-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcurrent_simulation_parameters.py
executable file
·612 lines (507 loc) · 31.3 KB
/
current_simulation_parameters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
import os
import numpy as np
import json
import ParameterContainer
from copy import deepcopy as dc
import pprint
class global_parameters(ParameterContainer.ParameterContainer):
#class global_parameters(object):
"""
The parameter class storing the simulation parameters
is derived from the ParameterContainer class.
Parameters used (mostly) by different classes should be seperated into
different functions.
Common parameters are set in the set_default_params function
"""
def __init__(self, args=None, params_fn=None):#, output_dir=None):
"""
Keyword arguments:
params_fn -- string, if None: set_filenames and set_default_params will be called
"""
if params_fn == None:
self.params = {}
self.set_default_params()
if args!=None:
self.set_parall_param(args)
self.set_dependables()
self.set_bg_params()
else:
self.load_params_from_file(params_fn)
super(global_parameters, self).__init__() # call the constructor of the super/mother class
def set_parall_param(self, args):
print 'block length:', self.params['block_len']
self.params['block_len'] = int(args[0])
print 'block length:', self.params['block_len']
self.params['rank_multi'] = int(args[1])
self.params['multi_n'] = int(args[2])
def set_dependables(self):
self.params['t_iteration'] = self.params['t_selection'] + self.params['t_efference'] + self.params['t_rest'] + self.params['t_reward'] # [ms] stimulus integration time,
self.params['t_sim'] = self.params['t_init'] + self.params['t_iteration'] * self.params['block_len'] * self.params['n_blocks'] # [ms] total simulation time
self.params['n_iterations'] = self.params['block_len'] * self.params['n_blocks'] #int(round(2*self.params['t_sim'] / self.params['t_iteration']))
self.params['n_recordings'] = self.params['t_sim'] / self.params['resolution']
print 'N_recordings = ', self.params['n_recordings']
def set_default_params(self):
"""
Here all the simulation parameters NOT being filenames are set.
"""
# ######################
# SIMULATION PARAMETERS
# ######################
self.params['t_selection'] = 500.
self.params['t_efference'] = 250.
self.params['t_reward'] = 250. #70.
self.params['t_rest'] = 500.
self.params['t_delay'] = 0.
self.params['t_init'] = 2500.
# time % resolution has to be 0
self.params['resolution'] = 250.
# after this time the input stimulus will be transformed
self.params['block_len'] = 2
self.params['n_blocks'] = 6
self.params['dt'] = .1 # [ms] /default .1
self.params['dt_input_mpn'] = 0.1 # [ms] time step for the inhomogenous Poisson process for input spike train generation
self.params['record_spikes'] = True
self.params['record_voltages'] = False
self.params['light_record'] = True
self.params['softmax'] = False
self.params['threshold']= 0.05
# ##############################
# BASAL GANGLIA PARAMETERS
# ##############################
def set_bg_params(self):
"""
Parameters for Basal Ganglia
"""
self.params['n_states'] = 3
self.params['n_actions'] = 3
self.params['random_divconnect_poisson'] = 1. # set to 1. if num poisson == 1, otherwise lower value? (was 0.75)
self.params['random_connect_voltmeter'] = 0.01
self.params['epsilon'] = 0.0001
self.params['tau_i'] = 5.
self.params['tau_j'] = 6.
self.params['tau_e'] = 40.
self.params['tau_p'] = 1000. #1000.
self.params['gain'] = 3. #2.5 ##1.9 #3.
self.params['gain_d1'] = 4. # 1. ##1.9 #3.
self.params['gain_d2'] = 4. # 1. ##1.9 #3.
self.params['gain_rp'] = -3.
self.params['gain_dopa'] = 6. #5. #4.
self.params['gain_neuron'] = 1. #gain for the neuron model has different impact (amplifies current injected) than gain in synapse model (amplifies weights)
self.params['K'] = 0.
self.params['fmax'] = 35. #100. #70
self.params['rp_fmax'] = 35. #self.params['fmax']
self.params['Vth'] = -50.
self.params['Cm'] = 250.
self.params['Vreset'] = -75.
self.params['gL'] = 16.6667
self.params['temperature'] = 3.
self.params['Cm_std'] = 10. #0.01 #25.
self.params['Vth_std'] = 1. #0.01 #2.
self.params['Vreset_std'] = 1. #0.01 #2.
self.params['rpe'] = 0.01
self.params['trigger']= False
self.params['block_trigger'] = 10
self.params['value_trigg'] = 30. #percentage of dopamine neurons silenced by the disease
self.params['new_value_2'] = 2450.
# self.params['active_poisson_rew_rate'] = 2700.
# self.params['baseline_poisson_rew_rate'] = 2500.
# self.params['inactive_poisson_rew_rate'] = 2300.
self.params['binsize_histo_raster'] = 50.
# ========================
# Striatum MSN
# ========================
self.params['model_state_neuron'] = 'iaf_cond_alpha'
self.params['model_exc_neuron'] = 'iaf_cond_alpha_bias'
self.params['model_inh_neuron'] = 'iaf_cond_alpha_bias'
self.params['num_msn_d1'] = 30
self.params['num_msn_d2'] = 30
self.params['param_msn_d1'] = {'V_th': self.params['Vth'], 'C_m': self.params['Cm'], 'kappa': self.params['K'] ,'fmax':self.params['fmax'],'V_reset': self.params['Vreset'],
'tau_j': self.params['tau_j'],'tau_e': self.params['tau_e'],'tau_p':self.params['tau_p'], 'epsilon': self.params['epsilon'], 't_ref': 2.0, 'gain': self.params['gain_neuron']}
self.params['param_msn_d2'] = {'V_th': self.params['Vth'], 'C_m': self.params['Cm'], 'kappa': self.params['K'] ,'fmax':self.params['fmax'],'V_reset': self.params['Vreset'],
'tau_j': self.params['tau_j'],'tau_e': self.params['tau_e'],'tau_p':self.params['tau_p'], 'epsilon': self.params['epsilon'], 't_ref': 2.0, 'gain': self.params['gain_neuron']}
# ========================
# GPi / SNr
# ========================
self.params['model_bg_output_neuron'] = 'iaf_cond_alpha'
self.params['num_actions_output'] = 10
self.params['param_bg_output'] = {'V_reset': self.params['Vreset']} # to adapt parms to aif_cond_alpha neuron model
self.params['str_to_output_exc_w'] = 4. ### D2
self.params['str_to_output_inh_w'] = -1. #-1. ### D1
self.params['str_to_output_exc_delay'] = 1.
self.params['str_to_output_inh_delay'] = 1.
# ========================
# RP and REWARD
# ========================
self.params['model_rp_neuron'] = 'iaf_cond_alpha_bias'
self.params['num_rp_neurons'] = 15 #15
self.params['param_rp_neuron'] = {'V_th': self.params['Vth'], 'C_m': self.params['Cm'], 'kappa': self.params['K'] ,'fmax':self.params['fmax'], 'V_reset': self.params['Vreset'],
'tau_j': self.params['tau_j'],'tau_e': self.params['tau_e'],'tau_p':self.params['tau_p'], 'epsilon': self.params['epsilon'], 't_ref': 2.0, 'gain': self.params['gain_neuron']}
self.params['num_rew_neurons'] = 200 # * 12?
self.params['model_rew_neuron'] = 'iaf_cond_alpha_bias'
self.params['param_rew_neuron'] = {'V_th': self.params['Vth'], 'C_m': self.params['Cm']}
# to adapt parms to aif_cond_alpha neuron model
self.params['weight_rp_rew'] = -0. # inhibition of the dopaminergic neurons in rew by the
# current reward prediction from rp[current state, selected action]
self.params['delay_rp_rew'] = 1.
self.params['vt_params'] = {}
# ========================
# CONNECTIONS
# ========================
#Connections Actions and States to RP
# parameters for the standard bcpnn connections
self.params['p_i'] = np.random.random()/33.
self.params['p_j'] = np.random.random()/33.
# self.params['p_ij']= self.params['p_i'] * self.params['p_j']
self.params['p_ij']= (np.random.random()/33.)*(np.random.random()/33.)
# print 'InitialP Pi', self.params['p_i'], 'pj',self.params['p_j'] , 'Pij', self.params['p_ij']
# self.params['p_i'] = self.params['t_selection'] / ( self.params['n_states']*self.params['t_iteration'] )
# self.params['p_j'] = ( self.params['t_reward'] + self.params['t_efference'] ) / ( self.params['n_actions']*self.params['t_iteration'] )
# self.params['p_ij']= self.params['p_i'] * self.params['p_j']
self.params['p_i_std']= self.params['p_i']/10.
self.params['p_j_std']= self.params['p_j']/10.
self.params['p_ij_std']= self.params['p_ij']/10.
# ========================
#
# ========================
# parameters for RP pathway. Initial expectation should be 0.5
self.params['p_ir'] = 0.01
self.params['p_jr'] = 0.01
self.params['p_ijr']= 0.0001
self.params['actions_rp'] = 'bcpnn_dopamine_synapse'
self.params['param_actions_rp'] = {'p_i': self.params['p_ir'], 'p_j': self.params['p_jr'], 'p_ij': self.params['p_ijr'],
'gain': self.params['gain'], 'K': self.params['K'],'fmax': self.params['fmax'],
'epsilon': self.params['epsilon'],'delay':1.0,
'tau_i': self.params['tau_i'],'tau_j': self.params['tau_j'],'tau_e': self.params['tau_e'],'tau_p': self.params['tau_p']}
self.params['states_rp'] = 'bcpnn_dopamine_synapse'
self.params['param_states_rp'] = {'p_i': self.params['p_ir'], 'p_j': self.params['p_jr'], 'p_ij': self.params['p_ijr'],
'gain': self.params['gain'], 'K': self.params['K'],'fmax': self.params['fmax'],
'epsilon': self.params['epsilon'],'delay':self.params['t_selection']+self.params['t_efference'],
'tau_i': self.params['tau_i'],'tau_j': self.params['tau_j'],'tau_e': self.params['tau_e'],'tau_p': self.params['tau_p']}
self.params['bcpnn'] = 'bcpnn_synapse'
self.params['param_bcpnn'] = {'p_i': self.params['p_i'], 'p_j': self.params['p_j'], 'p_ij': self.params['p_ij'],
'gain': self.params['gain'], 'K': self.params['K'],'fmax': self.params['fmax'],
'epsilon': self.params['epsilon'],'delay':1.0,
'tau_i': self.params['tau_i'],'tau_j': self.params['tau_j'],'tau_e': self.params['tau_e'],'tau_p': self.params['tau_p']}
self.params['lateral_synapse_d1'] = 'bcpnn_inhib_d1'
self.params['lateral_synapse_d2'] = 'bcpnn_inhib_d2'
self.params['params_lateral_synapse_d1'] = {}
self.params['params_lateral_synapse_d2'] = {}
self.params['inhib_lateral_weights_d1'] = -4. #-4.
self.params['inhib_lateral_weights_d2'] = -4. #-4.
self.params['inhib_lateral_weights_d2_d1'] = -1. #-4.
self.params['inhib_lateral_delay_d1'] = 1.
self.params['inhib_lateral_delay_d2'] = 1.
self.params['ratio_lat_inh_d1_d1'] = 3. # ratio of D1 MSNs belonging to the other actions inhibited by one D1 MSN from a specific action
self.params['ratio_lat_inh_d2_d2'] = 3. # ratio of D1 MSNs belonging to the other actions inhibited by one D1 MSN from a specific action
# during learning gain == 0. K = 1.0 : --> 'offline' learning
# after learning: gain == 1. K = .0
# ========================
# Dopa BCPNN parameters
# ========================
#Connections States Actions
self.params['synapse_d1'] = 'bcpnn_dopamine_synapse_d1'
self.params['params_synapse_d1'] = {'p_i': self.params['p_i'], 'p_j': self.params['p_j'], 'p_ij': self.params['p_ij'],
'gain': self.params['gain'], 'K': self.params['K'],'fmax': self.params['fmax'],
'epsilon': self.params['epsilon'],'delay':1.0,
'tau_i': self.params['tau_i'],'tau_j': self.params['tau_j'],'tau_e': self.params['tau_e'],'tau_p': self.params['tau_p']}
self.params['synapse_d2'] = 'bcpnn_dopamine_synapse_d2'
self.params['params_synapse_d2'] = {'p_i': self.params['p_i'], 'p_j': self.params['p_j'], 'p_ij': self.params['p_ij'],
'gain': self.params['gain'], 'K': self.params['K'],'fmax': self.params['fmax'],
'epsilon': self.params['epsilon'],'delay':1.0,
'tau_i': self.params['tau_i'],'tau_j': self.params['tau_j'],'tau_e': self.params['tau_e'],'tau_p': self.params['tau_p']}
# ========================
# Dopa BCPNN parameters
# ========================
#Connections REW to RP, STRD1 and STRD2
self.params['weight_rew_strD1'] = 4.
self.params['weight_rew_strD2'] = 4.
self.params['delay_rew_strD1'] = 1.
self.params['delay_rew_strD2'] = 1.
self.params['weight_rew_rp'] = 4.
self.params['delay_rew_rp'] = 1.
self.params['w_rew_vtdopa'] = 1.
self.params['delay_rew_vtdopa'] = 1.
# ========================
# Spike DETECTORS parameters
# ========================
self.params['spike_detector_action'] = {"withgid":True, "withtime":True}
self.params['spike_detector_d1'] = {"withgid":True, "withtime":True}
self.params['spike_detector_d2'] = {"withgid":True, "withtime":True}
self.params['spike_detector_states'] = {"withgid":True, "withtime":True}
self.params['spike_detector_efference'] = {"withgid":True, "withtime":True}
self.params['spike_detector_rew'] = {"withgid":True, "withtime":True}
self.params['spike_detector_rp'] = {"withgid":True, "withtime":True}
self.params['spike_detector_brainstem'] = {"withgid":True, "withtime":True}
self.params['spike_detector_test_rp'] = {"withgid":True, "withtime":True}
# ========================
# POISSON INPUTS RATES
# ========================
#Reinforcement Learning
self.params['num_neuron_poisson_efference'] = 1
self.params['num_neuron_poisson_input_BG'] =1
self.params['active_full_efference_rate'] = 2400. #1800. #2000.#600. #3000.
self.params['inactive_efference_rate'] = 1.
self.params['active_poisson_input_rate'] = 2000. #1750. #1900. #2500.
self.params['inactive_poisson_input_rate'] = 1400. #1400.
self.params['supervisor_off'] = 0.
self.params['active_poisson_rew_rate'] = 2700.
self.params['baseline_poisson_rew_rate'] = 2500.
self.params['inactive_poisson_rew_rate'] = 2300. #2300.
#Initialisation####################
self.params['initial_poisson_input_rate'] = 1500. #2500.
self.params['initial_noise_striatum_rate'] = 3000. #2500.
self.params['param_poisson_pop_input_BG'] = {}
self.params['param_poisson_efference'] = {}
self.params['model_poisson_rew'] = 'poisson_generator'
self.params['num_poisson_rew'] = 1
self.params['weight_poisson_rew'] = 4.
self.params['delay_poisson_rew'] = 1.
self.params['param_poisson_rew'] = {}# to adapt parms to aif_cond_alpha neuron model
self.params['weight_efference_strd1_exc'] = 2.5 ## 4.
self.params['weight_efference_strd1_inh'] = -2. ## -2.
self.params['weight_efference_strd2_exc'] = 2.5
self.params['weight_efference_strd2_inh'] = -2.
self.params['delay_efference_strd1_exc'] = 1.
self.params['delay_efference_strd1_inh'] = 1.
self.params['delay_efference_strd2_exc'] = 1.
self.params['delay_efference_strd2_inh'] = 1.
self.params['weight_poisson_input'] = 4.
self.params['delay_poisson_input'] = 1.
self.params['num_neuron_states'] = 30
self.params['param_states_pop'] = {}
self.params['weight_states_rp'] = 2.5 #3.
self.params['delay_states_rp'] = self.params['t_efference']
self.params['weight_efference_rp'] = 2.
self.params['delay_efference_rp'] = self.params['t_efference']
# self.params['weight_actions_rp'] = 5.
# self.params['delay_actions_rp'] = self.params['t_efference']
# ========================
# Dopa BCPNN parameters
# ========================
self.params['dopa_b'] = -.074 #- .0697 ###.069 #-.085 #-1.4 #-0.13 # - (baseline rate dopa (= pop size * rate) )/ 1000
self.params['weight'] = 5.
self.params['dopa_bcpnn'] = 'bcpnn_dopamine_synapse'
self.params['params_dopa_bcpnn'] ={
'bias':0.0, #ANN interpretation. Only calculated here to demonstrate match to rule.
# Will be eliminated in future versions, where bias will be calculated postsynaptically
'b':self.params['dopa_b'],
'delay':1.,
'dopamine_modulated':True,
'complementary':False, #set to use the complementary traces or not
'e_i':0.01,
'e_j':0.01,
'e_j_c':.99,
'e_ij':0.001,
'e_ij_c':0.3,
'epsilon':0.001, #lowest possible probability of spiking, e.g. lowest assumed firing rate
'fmax':self.params['fmax'], #Frequency assumed as maximum firing, for match with abstract rule
'gain':self.params['gain'], #Coefficient to scale weight as conductance, can be zero-ed out
'gain_dopa':self.params['gain_dopa'],
'k_pow': 3.,
'K':0., #Print-now signal // Neuromodulation. Turn off learning, K = 0
'sigmoid':0.,
'sigmoid_mean':0.,
'sigmoid_slope':1.,
'n': .07, #17,
'p_i': self.params['p_i'], #.01, #0.01,
'p_j': self.params['p_j'], #.01, #0.01,
'p_ij': self.params['p_ij'], #.0001, #0.0001,
'reverse':1., #1.
'tau_i':self.params['tau_i'], #Primary trace presynaptic time constant
'tau_j':self.params['tau_j'], #Primary trace postsynaptic time constant
'tau_e':self.params['tau_e'], #Secondary trace time constant
'tau_p':self.params['tau_p'], #Tertiarty trace time constant
'tau_n':100., #default 100
#'type_id':'bcpnn_dopamine_synapse',
'weight':self.params['weight'],
'z_i':0.3,
'z_j':0.3,
'alpha': self.params['n_actions'] + 0. ,
'value':1.,}
self.params['params_dopa_bcpnn_d1'] = dc(self.params['params_dopa_bcpnn'])
self.params['params_dopa_bcpnn_d1']['gain'] = self.params['gain_d1']
self.params['params_dopa_bcpnn_d2'] = dc(self.params['params_dopa_bcpnn'])
self.params['params_dopa_bcpnn_d2']['reverse'] = -1. # -1.
self.params['params_dopa_bcpnn_d2']['gain'] = self.params['gain_d2']
#self.params['params_dopa_bcpnn_d2']['tau_p'] = 100.
#self.params['params_dopa_bcpnn_actions_rp'] = dc(self.params['params_dopa_bcpnn'])
# ========================
# BCPNN parameters RP / REW
# ========================
#Connections States Actions
self.params['synapse_RP'] = 'bcpnn_dopa_synapse_RP'
self.params['params_dopa_bcpnn_RP'] = dc(self.params['params_dopa_bcpnn'])
self.params['params_dopa_bcpnn_RP']['dopamine_modulated']= True
self.params['params_dopa_bcpnn_RP']['p_i']= .01
self.params['params_dopa_bcpnn_RP']['p_j']= .01
self.params['params_dopa_bcpnn_RP']['p_ij']= .0001 #.0001051271096376 #.0001 Value to get an initial weight of 0.05
self.params['params_dopa_bcpnn_RP']['k_pow']= 2.
self.params['params_dopa_bcpnn_RP']['tau_i']= 5.
self.params['params_dopa_bcpnn_RP']['tau_j']= 5.
self.params['params_dopa_bcpnn_RP']['tau_e']= 50.
self.params['params_dopa_bcpnn_RP']['tau_p']= 5000.
self.params['params_dopa_bcpnn_RP']['tau_n']= 100.
self.params['params_dopa_bcpnn_RP']['fmax']= self.params['rp_fmax']
self.params['params_dopa_bcpnn_RP']['gain_dopa']= 1.
self.params['params_dopa_bcpnn_RP']['gain']= self.params['gain_rp']
if not self.params['params_dopa_bcpnn_RP']['dopamine_modulated']:
self.params['params_dopa_bcpnn_RP'] = {'p_i': self.params['p_i'], 'p_j': self.params['p_j'], 'p_ij': self.params['p_ij'],
'gain': - self.params['gain'], 'K': self.params['K'],'fmax': self.params['fmax'],
'epsilon': self.params['epsilon'],'delay':1.0,
'tau_i': self.params['tau_i'],'tau_j': self.params['tau_j'],'tau_e': self.params['tau_e'],'tau_p': self.params['tau_p']}
# ==========================
# BRAINSTEM
# ==========================
self.params['Kb'] = 1.
self.params['gainb_neuron'] = 1.
self.params['gainb'] = 4.
self.params['tau_ib'] = 5.
self.params['tau_jb'] = 6.
self.params['tau_eb'] = 50.
self.params['tau_pb'] = 100000.
self.params['model_brainstem_neuron']= 'iaf_cond_alpha_bias'
self.params['num_brainstem_neurons']= 10
self.params['param_brainstem_neuron']= {'kappa': self.params['Kb'] ,'fmax':self.params['fmax'],
'tau_j': self.params['tau_jb'],'tau_e': self.params['tau_eb'],'tau_p':self.params['tau_pb'],
'epsilon': self.params['epsilon'], 't_ref': 2.0, 'gain': self.params['gainb_neuron']}
self.params['synapse_states_brainstem'] = 'bcpnn_synapse'
self.params['weight_actions_brainstem'] = 10.
self.params['delay_actions_brainstem'] = 1.
self.params['params_synapse_states_brainstem'] = {'p_i':self.params['p_i'], 'p_j': self.params['p_j'], 'p_ij': self.params['p_ij'],
'gain': self.params['gainb'], 'K': self.params['Kb'], 'fmax': self.params['fmax'],
'epsilon': self.params['epsilon'],'delay':5.0,
'tau_i': self.params['tau_ib'],'tau_j': self.params['tau_jb'],'tau_e': self.params['tau_eb'],'tau_p': self.params['tau_pb']}
# =========================
# NOISE
# =========================
self.params['noise_weight_d1_exc']= 3.# 1.
self.params['noise_weight_d1_inh']= 2.# 1.
self.params['noise_weight_d2_exc']= 3.# 1.
self.params['noise_weight_d2_inh']= 2.# 1.
self.params['noise_weight_actions_exc']= 1.5
self.params['noise_weight_actions_inh']= 1.5
self.params['noise_weight_str_exc']= 1.5
self.params['noise_weight_rp_exc']= 1.5
self.params['noise_weight_rp_inh']= 1.5
self.params['noise_weight_bs_exc']= 4.
self.params['noise_weight_bs_inh']= 1.
self.params['noise_delay_d1_exc']= 1.
self.params['noise_delay_d1_inh']= 1.
self.params['noise_delay_d2_exc']= 1.
self.params['noise_delay_d2_inh']= 1.
self.params['noise_delay_actions_exc']= 1.
self.params['noise_delay_actions_inh']= 1.
self.params['noise_delay_rp_exc']= 1.
self.params['noise_delay_rp_inh']= 1.
self.params['noise_delay_bs_exc']= 1.
self.params['noise_delay_bs_inh']= 1.
self.params['noise_delay_str_exc']= 1.
self.params['noise_rate_d1_exc']=1500. #3000. #5500.
self.params['noise_rate_d1_inh']=1000.
self.params['noise_rate_d2_exc']=1500. #3000. #5500.
self.params['noise_rate_d2_inh']=1000.
self.params['noise_rate_actions_exc']=3800. #3600.
self.params['noise_rate_actions_inh']=1200. #1000.
self.params['noise_rate_str_exc']=1000. #1000.
self.params['noise_rate_rp_exc']=2000.
self.params['noise_rate_rp_inh']=1000.
self.params['noise_rate_bs_exc']=2000.
self.params['noise_rate_bs_inh']=1000.
# =========================
# RECORDING PARAMETERS
# =========================
self.params['recorded'] = 1
self.params['prob_volt'] = .1
def set_recorders(self):
pass
def set_filenames(self, folder_name=None):
"""
This function is called if no params_fn is passed
"""
self.set_folder_names()
self.params['states_spikes_fn'] = 'states_spikes_' # data_path is already set to spiketimes_folder_mpn --> files will be in this subfolder
self.params['d1_spikes_fn'] = 'd1_spikes_' # data_path is already set to spiketimes_folder_mpn --> files will be in this subfolder
self.params['d1_volt_fn'] = 'd1_volt_' # data_path is already set to spiketimes_folder_mpn --> files will be in this subfolder
self.params['d2_spikes_fn'] = 'd2_spikes_' # data_path is already set to spiketimes_folder_mpn --> files will be in this subfolder
self.params['d2_volt_fn'] = 'd2_volt_' # data_path is already set to spiketimes_folder_mpn --> files will be in this subfolder
self.params['actions_spikes_fn'] = 'actions_spikes_'
self.params['actions_volt_fn'] = 'actions_volt_' # data_path is already set to spiketimes_folder_mpn --> files will be in this subfolder
self.params['efference_spikes_fn'] = 'efference_spikes_'
self.params['rew_spikes_fn'] = 'rew_spikes_'
self.params['rew_volt_fn'] = 'rew_volt_'
self.params['rp_spikes_fn'] = 'rp_spikes_'
self.params['rp_volt_fn'] = 'rp_volt_'
self.params['test_rp_spikes_fn'] = 'test_rp_spikes_'
self.params['brainstem_spikes_fn'] = 'brainstem_spikes_'
self.params['states_spikes_fn_merged'] = 'states_merged_spikes.dat' # data_path is already set to spiketimes_folder_mpn --> files will be in this subfolder
self.params['d1_spikes_fn_merged'] = 'd1_merged_spikes.dat' # data_path is already set to spiketimes_folder_mpn --> files will be in this subfolder
self.params['d1_volt_fn_merged'] = 'd1_merged_volt.dat' # data_path is already set to spiketimes_folder_mpn --> files will be in this subfolder
self.params['d2_volt_fn_merged'] = 'd2_merged_volt.dat' # data_path is already set to spiketimes_folder_mpn --> files will be in this subfolder
self.params['d2_spikes_fn_merged'] = 'd2_merged_spikes.dat' # data_path is already set to spiketimes_folder_mpn --> files will be in this subfolder
self.params['actions_spikes_fn_merged'] = 'actions_merged_spikes.dat'
self.params['actions_volt_fn_merged'] = 'actions_merged_volt.dat' # data_path is already set to spiketimes_folder_mpn --> files will be in this subfolder
self.params['efference_spikes_fn_merged'] = 'efference_merged_spikes.dat'
self.params['rew_spikes_fn_merged'] = 'rew_merged_spikes.dat'
self.params['rew_volt_fn_merged'] = 'rew_merged_volt.dat'
self.params['rp_spikes_fn_merged'] = 'rp_merged_spikes.dat'
self.params['rp_volt_fn_merged'] = 'rp_merged_volt.dat'
self.params['brainstem_spikes_fn_merged'] = 'brainstem_merged_spikes.dat'
# input spike files
# self.params['input_st_fn_mpn'] = self.params['input_folder_mpn'] + 'input_spikes_'
# self.params['input_rate_fn_mpn'] = self.params['input_folder_mpn'] + 'input_rate_'
# self.params['input_nspikes_fn_mpn'] = self.params['input_folder_mpn'] + 'input_nspikes_'
# tuning properties
# self.params['tuning_prop_exc_fn'] = self.params['parameters_folder'] + 'tuning_prop_exc.txt'
# self.params['tuning_prop_inh_fn'] = self.params['parameters_folder'] + 'tuning_prop_inh.txt'
# self.params['gids_to_record_fn_mp'] = self.params['parameters_folder'] + 'gids_to_record_mpn.txt'
# storage for actions (BG), network states (MPN) and motion parameters (on Retina)
self.params['actions_taken_fn'] = self.params['data_folder'] + 'actions_taken.txt'
self.params['states_fn'] = self.params['data_folder'] + 'states.txt'
self.params['rewards_fn'] = self.params['data_folder'] + 'rewards.txt'
# self.params['motion_params_fn'] = self.params['data_folder'] + 'motion_params.txt'
# connection filenames
self.params['d1_conn_fn_base'] = self.params['connections_folder'] + 'd1_connections'
self.params['d2_conn_fn_base'] = self.params['connections_folder'] + 'd2_connections'
self.params['d1_weights_fn'] = self.params['connections_folder'] + 'd1_merged_connections.txt'
self.params['d2_weights_fn'] = self.params['connections_folder'] + 'd2_merged_connections.txt'
self.params['rewards_multi_fn'] = self.params['multi_folder'] + 'rewards'
self.params['weights_d1_multi_fn'] = self.params['multi_folder'] + 'weights_d1'
self.params['weights_d2_multi_fn'] = self.params['multi_folder'] + 'weights_d2'
self.params['weights_rp_multi_fn'] = self.params['multi_folder'] + 'weights_rp'
def set_folder_names(self):
# super(global_parameters, self).set_default_foldernames(folder_name)
# folder_name = 'Results_GoodTracking_titeration%d/' % self.params['t_iteration']
folder_name = 'Test/'
# if self.params['supervised_on'] == True:
# folder_name += '_WithSupervisor/'
# else:
# folder_name += '_NoSupervisor/'
assert(folder_name[-1] == '/'), 'ERROR: folder_name must end with a / '
self.set_folder_name(folder_name)
self.params['parameters_folder'] = "%sParameters/" % self.params['folder_name']
self.params['multi_folder'] = "%sMulti/" % self.params['folder_name']
self.params['figures_folder'] = "%sFigures/" % self.params['folder_name']
self.params['connections_folder'] = "%sConnections/" % self.params['folder_name']
self.params['tmp_folder'] = "%stmp/" % self.params['folder_name']
self.params['data_folder'] = '%sData/' % (self.params['folder_name']) # for storage of analysis results etc
self.params['folder_names'] = [self.params['folder_name'], \
self.params['parameters_folder'], \
self.params['figures_folder'], \
self.params['tmp_folder'], \
self.params['connections_folder'], \
self.params['multi_folder'], \
self.params['data_folder']]
if self.params['rank_multi']== 0:
self.params['params_fn_json'] = '%ssimulation_parameters.json' % (self.params['parameters_folder'])
# self.params['input_folder_mpn'] = '%sInputSpikes_MPN/' % (self.params['folder_name'])
self.params['spiketimes_folder'] = '%sSpikes/' % self.params['folder_name']
self.params['folder_names'].append(self.params['spiketimes_folder'])
# self.params['folder_names'].append(self.params['input_folder_mp'])
self.create_folders()
else:
self.params['params_fn_json'] = '%(folder)s%(rank)s_simulation_parameters.json' % {'folder':self.params['parameters_folder'], 'rank':str(self.params['rank_multi'])}
# self.params['input_folder_mpn'] = '%sInputSpikes_MPN/' % (self.params['folder_name'])
self.params['spiketimes_folder'] = '%(folder)sSpikes_%(rank)s/' % {'folder':self.params['folder_name'], 'rank':str(self.params['rank_multi'])}
self.params['folder_names'].append(self.params['spiketimes_folder'])
# self.params['folder_names'].append(self.params['input_folder_mp'])
self.create_folders()