-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathKCM_py3.py
578 lines (488 loc) · 18.7 KB
/
KCM_py3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
import h5py
from numpy import *
from fractions import Fraction as Fr
import numpy as np
from math import *
import cmath
from scipy.optimize import leastsq
import sys
import os
import getopt
from scipy.special import *
import argparse
from phonopy.structure.symmetry import Symmetry
from phonopy.interface.calculator import read_crystal_structure
from phonopy.structure.cells import get_primitive
from phonopy.harmonic.force_constants import similarity_transformation
from phono3py.phonon3.triplets import (get_ir_grid_points,
get_grid_points_by_rotations,
get_grid_address)
from phonopy.cui.phonopy_argparse import fix_deprecated_option_names
def fracval(frac):
if frac.find('/') == -1:
return float(frac)
else:
x = frac.split('/')
return float(x[0]) / float(x[1])
def get_grid_symmetry(data):
symmetry = data['symmetry']
mesh = data['mesh']
weights = data['weight']
qpoints = data['qpoint']
rotations = symmetry.get_pointgroup_operations()
(ir_grid_points,
weights_for_check,
grid_address,
grid_mapping_table) = get_ir_grid_points(mesh, rotations)
np.testing.assert_array_equal(weights, weights_for_check)
qpoints_for_check = grid_address[ir_grid_points] / mesh.astype('double')
diff_q = qpoints - qpoints_for_check
np.testing.assert_almost_equal(diff_q, np.rint(diff_q))
return ir_grid_points, grid_address, grid_mapping_table
def expand(data):
gv = data['group_velocity']
qpoint = data['qpoint']
frequency = data['frequency']
cv = data['heat_capacity']
if 'gamma_N' in data:
g_N = data['gamma_N']
g_U = data['gamma_U']
if 'gamma_isotope' in data:
g_I = data['gamma_isotope']
symmetry = data['symmetry']
primitive = data['cell']
mesh = data['mesh']
ir_grid_points = data['ir_grid_points']
grid_address = data['grid_address']
point_operations = symmetry.get_reciprocal_operations()
rec_lat = np.linalg.inv(primitive.get_cell())
rotations_cartesian = np.array(
[similarity_transformation(rec_lat, r)
for r in point_operations], dtype='double')
gv_bz = np.zeros((len(grid_address),) + gv.shape[1:],
dtype='double', order='C')
qpt_bz = np.zeros((len(grid_address), 3), dtype='double', order='C')
freq_bz = np.zeros((len(grid_address), frequency.shape[1]),
dtype='double', order='C')
cv_bz = np.zeros((cv.shape[0], len(grid_address), cv.shape[2]),
dtype='double', order='C')
if 'gamma_N' in data:
g_N_bz = np.zeros_like(cv_bz)
g_U_bz = np.zeros_like(cv_bz)
else:
g_N_bz = None
g_U_bz = None
if 'gamma_isotope' in data:
g_I_bz = np.zeros((len(grid_address), frequency.shape[1]),
dtype='double', order='C')
else:
g_I_bz = None
num_band = gv.shape[1]
for i, gp in enumerate(ir_grid_points):
rotation_map = get_grid_points_by_rotations(
grid_address[gp],
point_operations,
mesh)
multi = len(rotation_map) // len(np.unique(rotation_map))
assert len(np.unique(rotation_map)) * multi == len(rotation_map)
for rgp, r_c, r in zip(rotation_map,
rotations_cartesian,
point_operations):
gv_bz[rgp] += np.dot(gv[i], r_c.T) / multi
qpt_bz[rgp] = np.dot(r, qpoint[i])
freq_bz[rgp] = frequency[i]
cv_bz[:, rgp, :] = cv[:, i, :]
if 'gamma_N' in data:
g_N_bz[:, rgp, :] = g_N[:, i, :]
g_U_bz[:, rgp, :] = g_U[:, i, :]
if 'gamma_isotope' in data:
g_I_bz[rgp] = g_I[i]
return gv_bz, qpt_bz, freq_bz, cv_bz, g_N_bz, g_U_bz, g_I_bz
def parse_args():
deprecated = fix_deprecated_option_names(sys.argv)
parser = argparse.ArgumentParser(
description="Phono3py command-line-tool")
parser.add_argument(
"--pa", dest="primitive_matrix", default="1 0 0 0 1 0 0 0 1",
help="Primitive matrix")
parser.add_argument(
"--qe", "--pwscf", dest="qe_mode",
action="store_true", help="Invoke Quantum espresso (QE) mode")
parser.add_argument('filenames', nargs='*')
args = parser.parse_args()
return args
def get_data(args, interface_mode=None):
args = parse_args()
cell, _ = read_crystal_structure(args.filenames[0],
interface_mode=interface_mode)
f = h5py.File(args.filenames[1], 'r')
primitive_matrix = np.reshape(
[fracval(x) for x in args.primitive_matrix.split()], (3, 3))
primitive = get_primitive(cell, primitive_matrix)
symmetry = Symmetry(primitive)
data = {}
data['cell'] = primitive
data['symmetry'] = symmetry
data['mesh'] = np.array(f['mesh'][:], dtype='intc') # (3)
data['weight'] = f['weight'][:] # (gp)
data['group_velocity'] = f['group_velocity'][:] # (gp, band, 3)
data['qpoint'] = f['qpoint'][:] # (gp, 3)
data['frequency'] = f['frequency'][:] # (gp, band)
if 'gamma_N' in f:
data['gamma_N'] = f['gamma_N'][:] # (temps, gp, band)
data['gamma_U'] = f['gamma_U'][:] # (temps, gp, band)
if 'gamma_isotope' in f:
data['gamma_isotope'] = f['gamma_isotope'][:] # (gp, band)
data['heat_capacity'] = f['heat_capacity'][:] # (temps, gp, band)
data['temperature'] = np.array(f['temperature'][:], dtype='double') # (temps)
ir_grid_points, grid_address, _ = get_grid_symmetry(data)
data['ir_grid_points'] = ir_grid_points
data['grid_address'] = grid_address
return data
args = parse_args()
if args.qe_mode:
data = get_data(args, interface_mode='pwscf')
else:
data = get_data(args)
gv_bz, qpt_bz, freq_bz, cv_bz, g_N_bz, g_U_bz, g_I_bz = expand(data)
qpoint = qpt_bz
freq = freq_bz
cv = cv_bz
f = h5py.File(args.filenames[1], 'r')
### Required parameters
if 'gamma_N' in f:
gamma_N = g_N_bz
gamma_U = g_U_bz
else:
print ('\n WARNING!: To run KCM you need to split normal and umklapp processes')
print (' using --nu in the phono3py calculation \n')
sys.exit()
if 'gamma_isotope' in f:
gamma_I = g_I_bz
vel = gv_bz
gamma = f['gamma']
weight = f['weight']
T = f['temperature']
kappa = f['kappa']
gv = f['gv_by_gv']
k_conv = f['kappa_unit_conversion']
mesh = f['mesh']
k_conv = f['kappa_unit_conversion']
print (' _ _ _______ _ _ ')
print (' | | / / | ______| | \ / | ')
print (' | | / / | | | \ / | ')
print (' | |/ / | | | \ / | ')
print (' | / | | | |\ \/ /| | ')
print (' | \ | | | | \__/ | | ')
print (' | |\ \ | | | | | | ')
print (' | | \ \ | |_____ | | | | ')
print (' |_| \_\ |_______| |_| |_| \n')
print (' KINETIC COLLECTIVE MODEL Version 1.2 for python3 ','\n')
print ('--------------------------------- \n')
print ('Running calculation of thermal conductivity on a ', str(mesh[(0)])+'x'+str(mesh[(1)])+'x'+str(mesh[(2)]) ,'mesh \n')
V = (1.e12*1.e-10)**2*1.602e-19/(2.*pi*(k_conv[()])*1.e12)
## Cell vectors
p_v = args.primitive_matrix.split()
a1 = array([float(Fr(p_v[0])),float(Fr(p_v[1])),float(Fr(p_v[2]))])
a2 = array([float(Fr(p_v[3])),float(Fr(p_v[4])),float(Fr(p_v[5]))])
a3 = array([float(Fr(p_v[6])),float(Fr(p_v[7])),float(Fr(p_v[8]))])
a_matrix = np.array([a1,a2,a3])
b1 = np.cross(a2,a3)/np.linalg.det(a_matrix) #2pi/alat
b2 = np.cross(a3,a1)/np.linalg.det(a_matrix) #2pi/alat
b3 = np.cross(a1,a2)/np.linalg.det(a_matrix) #2pi/alat
N = mesh[0]*mesh[1]*mesh[2]
factor = (1./(V*N)) # Normalization factor
hbar = 6.62e-34/(2*pi)
kb = 1.38e-23
## Default values
file = open('INPUT','r')
list = file.readlines()
file.close()
params = []
for i in list:
a = i.split()
if a[0]=='TEMP=':
params.append([])
for j in range(len(a)-1):
params[-1].append(a[j+1])
else:
if a[0]=='L=':
params.append([])
for j in range(len(a)-1):
params[-1].append(a[j+1])
if a[0]=='TYPE=':
params.append([])
for j in range(len(a)-1):
params[-1].append(a[j+1])
if a[0]!='TEMP=' and a[0]!='L=' and a[0]!='TYPE=':
params.append(a[1])
TEMP = params[0]
Temp = []
if TEMP[0]=='ALL':
for i in T:
Temp.append(i)
else:
for i in TEMP:
Temp.append(float(i))
I_SF = float(params[4])
COMP = params[5]
K_W = params[6]
K_MFP = params[7]
TAU_W = params[8]
TAU_T = params[9]
STP = float(params[10])
grid = str(mesh[(0)])+str(mesh[(1)])+str(mesh[(2)])
BOUNDARY = params[1]
TYPE = params[2]
size = params[3]
def tau_value(scattering):
t_value=(2*3.14159265*2.*1.e12*scattering)**-1.0
return t_value
for l in range(len(size)):
L= float(size[l])
if TYPE[l]=='W':
Leff=L
if TYPE[l]=='R':
Leff=1.12*L
if TYPE[l]=='F':
Leff=2.25*L
if BOUNDARY=='Y':
prefix = TYPE[l]+str(Leff)
else:
Leff = 'inf'
prefix = 'bulk'
print ('\n Sample size= ', prefix, '\n')
if COMP=='XX':
i1=0
i2=0
if COMP=='YY':
i1=1
i2=1
if COMP=='ZZ':
i1=2
i2=2
if COMP=='XY':
i1=0
i2=1
if COMP=='XZ':
i1=0
i2=2
if COMP=='YZ':
i1=1
i2=2
file=open('K_T_'+prefix+'_'+COMP+'_'+grid+'.dat','w')
file.write("%s \n\n"%('# (1)T[k] (2)k_KCM[W/mK] (3)NL-param[nm] (4)k*_kin[W/mK] (5)k*_col[W/mK] (6)sigma[adim] (7)k_RTA[W/mK]'))
if K_W=='Y':
file1 = open('K_w_'+prefix+'_'+COMP+'_'+grid+'.dat','w')
file1.write("%s \n"%('# (1)T[k] (2)w[rad/s] (3)k*_kin[J/mK] (4)k*_col[J/mK] (5)k*_kin_acc[W/mK] (6)k*_col_acc[W/mK] (7)sigma[adim] (8)k_tot_acc[W/mK] (9)Cv_acc[J/m^3K]'))
k_w=[]
if K_MFP=='Y':
file2 = open('K_mfp_'+prefix+'_'+COMP+'_'+grid+'.dat','w')
file2.write("%s \n"%('# (1)T[k] (2)mfp[m] (3)k*_kin[W/mK] (4)k*_col[W/mK] (5)k*_kin_acc[W/mK] (6)k*_col_acc[W/mK] (7)sigma[W/mK] (8)k_tot_acc[W/mK]'))
k_mfp=[]
if TAU_W=='Y':
file3 = open('Taus_w_'+prefix+'_'+grid+'.dat','w')
file3.write("%s \n"%('# (1)T[k] (2)w[rad/s] (3)tau_I[s] (4)tau_U[s] (5)tau_N[s] (6)tau_B[s] (7)v_mode[m/s]'))
if TAU_T=='Y':
file4 = open('Taus_T_'+prefix+'_'+COMP+'_'+grid+'.dat','w')
file4.write("%s \n\n"%('# (1)T[k] (2)tau_kin*[s] (3)tau_col*[s] (4)tau_N[s] (5)sigma[adim] (6)vel_int'))
tau_T=[]
print ('Temp[k] Kappa_KCM[W/mK] NL-length[nm] K_kin[W/mK] K_col[W/mK] Sigma[adim] Kappa_RTA[W/mK]\n')
k_col = []
for k in range(len(T)):
if T[k] in Temp:
if K_W=='Y':
k_w.append([])
if K_MFP=='Y':
k_mfp.append([])
if TAU_W=='Y':
file3.write('\n\n')
k_kin = np.zeros((3,3),dtype=np.float64)
v2Cv = np.zeros((3,3),dtype=np.float64)
v_int_num = np.zeros((3,3),dtype=np.float64)
tau_kin_den = np.zeros((3,3),dtype=np.float64)
v2_N_num = np.zeros((3,3),dtype=np.float64)
v2_N_den = np.zeros((3,3),dtype=np.float64)
k_col_den = np.zeros((3,3),dtype=np.float64)
tau_col_num = np.zeros((3,3),dtype=np.float64)
tau_col_den = np.zeros((3,3),dtype=np.float64)
k_rta = np.zeros((3,3),dtype=np.float64)
Cv_int = 0.
tau_n_num = 0.
k_col_num = 0.
tau_k = 0
for j in range(len(qpoint)):
for i in range(len(freq[j])):
tau_N = 'inf' ### Defalut values to avoid problems when writting file Tau_w
tau_U = 'inf'
tau_I = 'inf'
tau_B = 'inf'
g_N = gamma_N[k][j][i]
g_U = gamma_U[k][j][i]
if 'gamma_isotope' in f:
g_I = gamma_I[j][i]
else:
g_I = 0.
w = freq[j][i]*1.e12*2.*pi # rads/s
vx = vel[j][i][0]*100. # ( THz * Angstrom ) --> m/s
vy = vel[j][i][1]*100.
vz = vel[j][i][2]*100.
vel_vec = array([vx,vy,vz])
vel2_matrix = (outer(vel_vec,vel_vec))
vel_m = linalg.norm(vel_vec)
q_vec = array(qpoint[j][0]*b1+qpoint[j][1]*b2+qpoint[j][2]*b3) #*2*pi/alat
q2_matrix = (outer(q_vec,q_vec))
Cv_mode = cv[k][j][i]*1.602e-19 #J/(m**3K)
x = hbar*w/(kb*T[k])
C1 = q2_matrix/w**2. #projection factor
if 'gamma_isotope' in f:
g_kin = g_I*I_SF + g_U
g_rta = g_I*I_SF + g_U + g_N
else:
g_kin = g_U
g_rta = g_U + g_N
if g_N != 0 and vel_m>1e-5:
tau_N = tau_value(g_N)
v2_N_num += Cv_mode*vel2_matrix*tau_N*C1
v2_N_den += Cv_mode*C1
tau_n_num += Cv_mode*tau_N
if g_kin != 0 and vel_m>1e-5:
tau_k = tau_value(g_kin)
if Leff != 'inf':
tau_k = (tau_value(g_kin)**-1 + vel_m/Leff)**-1.0
else:
tau_k = tau_value(g_kin)
k_kin += Cv_mode*vel2_matrix*tau_k
k_col_num += Cv_mode*q_vec*vel_vec/w
k_col_den += tau_value(g_kin)**-1*Cv_mode*C1
tau_col_den += tau_value(g_kin)**-1*Cv_mode*C1
tau_col_num += Cv_mode*C1
if g_rta != 0. and vel_m>1e-5:
if Leff != 'inf':
tau_rta = (tau_value(g_rta)**-1 + vel_m/Leff)**-1.0
else:
tau_rta = tau_value(g_rta)
k_rta += Cv_mode*vel2_matrix*tau_rta
v2Cv += Cv_mode*(vel2_matrix)
v_int_num += vel2_matrix*Cv_mode
Cv_int += Cv_mode
if K_W=='Y':
k_w[-1].append([w,(Cv_mode*vel2_matrix*tau_k)[i1][i2], Cv_mode, T[k]])
if K_MFP=='Y':
if Leff!='inf':
k_mfp[-1].append([(vel_m*tau_k),(Cv_mode*vel2_matrix*tau_k)[i1][i2], Cv_mode, T[k]])
else:
k_mfp[-1].append([(vel_m*tau_k),(Cv_mode*vel2_matrix*tau_k)[i1][i2], Cv_mode, T[k]])
if TAU_W=='Y':
if Leff != 'inf' and linalg.norm(vel_vec)!=0:
tau_B = Leff/linalg.norm(vel_vec)
if g_I != 0 and I_SF != 0.:
tau_I = tau_value(g_I*I_SF)
if g_U != 0:
tau_U = tau_value(g_U)
file3.write("%s %s %s %s %s %s %s\n"%(T[k], w, tau_I, tau_U, tau_N, tau_B, linalg.norm(vel_vec)))
for i in range(3): # To avoid numerical errors
for j in range(3):
if factor*k_kin[i][j]<1e-5:
k_kin[i][j] = 0.
Cv = Cv_int
tau_col = tau_col_num/tau_col_den
tau_R = k_kin/abs(v2Cv)
v2_N = v2_N_num/v2_N_den
kappa_col = outer(k_col_num, k_col_num)/k_col_den
landa2 = tau_col*v2_N
if Leff!='inf':
if Leff<1.:
F = 1./(2*pi**2.)*Leff**2.*(np.sqrt(1.+4.*pi**2.*abs(landa2)/Leff**2)-1.)/abs(landa2)
else:
F = 1.
else:
F = 1.
tau_N = tau_n_num/Cv
v_int = np.sqrt(abs(v_int_num)/Cv)
sigma = tau_R/(tau_R+tau_N) #(1./(1.+tau_N/(tau_R)))
kappa_kin = k_kin
ell_col2 = sigma*v2_N*tau_col
v2tau_R = k_kin/Cv
ell_kin2 = (1-sigma)*v2tau_R*tau_R
ell = (np.sqrt(sigma*v2_N*tau_col+(1-sigma)*v2tau_R*tau_R))/1e-9
k_col.append([(kappa_col*F)[i1][i2], Cv, sigma[i1][i2],(tau_col*v_int)[i1][i2]])
kappa_total = factor*(kappa_kin*(1.-sigma)+kappa_col*sigma*F)
print (T[k], (" %8.3f %8.3f %8.3f %8.3f %.10f %8.3f" % (kappa_total[i1][i2], ell[i1][i2], (factor*kappa_kin)[i1][i2], (factor*kappa_col*F)[i1][i2], sigma[i1][i2], k_rta[i1][i2]*factor)))
file.write('%s %s %s %s %s %s %s\n' %(T[k], kappa_total[i1][i2], ell[i1][i2], (factor*kappa_kin)[i1][i2], (factor*kappa_col*F)[i1][i2], sigma[i1][i2], k_rta[i1][i2]*factor))
if TAU_T=='Y':
file4.write('%s %s %s %s %s %s\n' %(T[k], tau_R[i1][i2], tau_col[i1][i2], tau_N, sigma[i1][i2], v_int[i1][i2]))
print ('\n', '--------------------------------- \n', 'Calculation done', '\n')
if K_W=='Y' or K_MFP=='Y' or TAU_W=='Y' or TAU_T=='Y':
print ('------>' , ' Writting output files')
if K_W=='Y':
lw = []
stp = int(STP)
for i in range(len(k_w[0])):
lw.append(k_w[0][i][0])
dw = max(lw)/stp
lw=[0.]
for i in range(stp):
lw.append(lw[-1]+dw)
new_l = []
for i in range(len(k_w)):
new_l.append([])
for j in range(stp):
new_l[i].append([lw[j], 0., 0., 0.])
for j in range(len(k_w[i])):
for k in range(stp-1):
if k!=(stp-2):
if k_w[i][j][0]<new_l[i][k+1][0] and k_w[i][j][0]>=new_l[i][k][0]:
new_l[i][k][1]+=k_w[i][j][1]*factor
new_l[i][k][2]+=k_col[i][0]*factor/k_col[i][1]*k_w[i][j][2]
new_l[i][k][3]+=k_w[i][j][2]
continue
if k_w[i][j][0]>=new_l[i][k][0] and k==(len(new_l[i])-2):
new_l[i][k][1]+=k_w[i][j][1]*factor
new_l[i][k][2]+=k_col[i][0]*factor/k_col[i][1]*k_w[i][j][2]
new_l[i][k][3]+=k_w[i][j][2]
continue
for i in range(len(new_l)):
acc_kin = 0.
acc_col = 0.
new_cv = 0.
file1.write('\n\n')
for j in range(len(new_l[i])):
acc_kin +=new_l[i][j][1]
acc_col += new_l[i][j][2]
new_cv += new_l[i][j][3]
file1.write('%s %s %s %s %s %s %s %s %s\n' %(k_w[i][j][-1], new_l[i][j][0], new_l[i][j][1], new_l[i][j][2], acc_kin, acc_col, k_col[i][2], acc_kin*(1.-k_col[i][2])+k_col[i][2]*acc_col, new_cv*factor))
file1.close()
if K_MFP=='Y':
for i in range(len(k_mfp)):
c = 0
kmfp = sorted(k_mfp[i])
kk_mfp_acc = 0.
k_eff = 0.
file2.write('\n\n')
for j in range(len(kmfp)):
sigma = k_col[i][2]
mfp_kin = kmfp[j][0]
mfp_col = k_col[i][3]
k_c = k_col[i][0]*factor
kk_mfp_acc += kmfp[j][1]*factor
sigma = k_col[i][2]
mfp = kmfp[j][0]
if c==0 and mfp_col<mfp_kin:
file2.write('%s %s %s %s %s %s %s %s \n' %(kmfp[j][-1], mfp, kmfp[j][1]*factor, k_c, kk_mfp_acc, k_c, sigma, kk_mfp_acc*(1.-sigma)+sigma*k_c))
c=1
if c==1 and mfp_col<mfp_kin:
file2.write('%s %s %s %s %s %s %s %s \n' %(kmfp[j][-1], mfp, kmfp[j][1]*factor, '0', kk_mfp_acc, k_c, sigma, kk_mfp_acc*(1.-sigma)+sigma*k_c))
if c==0 and mfp_col>mfp_kin:
file2.write('%s %s %s %s %s %s %s %s \n' %(kmfp[j][-1], mfp, kmfp[j][1]*factor, '0.' ,kk_mfp_acc, '0.', sigma, kk_mfp_acc*(1.-sigma)))
file2.close()
if K_W=='Y' or K_MFP=='Y' or TAU_W=='Y' or TAU_T=='Y':
print (' |')
print (' |')
print (' V')
print (' Done','\n')
if TAU_W=='Y':
file3.close()
if TAU_T=='Y':
file4.close()
file.close()