forked from sinzlab/essential-mathematics-script
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapter_2.5.lyx
1660 lines (1293 loc) · 33 KB
/
chapter_2.5.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.0 created this file. For more info see http://www.lyx.org/
\lyxformat 413
\begin_document
\begin_header
\textclass scrbook
\begin_preamble
\setcounter{chapter}{2}
\usepackage{graphicx}
\usepackage{pict2e}
\usepackage{graphpap}
\usepackage{color}
\usepackage{bm}
\end_preamble
\use_default_options false
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman default
\font_sans default
\font_typewriter default
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_amsmath 1
\use_esint 1
\use_mhchem 1
\use_mathdots 1
\cite_engine basic
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\use_refstyle 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section
Eigenvalues and Eigenvectors
\end_layout
\begin_layout Standard
In this section we will look at a very important concept of matrices:
\emph on
\begin_inset Index idx
status collapsed
\begin_layout Plain Layout
eigenvalues
\end_layout
\end_inset
eigenvalues
\emph default
and
\emph on
\begin_inset Index idx
status collapsed
\begin_layout Plain Layout
eigenvectors
\end_layout
\end_inset
eigenvectors
\emph default
.
Eigenvalues and eigenvectors are mathematical objects that can be derived
from square matrices and which are tightly linked to the intrinsic mechanic
of a matrix.
Eigenvalues play an important role in data analysis, since they are a key
ingredient of the
\emph on
\begin_inset Index idx
status collapsed
\begin_layout Plain Layout
Principal Component Analysis (PCA)
\end_layout
\end_inset
Principal Component Analysis (PCA)
\emph default
algorithm.
We will first introduce eigenvalues and eigenvectors with an example, then
make a few general comments about eigenvalues and eigenvectors and their
properties, and then introduce PCA.
\end_layout
\begin_layout Subsubsection
Eigenvalues and Eigenvectors
\end_layout
\begin_layout Standard
In one of the first sections we saw that a one-dimensional linear function
can be expressed by a single number: We compute the result of a linear
function
\begin_inset Formula $f(x)$
\end_inset
on some value, say
\begin_inset Formula $x_{0}=1$
\end_inset
, obtain
\begin_inset Formula $\lambda=f(x_{0})=f(1)$
\end_inset
and compute any other value by
\begin_inset Formula $f(x)=f(a\cdot x_{0})=af(x_{0})=\lambda\cdot a.$
\end_inset
Here,
\begin_inset Formula $x_{0}$
\end_inset
serves as our basis in
\begin_inset Formula $\mathbb{R}^{1}$
\end_inset
.
We express
\begin_inset Formula $x$
\end_inset
in terms of
\begin_inset Formula $x_{0}$
\end_inset
, get the coordinate
\begin_inset Formula $a$
\end_inset
and use the linearity so get it into the form
\begin_inset Formula $f(x)=\lambda\cdot x$
\end_inset
.
\end_layout
\begin_layout Standard
Now we could ask the question, whether there are direction in space, such
that a multi-dimensional linear function can also be described by a single
number for every input along that direction.
Those would be directions, that are tightly linked to the mechanic of that
function, since it takes this especially easy form in that direction.
\end_layout
\begin_layout Standard
Let us have a look at, how those directions could look like.
\end_layout
\begin_layout Paragraph
Example
\end_layout
\begin_layout Standard
Consider the matrix
\begin_inset Formula
\begin{eqnarray*}
\mathbf{A} & = & \left(\begin{array}{cc}
2 & 0\\
0 & 1
\end{array}\right).
\end{eqnarray*}
\end_inset
This matrix doubles the
\begin_inset Formula $x_{1}$
\end_inset
-coordinate and leaves the
\begin_inset Formula $x_{2}$
\end_inset
-coordinate untouched, i.e.
\begin_inset Formula
\begin{eqnarray*}
\mathbf{A}{x_{1} \choose x_{2}} & = & {2x_{1} \choose x_{2}}.
\end{eqnarray*}
\end_inset
What are the directions in
\begin_inset Formula $\mathbb{R}^{2}$
\end_inset
that are tightly linked with the transformation carried out by
\begin_inset Formula $\mathbf{A}$
\end_inset
? Considering the transformation of a vector
\begin_inset Formula $\mathbf{x}={x_{1} \choose x_{2}}$
\end_inset
, we can see that these two directions are the first coordinate direction
(i.e.
the direction of the first basis vector) and the second coordinate direction,
since
\begin_inset Formula $\mathbf{A}$
\end_inset
doubles the length of a vector along the first and leaves a vector untouched
along the second direction.
In other words, if a vector is given by
\begin_inset Formula $\mathbf{y}={a \choose 0}$
\end_inset
, then the result of
\begin_inset Formula $\mathbf{A}\mathbf{y}={2a \choose 0}=2\mathbf{y}$
\end_inset
is just an elongated version of the input.
The same is true for an input
\begin_inset Formula $\mathbf{z}={0 \choose b}$
\end_inset
, since
\begin_inset Formula $\mathbf{A}\mathbf{z}={0 \choose b}=\mathbf{z}$
\end_inset
does not change the input vector
\begin_inset Formula $\mathbf{z}$
\end_inset
.
\end_layout
\begin_layout Standard
\align right
\begin_inset Formula $\lhd$
\end_inset
\end_layout
\begin_layout Standard
If we generalize the example, we see that the directions from the example
before are exactly the ones that we were looking for: Given the direction
and an input vector
\begin_inset Formula $\mathbf{x}$
\end_inset
that has the same orientation, the linear mapping can be described by one
number, i.e.
the scaling vector along that direction.
This means that the directions we are searching for, that are tightly linked
to the transformation carried out by a matrix
\begin_inset Formula $\mathbf{A}$
\end_inset
, are those directions in which a vector is only scaled, but not rotated,
i.e.
the direction that does only affect the length, but not the orientation
of a vector when multiplied with
\begin_inset Formula $\mathbf{A}$
\end_inset
.
This is the general definition of a eigenvector.
The amount of scaling in that direction is called eigenvalue of
\begin_inset Formula $\mathbf{A}$
\end_inset
.
\end_layout
\begin_layout Paragraph
Definition
\end_layout
\begin_layout Standard
Let
\begin_inset Formula $\mathbf{A}\in\mathbb{R}^{n\times n}$
\end_inset
be a square matrix.
Any vector
\begin_inset Formula $\mathbf{v}\not=\mathbf{0}$
\end_inset
that fulfills
\begin_inset Formula $\mathbf{A}\mathbf{v}=\lambda\mathbf{v}$
\end_inset
is called
\emph on
eigenvector
\begin_inset Index idx
status collapsed
\begin_layout Plain Layout
eigenvector
\end_layout
\end_inset
\emph default
of
\begin_inset Formula $\mathbf{A}$
\end_inset
.
The value
\begin_inset Formula $\lambda$
\end_inset
is called
\emph on
eigenvalue
\begin_inset Index idx
status collapsed
\begin_layout Plain Layout
eigenvalue
\end_layout
\end_inset
\emph default
of
\begin_inset Formula $\mathbf{A}$
\end_inset
.
Each eigenvector has its eigenvalue.
However, the eigenvalues for different eigenvectors might be the same.
\end_layout
\begin_layout Standard
Note, that if
\begin_inset Formula $\mathbf{v}$
\end_inset
is an eigenvector, then
\begin_inset Formula $a\mathbf{v}$
\end_inset
with
\series bold
\begin_inset Formula $\mathbf{v}\in\mathbb{R}$
\end_inset
\series default
is an eigenvector, too.
Therefore, we can assume without loss of generality that eigenvectors have
length one, i.e.
\begin_inset Formula $||\mathbf{v}||=1$
\end_inset
.
\end_layout
\begin_layout Standard
\align right
\begin_inset Formula $\Diamond$
\end_inset
\end_layout
\begin_layout Standard
How do we compute eigenvectors? In order to answer this question, let us
rewrite the definition of an eigenvector a little bit:
\begin_inset Formula
\begin{eqnarray*}
\mathbf{A}\mathbf{v} & = & \lambda\mathbf{v}\\
\Leftrightarrow\mathbf{A}\mathbf{v}-\lambda\mathbf{v} & = & \mathbf{0}\\
\Leftrightarrow(\mathbf{A}-\lambda\mathbf{I})\mathbf{v} & = & \mathbf{0}.
\end{eqnarray*}
\end_inset
This shows, that we are interested in a vector
\begin_inset Formula $\mathbf{v}\in\mathbb{R}^{n}$
\end_inset
and a scalar
\begin_inset Formula $\lambda\in\mathbb{R}$
\end_inset
such that the linear function given by the matrix
\begin_inset Formula $(\mathbf{A}-\lambda\mathbf{I})$
\end_inset
maps
\begin_inset Formula $\mathbf{v}$
\end_inset
onto the zero-vector.
A trivial solution for this would be, to set
\begin_inset Formula $\mathbf{v}=\mathbf{0}$
\end_inset
, but this is not allowed by the definition of an eigenvector.
If
\begin_inset Formula $\mathbf{v}\not=\mathbf{0}$
\end_inset
, we must adjust
\begin_inset Formula $\lambda$
\end_inset
and
\begin_inset Formula $\mathbf{v}$
\end_inset
such that
\begin_inset Formula $\mathbf{v}$
\end_inset
lives in the
\emph on
\begin_inset Index idx
status collapsed
\begin_layout Plain Layout
nullspace
\end_layout
\end_inset
nullspace
\emph default
of
\begin_inset Formula $\mathbf{A}$
\end_inset
.
\end_layout
\begin_layout Paragraph
Definition (Nullspace)
\end_layout
\begin_layout Standard
The nullspace of a matrix
\begin_inset Formula $\mathbf{A}$
\end_inset
is the set of all vectors
\begin_inset Formula $\mathbf{v}$
\end_inset
that are mapped onto the zero vector, i.e.
\begin_inset Formula
\begin{eqnarray*}
\mathcal{N}(\mathbf{A}) & = & \{\mathbf{v}\in\mathbb{R}^{n}|\,\mathbf{A}\mathbf{v}=\mathbf{0}\}.
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Standard
\align right
\begin_inset Formula $\Diamond$
\end_inset
\end_layout
\begin_layout Paragraph
Example
\end_layout
\begin_layout Standard
Consider the matrix
\begin_inset Formula
\begin{eqnarray*}
\mathbf{P} & = & \left(\begin{array}{ccc}
2 & 1 & 0\\
1 & 3 & 0\\
0 & 0 & 0
\end{array}\right).
\end{eqnarray*}
\end_inset
No matter what vector we feed into
\begin_inset Formula $\mathtt{\mathbf{P}}$
\end_inset
, the
\begin_inset Formula $x_{3}$
\end_inset
-coordinate always gets mapped into
\begin_inset Formula $0$
\end_inset
.
This means that all vectors along the direction
\begin_inset Formula $\left(\begin{array}{c}
0\\
0\\
1
\end{array}\right)$
\end_inset
are mapped onto the zero vector.
Therefore, the nullspace of
\begin_inset Formula $\mathbf{P}$
\end_inset
is given by
\begin_inset Formula
\begin{eqnarray*}
\mathcal{N}(\mathbf{P}) & = & \{a\cdot(0,0,1)^{\top}|\, a\in\mathbb{R}\}.
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Standard
\align right
\begin_inset Formula $\lhd$
\end_inset
\end_layout
\begin_layout Standard
If the nullspace of a matrix contains any other element than zero, the matrix
is not invertible anymore.
This is simply because the zero vector is always mapped onto the zero vector
by linear mappings.
If another vector is mapped into the zero vector, we would not know which
vector we should assign to the zero vector when inverting the linear mapping.
Therefore, it cannot be invertible.
\end_layout
\begin_layout Standard
This brings us back to the question of how to compute the eigenvector and
the eigenvalues.
We know now that
\begin_inset Formula $(\mathbf{A}-\lambda\mathbf{I})$
\end_inset
must not be invertible.
We already saw that determinants can be used to check whether a matrix
is invertible or not.
We can use that here.
If a matrix is not invertible, then the determinant must be zero.
Therefore, we are searching for all
\begin_inset Formula $\lambda\in\mathbb{R}$
\end_inset
such that
\begin_inset Formula
\begin{eqnarray*}
\det(\mathbf{A}-\lambda\mathbf{I}) & = & 0.
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Standard
Once we have the solutions to that equation, we can search for the eigenvectors
belonging to each solution.
But let us look at a few examples first:
\end_layout
\begin_layout Paragraph
Examples
\end_layout
\begin_layout Enumerate
Let us start by the example from above
\begin_inset Formula
\begin{eqnarray*}
\mathbf{A} & = & \left(\begin{array}{cc}
2 & 0\\
0 & 1
\end{array}\right).
\end{eqnarray*}
\end_inset
The eigenvalues of
\begin_inset Formula $\mathbf{A}$
\end_inset
are given by the solution of
\begin_inset Formula
\begin{eqnarray*}
\det\left(\left(\begin{array}{cc}
2 & 0\\
0 & 1
\end{array}\right)-\lambda\left(\begin{array}{cc}
1 & 0\\
0 & 1
\end{array}\right)\right) & = & \det\left(\left(\begin{array}{cc}
2-\lambda & 0\\
0 & 1-\lambda
\end{array}\right)\right)\\
& & 0.
\end{eqnarray*}
\end_inset
Determinants of diagonal matrices are easy to compute:
\begin_inset Formula
\begin{eqnarray*}
\det\left(\left(\begin{array}{cc}
2-\lambda & 0\\
0 & 1-\lambda
\end{array}\right)\right) & = & (2-\lambda)\cdot(1-\lambda).
\end{eqnarray*}
\end_inset
We see that the determinant gives us a polynomial in
\begin_inset Formula $\lambda$
\end_inset
.
Since it is already factorized we can read off the solutions as
\begin_inset Formula $\lambda_{1}=2$
\end_inset
and
\begin_inset Formula $\lambda_{2}=1$
\end_inset
.
Therefore the eigenvalues of
\begin_inset Formula $\mathbf{A}$
\end_inset
are given by
\begin_inset Formula $\lambda_{1}=2$
\end_inset
and
\begin_inset Formula $\lambda_{2}=1$
\end_inset
.
\end_layout
\begin_layout Enumerate
Consider
\begin_inset Formula
\begin{eqnarray*}
\mathbf{A} & = & \left(\begin{array}{cc}
6 & 4\\
2 & 4
\end{array}\right).
\end{eqnarray*}
\end_inset
Let us do the same steps as in the example before:
\begin_inset Formula
\begin{eqnarray*}
\det\left(\left(\begin{array}{cc}
6 & 4\\
2 & 4
\end{array}\right)-\lambda\left(\begin{array}{cc}
1 & 0\\
0 & 1
\end{array}\right)\right) & = & \det\left(\begin{array}{cc}
6-\lambda & 4\\
2 & 4-\lambda
\end{array}\right)\\
& = & (6-\lambda)(4-\lambda)-2\cdot4\\
& = & 24-4\lambda-6\lambda+\lambda^{2}-8\\
& = & \lambda^{2}-10\lambda+16\\
& = & 0.
\end{eqnarray*}
\end_inset
The solution can be found by solving this quadratic equation:
\begin_inset Formula
\begin{eqnarray*}
\lambda_{1,2} & = & \frac{10\pm\sqrt{100-64}}{2}\\
& = & \frac{10\pm6}{2}\\
& = & \frac{10\pm6}{2}\\
& = & 5\pm3.
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Enumerate
Consider the triangular matrix
\begin_inset Formula
\begin{eqnarray*}
\mathbf{A} & = & \left(\begin{array}{ccc}
1 & 1 & 1\\
0 & 2 & 2\\
0 & 0 & 3
\end{array}\right).
\end{eqnarray*}
\end_inset
Since we know that the determinant of a triangular matrix is again just
the product of the diagonal terms
\begin_inset Formula
\begin{eqnarray*}
\det(\mathbf{A}-\lambda\mathbf{I}) & = & (1-\lambda)(2-\lambda)(3-\lambda).
\end{eqnarray*}
\end_inset
If we set the determinant to zero, the cubic equation has the solutions
\begin_inset Formula $\lambda_{1}=1$
\end_inset
,
\begin_inset Formula $\lambda_{2}=2$
\end_inset
and
\begin_inset Formula $\lambda_{3}=3$
\end_inset
.
\end_layout
\begin_layout Standard
\align right
\begin_inset Formula $\lhd$
\end_inset
\end_layout
\begin_layout Standard
After the computation of the eigenvalues, we need to find the eigenvectors.
However, this is simple task.
We can just use the definition of an eigenvector
\begin_inset Formula
\begin{eqnarray*}
\mathbf{A}\mathbf{v} & = & \lambda\mathbf{v}\\
\Leftrightarrow(\mathbf{A}-\lambda\mathbf{I})\mathbf{v} & = & 0.
\end{eqnarray*}
\end_inset
Since we know
\begin_inset Formula $\lambda$
\end_inset
now, the left hand side is just a matrix-vector multiplication, or seen
differently, a linear equation system.
In order to get the eigenvector, we must solve that for
\begin_inset Formula $\mathbf{v}$
\end_inset
.
Let us look at our examples again.
\end_layout
\begin_layout Paragraph
Examples
\end_layout
\begin_layout Enumerate
We already know that the eigenvalues of
\begin_inset Formula
\begin{eqnarray*}
\mathbf{A} & = & \left(\begin{array}{cc}
2 & 0\\
0 & 1
\end{array}\right)
\end{eqnarray*}
\end_inset
are given by
\begin_inset Formula $\lambda_{1}=2$
\end_inset
and
\begin_inset Formula $\lambda_{2}=1$
\end_inset
.
In order to get the eigenvector for
\begin_inset Formula $\lambda_{1}$
\end_inset
, we must solve the following equation system
\begin_inset Formula
\begin{eqnarray*}
\left(\left(\begin{array}{cc}
2 & 0\\
0 & 1
\end{array}\right)-\lambda_{1}\left(\begin{array}{cc}
1 & 0\\
0 & 1
\end{array}\right)\right) & = & \left(\left(\begin{array}{cc}
2 & 0\\
0 & 1
\end{array}\right)-\left(\begin{array}{cc}
2 & 0\\
0 & 2
\end{array}\right)\right)\\
& = & \left(\begin{array}{cc}
0 & 0\\
0 & -1
\end{array}\right)\mathbf{v}\\
& = & {0 \choose 0}.
\end{eqnarray*}
\end_inset
Written down as an equation system
\begin_inset Formula
\begin{eqnarray*}
0\cdot v_{1}+0\cdot v_{2} & = & 0\\
0\cdot v_{1}-v_{2} & = & 0.
\end{eqnarray*}
\end_inset
Every vector
\begin_inset Formula $\mathbf{v}={a \choose 0}$
\end_inset
for arbitrary
\begin_inset Formula $a$
\end_inset
is a solution to this equation.
Since we normalize eigenvectors for convenience, the solution is given
by
\begin_inset Formula $\mathbf{v}_{1}={1 \choose 0}$
\end_inset
.
Therefore the eigenvector to the eigenvalue
\begin_inset Formula $\lambda_{1}=2$
\end_inset
is
\begin_inset Formula $\mathbf{v}_{1}={1 \choose 0}$
\end_inset
.
An analogous computation yields
\begin_inset Formula $\mathbf{v}_{2}={0 \choose 1}.$
\end_inset
\end_layout
\begin_layout Enumerate
Before, we saw that the eigenvalues of
\begin_inset Formula
\begin{eqnarray*}
\mathbf{A} & = & \left(\begin{array}{cc}
6 & 4\\
2 & 4
\end{array}\right)
\end{eqnarray*}
\end_inset
are given by
\begin_inset Formula
\begin{eqnarray*}
\lambda_{1,2} & = & 5\pm3.
\end{eqnarray*}
\end_inset
Now, we do the same steps as in the example before.
The linear equation system for the first eigenvalue
\begin_inset Formula $\lambda_{1}=8$
\end_inset
is given by
\begin_inset Formula
\begin{eqnarray*}
6v_{1}+4v_{2} & = & 8v_{1}\\
2v_{1}+4v_{2} & = & 8v_{2},
\end{eqnarray*}
\end_inset
which is equivalent to
\begin_inset Formula
\begin{eqnarray*}
-2v_{1}+4v_{2} & = & 0\\
2v_{1}-4v_{2} & = & 0.
\end{eqnarray*}
\end_inset
Both equations are the same.
Solving the first for
\begin_inset Formula $v_{1}$
\end_inset
yields
\begin_inset Formula
\begin{eqnarray*}
v_{1} & = & 2v_{2}.
\end{eqnarray*}
\end_inset
Therefore, the normalized eigenvector to the eigenvalue
\begin_inset Formula $\lambda_{1}=8$
\end_inset
is given by
\begin_inset Formula $\mathbf{v}_{1}=\frac{1}{\sqrt{3}}{2 \choose 1}$
\end_inset
.
An analogous computation yields the eigenvector of
\begin_inset Formula $\lambda_{2}=2$
\end_inset
.
\end_layout
\begin_layout Standard
\align right
\begin_inset Formula $\lhd$
\end_inset
\end_layout
\begin_layout Subsubsection
Eigen Decomposition
\end_layout
\begin_layout Standard
Eigenvalues and eigenvectors are important tools to understand the function
behind a matrix
\begin_inset Formula $\mathbf{A}$