-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgnn.py
180 lines (127 loc) · 6.77 KB
/
gnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from torch_geometric.data import Data
from torch_geometric.nn import RGCNConv
import torch
class VariableMappingGNN(torch.nn.Module):
def __init__(self, num_types, device, message_passing_rounds=5, channels=32):
super().__init__()
self.device = device
self.num_types = num_types
self.channels = channels
self.message_passing_rounds = message_passing_rounds
self.left_conv = RGCNConv(in_channels=self.channels, out_channels=self.channels, num_relations=5, aggr="mean")
self.right_conv = RGCNConv(in_channels=self.channels, out_channels=self.channels, num_relations=5, aggr="mean")
self.node_embeddings = torch.nn.Parameter(torch.randn(num_types, self.channels), requires_grad=True)
self.var_projector = torch.nn.Sequential(torch.nn.Linear(self.channels, self.channels), torch.nn.ReLU(), torch.nn.Linear(self.channels, self.channels))
self.relu = torch.nn.ReLU()
self.ln = torch.nn.LayerNorm(self.channels)
def initial_embedding(self, indices):
return torch.index_select(self.node_embeddings, 0, torch.as_tensor(indices, device=self.device))
def message_passing(self, left_data, right_data):
left_x = left_data.x
right_x = right_data.x
for i in range(self.message_passing_rounds):
# print(left_x)
# print(left_x.shape)
# print(left_data.edge_index)
left_x = self.left_conv.forward(left_x, left_data.edge_index, left_data.edge_attr)
left_x = self.ln(left_x)
left_x = self.relu(left_x)
right_x = self.right_conv.forward(right_x, right_data.edge_index, right_data.edge_attr)
right_x = self.ln(right_x)
right_x = self.relu(right_x)
return left_x, right_x
def forward(self, left_ast, right_ast, left_data, right_data):
left_mp_output, right_mp_output = self.message_passing(left_data, right_data)
varindex1 = torch.as_tensor([left_ast['vars2id'][k] for k in left_ast['vars2id']], device=self.device)
varindex2 = torch.as_tensor([right_ast['vars2id'][k] for k in right_ast['vars2id']], device=self.device)
vars1 = torch.index_select(left_mp_output, 0, varindex1)
# vars1 = vars1 + vars1.mean(axis=0)
vars2 = torch.index_select(right_mp_output, 0, varindex2)
# vars2 = vars2 + vars2.mean(axis=0)
# vars1 = self.var_projector(vars1)
# vars2 = self.var_projector(vars2)
dot_products = torch.einsum('in, jn->ij', vars1, vars2)
# probability_distributions = torch.softmax(dot_products, dim=1)
num_vars_left_program = len(left_ast['vars2id'])
num_vars_right_program = len(right_ast['vars2id'])
split_res = torch.tensor_split(dot_products, num_vars_left_program)
return split_res, left_mp_output
def test_time_output(self, sample):
left_sample, right_sample = sample
l_data = Data(x=self.initial_embedding(left_sample[0]), edge_index=left_sample[1].t().contiguous(),
edge_attr=left_sample[2]).to(self.device)
r_data = Data(x=self.initial_embedding(right_sample[0]), edge_index=right_sample[1].t().contiguous(),
edge_attr=right_sample[2]).to(self.device)
output, leftmean = self.forward(left_sample[3], right_sample[3], l_data, r_data)
# convert back to strings from id
vars_left = left_sample[3]['vars2id']
vars_right = right_sample[3]['vars2id']
# print(vars_left)
# print(vars_right)
# print(output)
indices = [torch.argmax(k) for k in output]
distributions = [k.tolist() for k in output]
vars_left_list = [k for k in vars_left]
vars_right_list = [k for k in vars_right]
varmap_result = {}
varmap_dist = {}
for e, o in enumerate(indices):
varmap_result[vars_left_list[e]] = vars_right_list[int(indices[e].item())]
# print(varmap_result)
# assert 2 > 3
for e, o in enumerate(distributions):
varmap_dist[vars_left_list[e]] = (distributions[e], vars_right_list)
return varmap_result, varmap_dist
def train_step(self, sample, loss_function, optimizer):
optimizer.zero_grad()
left_sample, right_sample, labels, orig_spec = sample
l_data = Data(x=self.initial_embedding(left_sample[0]), edge_index=left_sample[1].t().contiguous(),
edge_attr=left_sample[2]).to(self.device)
r_data = Data(x=self.initial_embedding(right_sample[0]), edge_index=right_sample[1].t().contiguous(),
edge_attr=right_sample[2]).to(self.device)
output, leftmean = self.forward(left_sample[3], right_sample[3], l_data, r_data)
# global_orig_sample_list.append(orig_spec.parents[0])
# global_representation_list.append(torch.mean(leftmean, dim=0).detach().cpu().numpy())
total_loss = 0
# print(labels)
# print(len(labels))
for lab, spl in zip(labels, output):
# print(lab)
# print(torch.softmax(spl, dim=1))
l = loss_function(spl.reshape(1, -1), torch.tensor(lab, device=self.device).reshape(1))
# print(l.item())
total_loss += l
# print(total_loss.item())
# print()
total_loss = total_loss / len(labels)
total_loss.backward()
#
optimizer.step()
def eval_step(self, sample, loss_function):
left_sample, right_sample, labels, _ = sample
l_data = Data(x=self.initial_embedding(left_sample[0]), edge_index=left_sample[1].t().contiguous(),
edge_attr=left_sample[2]).to(self.device)
r_data = Data(x=self.initial_embedding(right_sample[0]), edge_index=right_sample[1].t().contiguous(),
edge_attr=right_sample[2]).to(self.device)
output, leftmean = self.forward(left_sample[3], right_sample[3], l_data, r_data)
total_loss = 0
#
corr = 0
total = 0
for lab, spl in zip(labels, output):
# print(lab)
# print(torch.softmax(spl, dim=1))
# print(lab, torch.argmax(spl).item())
if lab == torch.argmax(spl).item():
corr += 1
l = loss_function(spl.reshape(1, -1), torch.tensor(lab, device=self.device).reshape(1))
# print(l.item())
total_loss += l
total += 1
if total == corr:
fully_correct = 1
else:
fully_correct = 0
# print(total_loss.item())
# print(f"Eval: {corr} / {total}")
return corr, total, fully_correct