the (great circle) path, the along-track
* distance is the distance from the start point to where the perpendicular crosses the path.
*
* @param {LatLon} pathStart - Start point of great circle path.
* @param {LatLon} pathEnd - End point of great circle path.
* @param {number} [radius=6371e3] - (Mean) radius of earth (defaults to radius in metres).
* @returns {number} Distance along great circle to point nearest ‘this’ point.
*
* @example
* var pCurrent = new LatLon(53.2611, -0.7972);
* var p1 = new LatLon(53.3206, -1.7297);
* var p2 = new LatLon(53.1887, 0.1334);
* var d = pCurrent.alongTrackDistanceTo(p1, p2); // 62.331 km
*/
LatLon.prototype.alongTrackDistanceTo = function(pathStart, pathEnd, radius) {
if (!(pathStart instanceof LatLon)) throw new TypeError('pathStart is not LatLon object');
if (!(pathEnd instanceof LatLon)) throw new TypeError('pathEnd is not LatLon object');
var R = (radius === undefined) ? 6371e3 : Number(radius);
var δ13 = pathStart.distanceTo(this, R) / R;
var θ13 = pathStart.bearingTo(this).toRadians();
var θ12 = pathStart.bearingTo(pathEnd).toRadians();
var δxt = Math.asin(Math.sin(δ13) * Math.sin(θ13-θ12));
var δat = Math.acos(Math.cos(δ13) / Math.abs(Math.cos(δxt)));
return δat*Math.sign(Math.cos(θ12-θ13)) * R;
};
/**
* Returns maximum latitude reached when travelling on a great circle on given bearing from this
* point ('Clairaut's formula'). Negate the result for the minimum latitude (in the Southern
* hemisphere).
*
* The maximum latitude is independent of longitude; it will be the same for all points on a given
* latitude.
*
* @param {number} bearing - Initial bearing.
* @param {number} latitude - Starting latitude.
*/
LatLon.prototype.maxLatitude = function(bearing) {
var θ = Number(bearing).toRadians();
var φ = this.lat.toRadians();
var φMax = Math.acos(Math.abs(Math.sin(θ)*Math.cos(φ)));
return φMax.toDegrees();
};
/**
* Returns the pair of meridians at which a great circle defined by two points crosses the given
* latitude. If the great circle doesn't reach the given latitude, null is returned.
*
* @param {LatLon} point1 - First point defining great circle.
* @param {LatLon} point2 - Second point defining great circle.
* @param {number} latitude - Latitude crossings are to be determined for.
* @returns {Object|null} Object containing { lon1, lon2 } or null if given latitude not reached.
*/
LatLon.crossingParallels = function(point1, point2, latitude) {
var φ = Number(latitude).toRadians();
var φ1 = point1.lat.toRadians();
var λ1 = point1.lon.toRadians();
var φ2 = point2.lat.toRadians();
var λ2 = point2.lon.toRadians();
var Δλ = λ2 - λ1;
var x = Math.sin(φ1) * Math.cos(φ2) * Math.cos(φ) * Math.sin(Δλ);
var y = Math.sin(φ1) * Math.cos(φ2) * Math.cos(φ) * Math.cos(Δλ) - Math.cos(φ1) * Math.sin(φ2) * Math.cos(φ);
var z = Math.cos(φ1) * Math.cos(φ2) * Math.sin(φ) * Math.sin(Δλ);
if (z*z > x*x + y*y) return null; // great circle doesn't reach latitude
var λm = Math.atan2(-y, x); // longitude at max latitude
var Δλi = Math.acos(z / Math.sqrt(x*x+y*y)); // Δλ from λm to intersection points
var λi1 = λ1 + λm - Δλi;
var λi2 = λ1 + λm + Δλi;
return { lon1: (λi1.toDegrees()+540)%360-180, lon2: (λi2.toDegrees()+540)%360-180 }; // normalise to −180..+180°
};
/* Rhumb - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/**
* Returns the distance travelling from ‘this’ point to destination point along a rhumb line.
*
* @param {LatLon} point - Latitude/longitude of destination point.
* @param {number} [radius=6371e3] - (Mean) radius of earth (defaults to radius in metres).
* @returns {number} Distance in km between this point and destination point (same units as radius).
*
* @example
* var p1 = new LatLon(51.127, 1.338);
* var p2 = new LatLon(50.964, 1.853);
* var d = p1.distanceTo(p2); // 40.31 km
*/
LatLon.prototype.rhumbDistanceTo = function(point, radius) {
if (!(point instanceof LatLon)) throw new TypeError('point is not LatLon object');
radius = (radius === undefined) ? 6371e3 : Number(radius);
// see www.edwilliams.org/avform.htm#Rhumb
var R = radius;
var φ1 = this.lat.toRadians(), φ2 = point.lat.toRadians();
var Δφ = φ2 - φ1;
var Δλ = Math.abs(point.lon-this.lon).toRadians();
// if dLon over 180° take shorter rhumb line across the anti-meridian:
if (Δλ > Math.PI) Δλ -= 2*Math.PI;
// on Mercator projection, longitude distances shrink by latitude; q is the 'stretch factor'
// q becomes ill-conditioned along E-W line (0/0); use empirical tolerance to avoid it
var Δψ = Math.log(Math.tan(φ2/2+Math.PI/4)/Math.tan(φ1/2+Math.PI/4));
var q = Math.abs(Δψ) > 10e-12 ? Δφ/Δψ : Math.cos(φ1);
// distance is pythagoras on 'stretched' Mercator projection
var δ = Math.sqrt(Δφ*Δφ + q*q*Δλ*Δλ); // angular distance in radians
var dist = δ * R;
return dist;
};
/**
* Returns the bearing from ‘this’ point to destination point along a rhumb line.
*
* @param {LatLon} point - Latitude/longitude of destination point.
* @returns {number} Bearing in degrees from north.
*
* @example
* var p1 = new LatLon(51.127, 1.338);
* var p2 = new LatLon(50.964, 1.853);
* var d = p1.rhumbBearingTo(p2); // 116.7 m
*/
LatLon.prototype.rhumbBearingTo = function(point) {
if (!(point instanceof LatLon)) throw new TypeError('point is not LatLon object');
var φ1 = this.lat.toRadians(), φ2 = point.lat.toRadians();
var Δλ = (point.lon-this.lon).toRadians();
// if dLon over 180° take shorter rhumb line across the anti-meridian:
if (Δλ > Math.PI) Δλ -= 2*Math.PI;
if (Δλ < -Math.PI) Δλ += 2*Math.PI;
var Δψ = Math.log(Math.tan(φ2/2+Math.PI/4)/Math.tan(φ1/2+Math.PI/4));
var θ = Math.atan2(Δλ, Δψ);
return (θ.toDegrees()+360) % 360;
};
/**
* Returns the destination point having travelled along a rhumb line from ‘this’ point the given
* distance on the given bearing.
*
* @param {number} distance - Distance travelled, in same units as earth radius (default: metres).
* @param {number} bearing - Bearing in degrees from north.
* @param {number} [radius=6371e3] - (Mean) radius of earth (defaults to radius in metres).
* @returns {LatLon} Destination point.
*
* @example
* var p1 = new LatLon(51.127, 1.338);
* var p2 = p1.rhumbDestinationPoint(40300, 116.7); // 50.9642°N, 001.8530°E
*/
LatLon.prototype.rhumbDestinationPoint = function(distance, bearing, radius) {
radius = (radius === undefined) ? 6371e3 : Number(radius);
var δ = Number(distance) / radius; // angular distance in radians
var φ1 = this.lat.toRadians(), λ1 = this.lon.toRadians();
var θ = Number(bearing).toRadians();
var Δφ = δ * Math.cos(θ);
var φ2 = φ1 + Δφ;
// check for some daft bugger going past the pole, normalise latitude if so
if (Math.abs(φ2) > Math.PI/2) φ2 = φ2>0 ? Math.PI-φ2 : -Math.PI-φ2;
var Δψ = Math.log(Math.tan(φ2/2+Math.PI/4)/Math.tan(φ1/2+Math.PI/4));
var q = Math.abs(Δψ) > 10e-12 ? Δφ / Δψ : Math.cos(φ1); // E-W course becomes ill-conditioned with 0/0
var Δλ = δ*Math.sin(θ)/q;
var λ2 = λ1 + Δλ;
return new LatLon(φ2.toDegrees(), (λ2.toDegrees()+540) % 360 - 180); // normalise to −180..+180°
};
/**
* Returns the loxodromic midpoint (along a rhumb line) between ‘this’ point and second point.
*
* @param {LatLon} point - Latitude/longitude of second point.
* @returns {LatLon} Midpoint between this point and second point.
*
* @example
* var p1 = new LatLon(51.127, 1.338);
* var p2 = new LatLon(50.964, 1.853);
* var pMid = p1.rhumbMidpointTo(p2); // 51.0455°N, 001.5957°E
*/
LatLon.prototype.rhumbMidpointTo = function(point) {
if (!(point instanceof LatLon)) throw new TypeError('point is not LatLon object');
// http://mathforum.org/kb/message.jspa?messageID=148837
var φ1 = this.lat.toRadians(), λ1 = this.lon.toRadians();
var φ2 = point.lat.toRadians(), λ2 = point.lon.toRadians();
if (Math.abs(λ2-λ1) > Math.PI) λ1 += 2*Math.PI; // crossing anti-meridian
var φ3 = (φ1+φ2)/2;
var f1 = Math.tan(Math.PI/4 + φ1/2);
var f2 = Math.tan(Math.PI/4 + φ2/2);
var f3 = Math.tan(Math.PI/4 + φ3/2);
var λ3 = ( (λ2-λ1)*Math.log(f3) + λ1*Math.log(f2) - λ2*Math.log(f1) ) / Math.log(f2/f1);
if (!isFinite(λ3)) λ3 = (λ1+λ2)/2; // parallel of latitude
var p = LatLon(φ3.toDegrees(), (λ3.toDegrees()+540)%360-180); // normalise to −180..+180°
return p;
};
/* Area - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/**
* Calculates the area of a spherical polygon where the sides of the polygon are great circle
* arcs joining the vertices.
*
* @param {LatLon[]} polygon - Array of points defining vertices of the polygon
* @param {number} [radius=6371e3] - (Mean) radius of earth (defaults to radius in metres).
* @returns {number} The area of the polygon, in the same units as radius.
*
* @example
* var polygon = [new LatLon(0,0), new LatLon(1,0), new LatLon(0,1)];
* var area = LatLon.areaOf(polygon); // 6.18e9 m²
*/
LatLon.areaOf = function(polygon, radius) {
// uses method due to Karney: osgeo-org.1560.x6.nabble.com/Area-of-a-spherical-polygon-td3841625.html;
// for each edge of the polygon, tan(E/2) = tan(Δλ/2)·(tan(φ1/2) + tan(φ2/2)) / (1 + tan(φ1/2)·tan(φ2/2))
// where E is the spherical excess of the trapezium obtained by extending the edge to the equator
var R = (radius === undefined) ? 6371e3 : Number(radius);
// close polygon so that last point equals first point
var closed = polygon[0].equals(polygon[polygon.length-1]);
if (!closed) polygon.push(polygon[0]);
var nVertices = polygon.length - 1;
var S = 0; // spherical excess in steradians
for (var v=0; v<nVertices; v++) {
var φ1 = polygon[v].lat.toRadians();
var φ2 = polygon[v+1].lat.toRadians();
var Δλ = (polygon[v+1].lon - polygon[v].lon).toRadians();
var E = 2 * Math.atan2(Math.tan(Δλ/2) * (Math.tan(φ1/2)+Math.tan(φ2/2)), 1 + Math.tan(φ1/2)*Math.tan(φ2/2));
S += E;
}
if (isPoleEnclosedBy(polygon)) S = Math.abs(S) - 2*Math.PI;
var A = Math.abs(S * R*R); // area in units of R
if (!closed) polygon.pop(); // restore polygon to pristine condition
return A;
// returns whether polygon encloses pole: sum of course deltas around pole is 0° rather than
// normal ±360°: blog.element84.com/determining-if-a-spherical-polygon-contains-a-pole.html
function isPoleEnclosedBy(polygon) {
// TODO: any better test than this?
var ΣΔ = 0;
var prevBrng = polygon[0].bearingTo(polygon[1]);
for (var v=0; v<polygon.length-1; v++) {
var initBrng = polygon[v].bearingTo(polygon[v+1]);
var finalBrng = polygon[v].finalBearingTo(polygon[v+1]);
ΣΔ += (initBrng - prevBrng + 540) % 360 - 180;
ΣΔ += (finalBrng - initBrng + 540) % 360 - 180;
prevBrng = finalBrng;
}
var initBrng = polygon[0].bearingTo(polygon[1]);
ΣΔ += (initBrng - prevBrng + 540) % 360 - 180;
// TODO: fix (intermittant) edge crossing pole - eg (85,90), (85,0), (85,-90)
var enclosed = Math.abs(ΣΔ) < 90; // 0°-ish
return enclosed;
}
};
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/**
* Checks if another point is equal to ‘this’ point.
*
* @param {LatLon} point - Point to be compared against this point.
* @returns {bool} True if points are identical.
*
* @example
* var p1 = new LatLon(52.205, 0.119);
* var p2 = new LatLon(52.205, 0.119);
* var equal = p1.equals(p2); // true
*/
LatLon.prototype.equals = function(point) {
if (!(point instanceof LatLon)) throw new TypeError('point is not LatLon object');
if (this.lat != point.lat) return false;
if (this.lon != point.lon) return false;
return true;
};
/**
* Returns a string representation of ‘this’ point, formatted as degrees, degrees+minutes, or
* degrees+minutes+seconds.
*
* @param {string} [format=dms] - Format point as 'd', 'dm', 'dms'.
* @param {number} [dp=0|2|4] - Number of decimal places to use - default 0 for dms, 2 for dm, 4 for d.
* @returns {string} Comma-separated latitude/longitude.
*/
LatLon.prototype.toString = function(format, dp) {
return Dms.toLat(this.lat, format, dp) + ', ' + Dms.toLon(this.lon, format, dp);
};
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/** Extend Number object with method to convert numeric degrees to radians */
if (Number.prototype.toRadians === undefined) {
Number.prototype.toRadians = function() { return this * Math.PI / 180; };
}
/** Extend Number object with method to convert radians to numeric (signed) degrees */
if (Number.prototype.toDegrees === undefined) {
Number.prototype.toDegrees = function() { return this * 180 / Math.PI; };
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
if (typeof module != 'undefined' && module.exports) module.exports = LatLon; // ≡ export default LatLon