-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrecognition_with_embeds_mulitple.py
173 lines (132 loc) · 5.71 KB
/
recognition_with_embeds_mulitple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#!/usr/bin/env python
# coding: utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
import copy
import os
import numpy as np
import pandas as pd
import pickle as pkl
from scipy.misc import imread, imresize
from nets.model_irse import IR_50, IR_152
from nets.insightface import Backbone, MobileFaceNet
model_root = './ckpt/'
model_path_map = {'IR_50': model_root + 'backbone_ir50_ms1m_epoch120.pth',
'IR_152': model_root + 'Backbone_IR_152_Epoch_112_Batch.pth',
'IR_SE_50': model_root + 'model_ir_se50.pth'}
def preprocess_for_model(image):
image = (image - 127.5) / 128.0
image = image.swapaxes(2, 3).swapaxes(1, 2)
image = torch.from_numpy(image)
return image
def load_images_with_names(input_dir, batch_size=1):
images = []
filenames = []
personnames = []
idx = 0
dev = pd.read_csv(os.path.join(input_dir, 'dev.csv'))
filename2personname = {dev.iloc[i]['ImageName']: dev.iloc[i]['PersonName'] for i in range(len(dev))}
for filename in filename2personname.keys():
image = imread(os.path.join(input_dir, filename)).astype(np.float32)
images.append(image)
filenames.append(filename)
personnames.append(filename2personname[filename])
idx += 1
if idx == batch_size:
images = np.array(images)
yield images, filenames, personnames
images = []
filenames = []
personnames = []
idx = 0
if idx > 0:
images = np.array(images)
yield images, filenames, personnames
def recognition_one(image_embed_1, image_embed_2, image_embed_3):
pkl_path1 = './embeds_pkl/all_by_ir50.pkl'
pkl_path2 = './embeds_pkl/all_by_ir152.pkl'
pkl_path3 = './embeds_pkl/all_by_irse50.pkl'
with open(pkl_path1, 'rb+') as f:
label2classname, all_embeds_1 = pkl.load(f)
f.close()
with open(pkl_path2, 'rb+') as f:
_, all_embeds_2 = pkl.load(f)
f.close()
with open(pkl_path3, 'rb+') as f:
_, all_embeds_3 = pkl.load(f)
f.close()
idx2label = all_embeds_1[:, 0]
all_embeds_1 = all_embeds_1[:, 1:]
all_embeds_2 = all_embeds_2[:, 1:]
all_embeds_3 = all_embeds_3[:, 1:]
image_embed_1 = image_embed_1 / np.linalg.norm(image_embed_1, axis=1, keepdims=True)
image_embed_2 = image_embed_2 / np.linalg.norm(image_embed_2, axis=1, keepdims=True)
image_embed_3 = image_embed_3 / np.linalg.norm(image_embed_3, axis=1, keepdims=True)
all_embeds1 = all_embeds_1 / np.linalg.norm(all_embeds_1, axis=1, keepdims=True)
all_embeds2 = all_embeds_2 / np.linalg.norm(all_embeds_2, axis=1, keepdims=True)
all_embeds3 = all_embeds_3 / np.linalg.norm(all_embeds_3, axis=1, keepdims=True)
cos_distances1 = image_embed_1.dot(all_embeds1.T) # (batch, 512).(512, 1w+) = (batch, 1w+)
cos_distances2 = image_embed_2.dot(all_embeds2.T)
cos_distances3 = image_embed_3.dot(all_embeds3.T)
# print('cos_dist shape:', cos_distances.shape)
cos_distances = (cos_distances1 * 1.2 + cos_distances2 * 0.3 + cos_distances3 * 0.7) / 2.2
idx = np.argmax(cos_distances[0])
label = idx2label[idx]
# print(label)
cos_dist = np.max(cos_distances[0])
# print('cos_dist:', cos_dist)
name = label2classname[label]
# print('name:', name)
cos_distances_ = copy.deepcopy(cos_distances)
cos_distances_[0][idx] = np.min(cos_distances_[0])
second_idx = np.argmax(cos_distances_[0])
second_cos_dist = np.max(cos_distances_[0])
second_label = idx2label[second_idx]
second_name = label2classname[second_label]
# second_embed = all_embeds[second_idx]
# second_embed = second_embed / np.linalg.norm(second_embed, axis=0, keepdims=True)
return label, name, cos_dist, second_label, second_name, second_cos_dist
if __name__ == '__main__':
print('building...')
pkl_path1 = './embeds_pkl/all_by_ir50.pkl'
pkl_path2 = './embeds_pkl/all_by_ir152.pkl'
pkl_path3 = './embeds_pkl/all_by_irse50.pkl'
device = torch.device('cuda')
# model 1
model_ir50 = IR_50([112, 112])
model_ir50.load_state_dict(torch.load(model_path_map['IR_50'], map_location='cuda'))
model_ir50.eval().to(device).zero_grad()
# model 2
model_IR_152 = IR_152([112, 112])
model_IR_152.load_state_dict(torch.load(model_path_map['IR_152'], map_location='cuda'))
model_IR_152.eval().to(device).zero_grad()
#
# # model 3
IR_SE_50 = Backbone(50, mode='ir_se')
IR_SE_50.load_state_dict(torch.load(model_path_map['IR_SE_50'], map_location='cuda'))
IR_SE_50.eval().to(device).zero_grad()
num = 0
similar_num = 0
for images, _, personnames in load_images_with_names('./images/raw_images'):
tensor = preprocess_for_model(images).detach().to(device)
embedding1 = model_ir50(tensor)
embedding2 = model_IR_152(tensor)
embedding3 = IR_SE_50(tensor)
num += 1
print('===============================> 第 {} 张:'.format(num))
embedding1 = embedding1.data.cpu().detach().numpy()
embedding2 = embedding2.data.cpu().detach().numpy()
embedding3 = embedding3.data.cpu().detach().numpy()
idx, name, cos_dist, second_idx, second_name, second_cos_dist =\
recognition_one(embedding1, embedding2, embedding3)
if personnames[0] == name:
similar_num += 1
print('[predict label]', int(idx), '[predict name]:', name, '[raw_name]:', personnames[0], '[cos_dist]:', cos_dist)
print()
print('second label:', int(second_idx))
print('second name:', second_name)
print('second cos dist:', second_cos_dist)
print()
print('total accuracy rate:', similar_num / 712.0)