-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathneuron_param_test.py
163 lines (130 loc) · 3.7 KB
/
neuron_param_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import nest
import nest.raster_plot
import numpy as np
import pylab as pl
nest.ResetKernel()
nest.SetKernelStatus({"overwrite_files": True})
if (not 'bcpnn_dopamine_synapse' in nest.Models()):
nest.Install('ml_module')
# #####
# DOPA
# #####
#popa = nest.Create('iaf_neuron', 200)
#vt_dopa = nest.Create('volume_transmitter', 1)
#nest.ConvergentConnect(popa, vt_dopa, weight= 5., delay = 1.)
sample_size = 20
neuron_a = nest.Create('iaf_cond_alpha_bias', sample_size)
neuron_b = nest.Create('iaf_cond_alpha_bias', sample_size)
poisson = nest.Create('poisson_generator',1)
recorder = nest.Create('spike_detector',1)
voltmeter_a = nest.Create('multimeter', 1, params={'record_from': ['V_m'], 'interval' :0.1} )
voltmeter_b = nest.Create('multimeter', 1, params={'record_from': ['V_m'], 'interval' :0.1} )
nest.SetStatus(voltmeter_a, [{"to_file": True, "withtime": True, 'label' : 'volt'}])
nest.SetStatus(voltmeter_b, [{"to_file": True, "withtime": True, 'label' : 'volt'}])
time = 300.
key_a = 'C_m'
key_b = 'V_m'
spread = .2
default_a = nest.GetStatus([neuron_a[0]], key_a)[0]
default_b = nest.GetStatus([neuron_b[0]], key_b)[0]
print 'Default value for ', key_a, 'is ', default_a
print 'Default value for ', key_b, 'is ', default_b
start_a = (1-spread)*default_a
end_a = (1+spread)*default_a
value_a = np.arange(start_a, end_a, (end_a-start_a)/sample_size)
start_b = (1-spread)*default_b
end_b = (1+spread)*default_b
value_b = np.arange(start_b, end_b, (end_b-start_b)/sample_size)
for i in xrange(sample_size):
nest.SetStatus([neuron_a[i]], {key_a:value_a[i]})
nest.SetStatus([neuron_b[i]], {key_b:value_b[i]})
nest.DivergentConnect(poisson, neuron_a, weight=4., delay=1.)
nest.DivergentConnect(poisson, neuron_b, weight=4., delay=1.)
nest.ConvergentConnect(neuron_a, recorder)
nest.ConvergentConnect(neuron_b, recorder)
nest.ConvergentConnect(voltmeter_a, neuron_a)
nest.ConvergentConnect(voltmeter_b, neuron_b)
nest.SetStatus(poisson, {'rate': 0.})
nest.Simulate(time)
nest.SetStatus(poisson, {'rate': 2500.})
nest.Simulate(time)
nest.SetStatus(poisson, {'rate': 500.})
nest.Simulate(time)
events = nest.GetStatus(voltmeter_a)[0]['events']
t = events['times']
xmin = 0.
xmax = 30*time
ymin = -85.
ymax = -50.
ax = [ xmin, xmax, ymin, ymax]
pl.subplot(211)
gids = np.unique(events['senders'])
i = 0
for gid in gids:
pl.plot(events['V_m'][events['senders']==gid], label=str(value_a[i]))
i+=1
#pl.plot(t, events['V_m'])
pl.ylabel('Membrane potential [mV]')
pl.xlabel('time [ms]')
pl.axis(ax)
pl.subplot(212)
events = nest.GetStatus(voltmeter_b)[0]['events']
t = events['times']
gids = np.unique(events['senders'])
i = 0
for gid in gids:
pl.plot(events['V_m'][events['senders']==gid], label=str(value_b[i]))
i+=1
#pl.plot(t, events['V_m'])
pl.ylabel('Membrane potential [mV]')
pl.xlabel('time [ms]')
pl.axis(ax)
pl.suptitle(str(100*spread)+' % variation of '+key_a +' default value = '+str(default_a) +'and '+ key_b + ' default value = '+str(default_b))
pl.legend()
pl.show()
nest.raster_plot.from_device(recorder, hist=True)
nest.raster_plot.show()
param = [{'C_m': 250.0,
'E_L': -70.0,
'E_ex': 0.0,
'E_in': -85.0,
'I_e': 0.0,
'V_m': -70.0,
'V_reset': -60.0,
'V_th': -55.0,
'archiver_length': 0,
'bias': 0.0,
'epsilon': 0.001,
'fmax': 20.0,
'frozen': False,
'g_L': 16.6667,
'gain': 1.0,
'global_id': 204,
'kappa': 1.0,
'local': True,
'local_id': 204,
'model': 'iaf_cond_alpha_bias',
'parent': 0,
'recordables': ['V_m',
't_ref_remaining',
'g_ex',
'g_in',
'z_j',
'e_j',
'p_j',
'bias',
'epsilon',
'kappa'],
'state': 0,
't_ref': 2.0,
't_spike': -1.0,
'tau_e': 100.0,
'tau_j': 10.0,
'tau_minus': 20.0,
'tau_minus_triplet': 110.0,
'tau_p': 1000.0,
'tau_syn_ex': 0.2,
'tau_syn_in': 2.0,
'thread': 0,
'type': 'neuron',
'vp': 0}]