-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbcc.py
212 lines (172 loc) · 5.23 KB
/
bcc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
""" bcc.py
Queue with blocked customers cleared
Jobs (e.g messages) arrive randomly at rate 1.0 per minute at a
2-server system. Mean service time is 0.75 minutes and the
service-time distribution is (1) exponential, (2) Erlang-5, or (3)
hyperexponential with p=1/8,m1=2.0, and m2=4/7. However no
queue is allowed; a job arriving when all the servers are busy is
rejected.
Develop and run a simulation program to estimate the probability of
rejection (which, in steady-state, is the same as p(c)) Measure
and compare the probability for each service time distribution.
Though you should test the program with a trace, running just a few
jobs, the final runs should be of 10000 jobs without a trace. Stop
the simulation when 10000 jobs have been generated.
"""
from SimPy.Simulation import *
from random import seed, Random, expovariate, uniform
# Model components ------------------------
dist = ""
def bcc(lam, mu, s):
""" bcc - blocked customers cleared model
- returns p[i], i = 0,1,..s.
- ps = p[s] = prob of blocking
- lameff = effective arrival rate = lam*(1-ps)
See Winston 22.11 for Blocked Customers Cleared Model (Erlang B formula)
"""
rho = lam/mu
n = range(s+1)
p = [0]*(s+1)
p[0] = 1
sump = 1.0
for i in n[1:]:
p[i] = (rho/i)*p[i-1]
sump = sump + p[i]
p0 = 1.0/sump
for i in n:
p[i] = p[i]*p0
p0 = p[0]
ps = p[s]
lameff = lam*(1-ps)
L = rho*(1-ps)
return {'lambda': lam, 'mu': mu, 's': s,
'p0': p0, 'p[i]': p, 'ps': ps, 'L': L}
def ErlangVariate(mean, K):
""" Erlang random variate
mean = mean
K = shape parameter
g = rv to be used
"""
sum = 0.0
mu = K/mean
for i in range(K):
sum += expovariate(mu)
return (sum)
def HyperVariate(p, m1, m2):
""" Hyperexponential random variate
p = prob of branch 1
m1 = mean of exponential, branch 1
m2 = mean of exponential, branch 2
g = rv to be used
"""
if random() < p:
return expovariate(1.0/m1)
else:
return expovariate(1.0/m2)
def testHyperVariate():
""" tests the HyerVariate rv generator"""
ERR = 0
x = (1.0981, 1.45546, 5.7470156)
p = 0.0, 1.0, 0.5
g = Random(1113355)
for i in range(3):
x1 = HyperVariate(p[i], 1.0, 10.0, g)
# print p[i], x1
assert abs(x1 - x[i]) < 0.001, 'HyperVariate error'
def erlangB(rho, c):
""" Erlang's B formula for probabilities in no-queue
Returns p[n] list
see also SPlus and R version in que.q mmcK
que.py has bcc.
"""
n = range(c+1)
pn = range(c+1)
term = 1
pn[0] = 1
sum = 1
term = 1.0
i = 1
while i < (c+1):
term *= rho/i
pn[i] = term
sum += pn[i]
i += 1
for i in n:
pn[i] = pn[i]/sum
return(pn)
class JobGen(Process):
""" generates a sequence of Jobs
"""
def execute(self, JobRate, MaxJob, mu):
global NoInService, Busy
for i in range(MaxJob):
j = Job()
activate(j, j.execute(i, mu), delay=0.0)
t = expovariate(JobRate)
MT.tally(t)
yield hold, self, t
self.trace("Job generator finished")
def trace(self, message):
if JobGenTRACING:
print "%8.4f \t%s" % (now(), message)
class Job(Process):
""" Jobs that are either accepted or rejected
"""
def execute(self, i, mu):
""" Job execution, only if accepted"""
global NoInService, Busy, dist, NoRejected
if NoInService < c:
self.trace("Job %2d accepted b=%1d" % (i, Busy))
NoInService += 1
if NoInService == c:
Busy = 1
try:
BM.accum(Busy, now())
except:
"accum error BM=", BM
# yield hold,self,Job.g.expovariate(self.mu); dist= "Exponential"
yield hold, self, ErlangVariate(1.0/mu, 5)
dist = "Erlang "
# yield hold,self,HyperVariate(1.0/8,m1=2.0,m2=4.0/7,g=Job.g);
# dist= "HyperExpon "
NoInService -= 1
Busy = 0
BM.accum(Busy, now())
self.trace("Job %2d leaving b=%1d" % (i, Busy))
else:
self.trace("Job %2d REJECT b=%1d" % (i, Busy))
NoRejected += 1
def trace(self, message):
if JobTRACING:
print "%8.4f \t%s" % (now(), message)
# Experiment data -------------------------
c = 2
lam = 1.0 # per minute
mu = 1.0/0.75 # per minute
p = 1.0/8
m1 = 2.0
m2 = 4.0/7.0
K = 5
rho = lam/mu
NoRejected = 0
NoInService = 0
Busy = 0
JobRate = lam
JobMax = 10000
JobTRACING = 0
JobGenTRACING = 0
# Model/Experiment ------------------------------
seed(111333)
BM = Monitor()
MT = Monitor()
initialize()
jbg = JobGen()
activate(jbg, jbg.execute(1.0, JobMax, mu), 0.0)
simulate(until=20000.0)
# Analysis/output -------------------------
print 'bcc'
print "time at the end =", now()
print "now=", now(), " startTime ", BM.startTime
print "No Rejected = %d, ratio= %s" % (NoRejected, (1.0*NoRejected)/JobMax)
print "Busy proportion (%6s) = %8.6f" % (dist, BM.timeAverage(now()), )
print "Erlang pc (th) = %8.6f" % (erlangB(rho, c)[c], )