-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathget_lfw_embeds.py
173 lines (130 loc) · 5.14 KB
/
get_lfw_embeds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#!/usr/bin/env python
# coding: utf-8
import os
import pickle
import argparse
import numpy as np
from scipy import misc
from threading import Thread
import torch
from nets.model_irse import IR_50, IR_152
from nets.insightface import Backbone, MobileFaceNet
model_root = './ckpt/'
model_path_map = {'IR_50': model_root + 'backbone_ir50_ms1m_epoch120.pth',
'IR_152': model_root + 'Backbone_IR_152_Epoch_112_Batch.pth',
'IR_SE_50': model_root + 'model_ir_se50.pth'}
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--read_path', type=str, default='./images/lfw_align_112',
help='path to image file or directory to images')
return parser.parse_args()
def get_dataset(root_path):
print('reading rootpath:', root_path)
classnames = [path for path in os.listdir(root_path) if os.path.isdir(os.path.join(root_path, path))]
num_class = len(classnames)
dataset = []
classnames.sort()
for idx in range(num_class):
classname = classnames[idx]
classdir = os.path.join(root_path, classname)
imagepaths = get_image_paths(classdir)
dataset.append((idx, classname, imagepaths))
return dataset
def get_image_paths(facedir):
image_paths = []
if os.path.isdir(facedir):
images = os.listdir(facedir)
images.sort()
image_paths = [os.path.join(facedir, img) for img in images]
return image_paths
def load_image(path):
print('reading image %s' % path)
img = misc.imread(path).astype(np.float32)
img = (img-127.5) / 128.0
# img = img.swapaxes(0, 1).swapaxes(1, 2)
return img
def get_embds(model, images, device):
if images.shape[0] > 20:
for_stack = []
if images.shape[0] % 20 == 0:
for i in range(images.shape[0] // 20):
tensor = torch.from_numpy(images[i * 20: (i + 1) * 20])
print('tensor inner shape:', tensor.shape)
variable = tensor.detach().to(device)
embeddings_ = model(variable).data.cpu().detach().numpy()
for_stack.append(embeddings_)
else:
for i in range(images.shape[0]//20 + 1):
if i == images.shape[0]//20:
tensor = torch.from_numpy(images[i*20:])
print('last inner shape:', tensor.shape)
variable = tensor.detach().to(device)
embeddings_ = model(variable).data.cpu().detach().numpy()
for_stack.append(embeddings_)
else:
tensor = torch.from_numpy(images[i*20: (i+1)*20])
print('tensor inner shape:', tensor.shape)
variable = tensor.detach().to(device)
embeddings_ = model(variable).data.cpu().detach().numpy()
for_stack.append(embeddings_)
embeddings = np.concatenate(for_stack, axis=0)
else:
tensor = torch.from_numpy(images)
print('tensor shape:', tensor.shape)
variable = tensor.detach().to(device)
embeddings = model(variable).data.cpu().detach().numpy()
embds = embeddings
print('embedding a class!')
print('images num:', len(embds))
return embds
def main():
args = get_args()
print('loading...')
device = torch.device('cuda')
# model 1
# model_ir50_epoch120 = IR_50([112, 112])
# model_ir50_epoch120.load_state_dict(torch.load(model_path_map['IR_50'], map_location='cuda'))
# model_ir50_epoch120.eval().to(device).zero_grad()
# model 2
# model_IR_152_Epoch_112 = IR_152([112, 112])
# model_IR_152_Epoch_112.load_state_dict(torch.load(model_path_map['IR_152'], map_location='cuda'))
# model_IR_152_Epoch_112.eval().to(device).zero_grad()
#
# # model 3
IR_SE_50 = Backbone(50, mode='ir_se')
IR_SE_50.load_state_dict(torch.load(model_path_map['IR_SE_50'], map_location='cuda'))
IR_SE_50.eval().to(device).zero_grad()
model = IR_SE_50
dataset = get_dataset(args.read_path)
all_embds = np.zeros((13232, 513)) # 512 + idx
# all_embds = np.zeros((20, 513))
idx2classname = {}
num = 0
for idx, classname, imagepaths in dataset:
images = []
idx2classname[idx] = classname
print(idx, classname)
for imagepath in imagepaths:
images.append(load_image(imagepath))
images = np.array(images).swapaxes(2, 3).swapaxes(1, 2)
# images = torch.from_numpy(images)
print('images in shape :', images.shape)
a_class_embds = get_embds(model, images, device)
print('this class embeds shape', a_class_embds.shape)
num_next = num + a_class_embds.shape[0]
all_embds[num:num_next, 0] = idx
all_embds[num:num_next, 1:] = a_class_embds
num = num_next
print('all done!')
print('saving...')
f1 = idx2classname
f2 = all_embds
# def hanlder(f1_, f2_):
with open('./embeds_pkl/all_by_irse50.pkl', 'wb') as file:
pickle.dump((f1, f2), file)
file.close()
# t = Thread(target=hanlder, args=(f1, f2))
# t.start()
print('done!')
if __name__ == '__main__':
main()