-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsnippet_zoom.py
191 lines (175 loc) · 5.71 KB
/
snippet_zoom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import numpy as np
import json
import matplotlib
#matplotlib.use('Agg')
import pylab as pl
import pprint as pp
import sys
# Plot the different figures for the merged spikes and voltages recordings.
# This file, as the MergeSpikefiles.py should be one level up than Test/..., the output of a simulation.
path =sys.argv[1]+'/'
fparam = path+'Test/Parameters/simulation_parameters.json'
f = open(fparam, 'r')
params = json.load(f)
#pl.clf()
#pp.pprint(params)
if len(sys.argv)==4:
start = int(sys.argv[2])
end= int(sys.argv[3])
si = 25
parms = {
'axes.labelsize': si,
'text.fontsize': si,
'legend.fontsize': si,
'xtick.labelsize': si,
'ytick.labelsize': si,
'text.usetex': False
#'figure.figsize': [6., 7.]
}
pl.rcParams.update(parms)
params['figures_folder'] = "%sFigures" % params['folder_name']
#color = ['b','g', 'r', 'c', 'm', 'y', 'k']
color = ['b','g', 'r', 'm', 'c', 'y', 'k']
#color = ['b','y', 'k', 'g', 'r', 'm', 'c']
z = 0
cl = color[z%len(color)]
xa = -(params['t_sim']/10)
size = 5.
print 'SPIKES'
ymax = 0.
#fig = pl.figure(1,(50,11.5))
fig = pl.figure(1,(21,5))
ax = fig.add_subplot(111)
cell = 'states'
recorder_type = 'spikes'
mean = 0
ymax = 0
print cell
mini = 391
for nstate in range(params['n_states']):
# print nstate
data = np.loadtxt(path+params['spiketimes_folder']+'/'+str(nstate)+cell+'_merged_'+recorder_type+'.dat' )
#data[:,0]-=min(data[:,0])
gids = []
ttime = []
for i in xrange(len(data[:,0])):
if data[i,1]>start and data[i,1]<end:
gids.append(data[i,0])
ttime.append(data[i,1])
gids = [g-mini for g in gids]
ymax = max(ymax , max(gids))
#mean += (np.min(data[:,0])+np.max(data[:,0]))/2
# if np.max(data[:,0]) > ymax:
# ymax = np.max(data[:,0])
ax.scatter(ttime, gids, c=cl, s=size, marker="|")
mean = mean/params['n_states']
#ax.text(xa, mean, cell, color=cl)
z += 1
cl = color[z%len(color)]
#cell = 'rp'
#print cell
#for ni in range(params['n_states']*params['n_actions']):
# # print nstate
# data = np.loadtxt(params['spiketimes_folder']+str(ni)+cell+'_merged_'+recorder_type+'.dat' )
# if len(data)<=2:
# print 'no data in ', cell, ni
# else:
# mean += (np.min(data[:,0])+np.max(data[:,0]))/2
# if np.max(data[:,0]) > ymax:
# ymax = np.max(data[:,0])
# pl.scatter(data[:,1], data[:,0], c=cl, s=size, marker="|")
#
#mean = mean/(params['n_states']*params['n_actions'])
#pl.text(xa, mean, cell, color=cl)
#mean = 0
#z += 1
#cl = color[z%len(color)]
#
#
#cell = 'rew'
#print cell
#data = np.loadtxt(params['spiketimes_folder']+cell+'_merged_'+recorder_type+'.dat' )
#if len(data)<2:
# print 'no data in ', cell
#else:
# pl.scatter(data[:,1], data[:,0], c=cl, s=size,label=cell, marker="|")
# mean += (np.min(data[:,0])+np.max(data[:,0]))/2
# if np.max(data[:,0]) > ymax:
# ymax = np.max(data[:,0])
# pl.text(xa, mean, cell, color=cl)
# mean = 0
# z += 1
# cl = color[z%len(color)]
#cell_types = ['d1', 'd2', 'actions','efference', 'brainstem']
#cell_types = ['d1', 'd2', 'actions','efference']
cell_types = ['d1', 'd2']
# SPIKES
for cell in cell_types:
print cell
for naction in range(params['n_actions']):
data = np.loadtxt(path+params['spiketimes_folder']+str(naction)+cell+'_merged_'+recorder_type+'.dat' )
gids = []
ttime = []
for i in xrange(len(data[:,0])):
if data[i,1]>start and data[i,1]<end:
gids.append(data[i,0])
ttime.append(data[i,1])
gids = [g-mini for g in gids]
ax.scatter(ttime, gids, c=cl, s=size, marker="|")
mean += (np.min(data[:,0])+np.max(data[:,0]))/2
# if np.max(data[:,0]) > ymax:
# ymax = np.max(data[:,0])
mean = mean/params['n_actions']
#pl.text(xa,mean, cell, color=cl)
z += 1
cl = color[z%len(color)]
mean = 0
cell_types=['actions']
mini=245
for cell in cell_types:
print cell
for naction in range(params['n_actions']):
data = np.loadtxt(path+params['spiketimes_folder']+str(naction)+cell+'_merged_'+recorder_type+'.dat' )
gids = []
ttime = []
for i in xrange(len(data[:,0])):
if data[i,1]>start and data[i,1]<end:
gids.append(data[i,0])
ttime.append(data[i,1])
gids = [g-mini for g in gids]
ax.scatter(ttime, gids, c=cl, s=size, marker="|")
mean += (np.min(data[:,0])+np.max(data[:,0]))/2
# if np.max(data[:,0]) > ymax:
# ymax = np.max(data[:,0])
mean = mean/params['n_actions']
#pl.text(xa,mean, cell, color=cl)
z += 1
cl = color[z%len(color)]
mean = 0
ax.set_ylim([0, ymax])
#lines= np.arange(params['t_init'],params['t_sim'], params['t_iteration'])
#ax.vlines(lines, [0], ymax, color='0.55', linestyles='dashed')
#pl.title(str(params['n_states'])+' states '+str(params['n_actions'])+' actions '+str(params['n_blocks']*params['block_len'])+ ' trials' )
ax.set_ylabel("Neuron ID")
#ax.set_xlabel("Time [s]")
#pl.legend()
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.get_xaxis().tick_bottom()
ax.get_yaxis().tick_left()
ax.tick_params(axis='x', direction='out')
ax.tick_params(axis='y', length=0)
#ax.grid(axis='y', color="0.9", linestyle='-', linewidth=1)
ax.set_axisbelow(True)
pl.xticks(pl.xticks()[0],[str(a/1000.) for a in pl.xticks()[0]])
#pl.xticks([])
ax.set_xlim([start, end])
pl.tight_layout()
pl.subplots_adjust(left = .06, bottom=.06, right=.98, top=.99)
pl.savefig('snippet_zoom.png', bbox_inches='tight', dpi=800)
pl.savefig('snippet_zoom.pdf', bbox_inches='tight', dpi=400)
pl.savefig('snippet_zoom.tiff', bbox_inches='tight', dpi=400)
pl.show()
pl.clf()
pl.close()