-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathctmc.py
executable file
·137 lines (115 loc) · 4.2 KB
/
ctmc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Author: Jairo Sánchez
# @Date: 2015-12-02 12:03:55
# @Last Modified by: Jairo Sánchez
# @Last Modified time: 2016-01-19 15:46:28
import numpy as np
from scipy import misc as sc
from scipy.stats import expon
import argparse
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import matplotlib.pyplot as plt
import colormaps as cmaps
def bcc_recursive(S, lambd, mu):
a = lambd/mu
pi = np.array([1.]*(S+1))
j = np.arange(S+1)
d = np.sum(a**j / sc.factorial(j))
pi[0] = 1. / d
for j in range(1, S+1):
pi[j] = pi[0] * (a**j/sc.factorial(j))
# print "pi[", j, "]=", a**j, "/", sc.factorial(j), "*", pi[0]
return pi
def bcc_gauss(S, lambd, mu):
"""Genera la matriz con tasas de salida/entrada para cada estado de
la cadena, para que sea resuelta por la funcion gauss
"""
pi = np.array([1./(S+1)]*(S+1))
error = 1000
iterations = 0
while error >= 1e-6:
old_solution = np.array(pi)
for i in range(S+1):
if i == 0:
pi[0] = mu * pi[1] / (1.*lambd)
elif i == S:
pi[S] = (lambd*1.*pi[S-1])/(i*mu*1.)
else:
d = (1.*lambd*pi[i-1]+(i+1)*mu*1.*pi[i+1])
pi[i] = d / (lambd*1. + i*mu*1.)
pi = pi / np.sum(pi)
error = np.sum(np.abs(pi - old_solution))
iterations = iterations + 1
return pi
def bcc_sim(S, lambd, mu, simtime):
remaining = simtime
i = 0 # Estado actual
ts = 0
time = np.zeros(S+1)
while remaining > 0:
if i == 0:
T1 = expon.rvs(scale=1./lambd, size=1)
T2 = np.inf
elif i == S:
T1 = np.inf
T2 = expon.rvs(scale=1./(i*mu), size=1)
else:
T1 = expon.rvs(scale=1./lambd, size=1)
T2 = expon.rvs(scale=1./(i*mu), size=1)
if np.all(T1 < T2):
ts = T1
time[i] = time[i] + ts
i = i+1
else:
ts = T2
time[i] = time[i] + ts
i = i-1
remaining = remaining - ts[0]
progress = (simtime - remaining) / simtime
# print "{0}% --> {1} remaining".format(progress*100.0, remaining)
return time/simtime
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-m', '--method', type=str, required=True,
help='Metodo a usar para resolver el sistema',
choices=['gauss', 'simulation', 'recursive'])
parser.add_argument('-l', '--lambd', type=float, required=True,
help='Tasa de arribos, mu se calcula dado el cociente')
args = parser.parse_args()
np.set_printoptions(precision=7, suppress=True)
plt.register_cmap(name='viridis', cmap=cmaps.viridis)
fig = plt.figure()
ax = fig.gca(projection='3d')
# Con un mayor número de muestras se empieza a 'laggear' el visualizador
X = np.arange(1, 51) # Numero de servidores (S=[0, 49])
Y = np.linspace(0.1, 4.9999, num=50) # a = lambda/mu
Z = np.array([0.]*X.shape[0]*Y.shape[0])
Z.shape = (X.shape[0], Y.shape[0])
for i in range(X.shape[0]):
for j in range(Y.shape[0]):
mu = args.lambd / Y[j]
if 'gauss' in args.method:
P = bcc_gauss(X[i], args.lambd, mu)
elif 'simulation' in args.method:
P = bcc_sim(X[i], args.lambd, mu, 1000)
elif 'recursive' in args.method:
P = bcc_recursive(X[i], args.lambd, mu)
print 'P[S]=', P[-1], ' lambda=', args.lambd, ' mu=',
print mu, ', S=', X[i]
Z[i][j] = P[-1]
X, Y = np.meshgrid(X, Y)
plt.xlabel('S')
plt.ylabel('a=lambda/mu')
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cmaps.viridis,
linewidth=0, antialiased=True, alpha=1.0,
shade=False)
# ax.set_zlim(0, 1.0)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
fig.colorbar(surf, shrink=0.5, aspect=5)
plt.show()
if __name__ == '__main__':
main()