-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_all.py
80 lines (67 loc) · 2.75 KB
/
extract_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import os
import cv2
import pandas as pd
# %%
def mkdir(dir):
try:
os.mkdir(dir)
except:
print('Cant create ', dir)
dataset_root = 'VIRAT Ground Dataset/'
annotations_dir = dataset_root + 'annotations/'
annotations_files = os.listdir(annotations_dir)
event_features = ['eventID', 'event_type', 'duration', 'start_frame', 'end_frame', 'current_frame', 'bbox_lefttop x',
'bbox_lefttop y', 'bbox_width', 'bbox_height']
object_features = ['Object id', 'object_duration', 'current_frame', 'bbox_lefttop x',
'bbox_lefttop y', 'bbox_width', 'bbox_height', 'object_type']
object_type = 1 # person
total_events = 11 # person entering a facility
# %%
events = ['1: Person loading an Object to a Vehicle',
'2: Person Unloading an Object from a Car/Vehicle',
'3: Person Opening a Vehicle/Car Trunk',
'4: Person Closing a Vehicle/Car Trunk',
'5: Person getting into a Vehicle',
'6: Person getting out of a Vehicle',
'7: Person gesturing',
'8: Person digging',
'9: Person carrying an object',
'10: Person running',
'11: Person entering a facility',
'12: Person exiting a facility']
extraction_dir = 'image_extractions/'
mkdir(extraction_dir)
videos_dir = dataset_root + 'videos_original/'
frame_skip = 10
for video_name in os.listdir(videos_dir):
video_path = videos_dir + video_name
print('Processing ',video_path)
try:
current_frame = 0
cap = cv2.VideoCapture(video_path)
object_file_path = annotations_dir + video_name.split('.')[0] + '.viratdata.objects.txt'
object_df = pd.read_csv(object_file_path, delimiter=' ', names=object_features, index_col=False)
object_df = object_df[object_df['object_type'] == object_type]
while True:
ret, frame = cap.read()
if not ret:
cap.release()
break
frame_filtered_objects = object_df[object_df['current_frame'] == current_frame]
for object_index, object_row in frame_filtered_objects.iterrows():
pt1 = (object_row['bbox_lefttop x'], object_row['bbox_lefttop y'])
pt2 = (pt1[0] + object_row['bbox_width'], pt1[1] + object_row['bbox_height'])
image_name = video_name.split('.')[0] + '.' + str(object_row['Object id']) + '.' + str(
current_frame) + '.png'
cv2.imwrite(extraction_dir + image_name, frame[pt1[1]:pt2[1], pt1[0]:pt2[0]])
# cv2.rectangle(frame, pt1, pt2, (0, 255, 0))
# cv2.imshow("vid", frame)
# cv2.resizeWindow('vid', 600, 600)
# cv2.waitKey(30)
total_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT)
print(int(current_frame/total_frames*100) ,' percent complete')
current_frame = current_frame + frame_skip + 1
if frame_skip>0:
cap.set(cv2.CAP_PROP_POS_FRAMES,current_frame)
except:
print('Error processing ', video_path)