forked from sinzlab/essential-mathematics-script
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapter_2.3.lyx
1350 lines (1042 loc) · 23.2 KB
/
chapter_2.3.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.0 created this file. For more info see http://www.lyx.org/
\lyxformat 413
\begin_document
\begin_header
\textclass scrbook
\begin_preamble
\setcounter{chapter}{2}
\usepackage{graphicx}
\usepackage{pict2e}
\usepackage{graphpap}
\usepackage{color}
\usepackage{bm}
\end_preamble
\use_default_options false
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman default
\font_sans default
\font_typewriter default
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_amsmath 1
\use_esint 1
\use_mhchem 1
\use_mathdots 1
\cite_engine basic
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\use_refstyle 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section
Invertibility, Inverses and Rank
\end_layout
\begin_layout Subsection
The Inverse of a matrix
\end_layout
\begin_layout Standard
Suppose we have given a linear system of equations,
\begin_inset Formula $y=Mx,$
\end_inset
where
\begin_inset Formula $M$
\end_inset
is a given
\begin_inset Formula $n\times n$
\end_inset
matrix, and
\begin_inset Formula $y$
\end_inset
is some knows vector.
For example, lets say we want to find a vector
\begin_inset Formula $x$
\end_inset
such that
\begin_inset Formula
\[
{1 \choose 0}=\left(\begin{array}{cc}
2 & 3\\
-1 & 4
\end{array}\right){x_{1} \choose x_{2}}.
\]
\end_inset
How can we find
\begin_inset Formula $x?$
\end_inset
We know that the outcome of multiplying
\begin_inset Formula $x$
\end_inset
with the matrix
\begin_inset Formula $M$
\end_inset
gives us the vector
\begin_inset Formula $y={1 \choose 0},$
\end_inset
but is that enough for determining
\begin_inset Formula $x?$
\end_inset
Matrices for which we can 'recover'
\begin_inset Formula $x$
\end_inset
from knowing the outcome of the matrix multiplication
\begin_inset Formula $Mx$
\end_inset
are said to be invertible.
Formally:
\end_layout
\begin_layout Subsubsection*
Definition:
\end_layout
\begin_layout Standard
A square matrix M is said to be invertible if there exists a second matrix,
called
\begin_inset Formula $M^{-1},$
\end_inset
which is such that
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
MM^{-1}=M^{-1}M=I_{n}.
\]
\end_inset
\end_layout
\begin_layout Subsubsection*
Notes:
\end_layout
\begin_layout Itemize
If
\begin_inset Formula $M$
\end_inset
is invertible, the linear system of equations
\begin_inset Formula $y=Mx$
\end_inset
has the unique solution
\begin_inset Formula $x=M^{-1}y.$
\end_inset
\end_layout
\begin_layout Itemize
In the example above,
\begin_inset Formula $ $
\end_inset
\begin_inset Formula $M^{-1}=\frac{1}{11}\left(\begin{array}{cc}
4 & -3\\
1 & 2
\end{array}\right)$
\end_inset
, so
\begin_inset Formula $x=M^{-1}y=\frac{1}{11}\left(\begin{array}{cc}
4 & -3\\
1 & 2
\end{array}\right){1 \choose 0}=\frac{1}{11}{4 \choose 1}.$
\end_inset
\end_layout
\begin_layout Subsection
Inverses and Determinants
\end_layout
\begin_layout Standard
For
\begin_inset Formula $ $
\end_inset
matrices of size
\begin_inset Formula $2\times2,$
\end_inset
we can directly derive the inverse by hand: Given a matrix
\begin_inset Formula $M=\left(\begin{array}{cc}
m_{11} & m_{12}\\
m_{21} & m_{22}
\end{array}\right)$
\end_inset
, we want to find
\begin_inset Formula $M^{-1}=\left(\begin{array}{cc}
k_{11} & k_{12}\\
k_{21} & k_{22}
\end{array}\right)$
\end_inset
such that
\begin_inset Formula $MM^{-1}=I$
\end_inset
, i.e.
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\left(\begin{array}{cc}
m_{11} & m_{12}\\
m_{21} & m_{22}
\end{array}\right)\left(\begin{array}{cc}
k_{11} & k_{12}\\
k_{21} & k_{22}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0\\
0 & 1
\end{array}\right).
\]
\end_inset
\end_layout
\begin_layout Standard
Writing this matrix product out line by line yields for equations in four
unknowns, which can be solved yielding
\begin_inset Formula
\[
M^{-1}=\frac{1}{m_{11}m_{22}-m_{12}m_{21}}\left(\begin{array}{cc}
m_{22} & -m_{12}\\
-m_{21} & m_{11}
\end{array}\right).
\]
\end_inset
\end_layout
\begin_layout Standard
Clearly, this formula only makes sense if
\begin_inset Formula $m_{11}m_{22}-m_{12}m_{21}$
\end_inset
does not equal zero.
So, by computing this term, we can immediately see whether a
\begin_inset Formula $2\times2$
\end_inset
matrix is invertible, or not.
It is therefore given a special name, it is the
\emph on
determinant
\emph default
of M.
\end_layout
\begin_layout Subsubsection*
Definition: Determinant
\end_layout
\begin_layout Standard
\begin_inset Formula $ $
\end_inset
The determinant of a
\begin_inset Formula $2\times2$
\end_inset
matrix
\begin_inset Formula $M$
\end_inset
is defined as
\begin_inset Formula $\mbox{det}(M)=m_{11}m_{22}-m_{12}m_{21}.$
\end_inset
In general, a matrix is invertible if and only if its determinant is non-zero.
\end_layout
\begin_layout Paragraph
Notes:
\end_layout
\begin_layout Itemize
For a
\begin_inset Formula $3\times3$
\end_inset
matrix
\begin_inset Formula $A$
\end_inset
, we have that
\begin_inset Formula
\begin{eqnarray*}
\det\mathbf{A} & = & A_{11}A_{22}A_{33}+A_{12}A_{23}A_{31}+A_{13}A_{21}A_{32}-A_{31}A_{22}A_{13}-A_{32}A_{23}A_{11}-A_{33}A_{21}A_{12}.
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Itemize
If
\begin_inset Formula $\mathbf{D}$
\end_inset
is an
\begin_inset Formula $n\times n$
\end_inset
diagonal matrix, i.e.
a matrix that is only non-zero on the diagonal, then the determinant is
given by the product of the diagonal entries:
\begin_inset Formula
\begin{eqnarray*}
\det\mathbf{D} & = & \prod_{i=1}^{n}D_{ii}.
\end{eqnarray*}
\end_inset
This statements makes sense: The inverse of a diagonal matrix
\begin_inset Formula $D=\left(\begin{array}{ccc}
d_{11} & 0 & 0\\
0 & d_{22} & 0\\
0 & 0 & d_{33}
\end{array}\right)$
\end_inset
can be written directly as
\begin_inset Formula $D^{-1}=\left(\begin{array}{ccc}
1/d_{11} & 0 & 0\\
0 & 1/d_{22} & 0\\
0 & 0 & 1/d_{33}
\end{array}\right)$
\end_inset
, but this construction only works if all diagonal entries are different
from zero.
On the other hand, as the determinant is the product of all diagonal entries,
it will only be non-zero if all of the diagonal entries are non-zero.
\end_layout
\begin_layout Itemize
If
\begin_inset Formula $\mathbf{A}$
\end_inset
is an
\begin_inset Formula $n\times n$
\end_inset
matrix, for which all entries below or above the diagonal are zero, then
the determinant is also given by the product of the diagonal entries:
\begin_inset Formula
\begin{eqnarray*}
\det\mathbf{A} & = & \prod_{i=1}^{n}A_{ii}.
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Paragraph
Examples
\end_layout
\begin_layout Enumerate
The determinant of the matrices
\begin_inset Formula
\begin{eqnarray*}
\mathbf{A}_{1} & = & \left(\begin{array}{cc}
2 & 3\\
4 & 2
\end{array}\right)
\end{eqnarray*}
\end_inset
and
\begin_inset Formula
\begin{eqnarray*}
\mathbf{A}_{2} & = & \left(\begin{array}{cc}
2 & 4\\
1 & 2
\end{array}\right),
\end{eqnarray*}
\end_inset
are
\begin_inset Formula $\det\mathbf{A}_{1}=2\cdot2-4\cdot3=-8$
\end_inset
and
\begin_inset Formula $\det\mathbf{A}_{2}=2\cdot2-1\cdot4=0$
\end_inset
.
\end_layout
\begin_layout Enumerate
The determinant of the identity matrix
\begin_inset Formula $\mathbf{I}$
\end_inset
is
\begin_inset Formula $\det\mathbf{I}=1$
\end_inset
, since the product over the diagonal elements is one.
\end_layout
\begin_layout Enumerate
This last example shows a case where determinants are used in statistics:
The density function of a multivariate
\begin_inset Formula $n$
\end_inset
-dimensional Gaussian with mean
\begin_inset Formula $\bm{\mu}$
\end_inset
and covariance
\begin_inset Formula $\mathbf{C}$
\end_inset
is given by
\begin_inset Formula
\begin{eqnarray*}
p(\mathsf{X}|\bm{\mu},\mathbf{C}) & = & \frac{1}{(2\pi)^{\frac{n}{2}}\sqrt{\det\mathbf{C}}}\exp\left(\frac{1}{2}(\mathbf{x}-\bm{\mu})^{\top}\mathbf{C}^{-1}(\mathbf{x}-\bm{\mu})\right).
\end{eqnarray*}
\end_inset
Here, the square root of the determinant, i.e.
the volume spanned by the column vectors of
\begin_inset Formula $\mathbf{C}$
\end_inset
is used to normalize the probability density.
This is very similar to the one-dimensional case, where the square root
of the variance, i.e.
\begin_inset Formula $\sigma=\sqrt{\sigma^{2}}$
\end_inset
, takes over this role.
\end_layout
\begin_layout Paragraph
Properties of determinants:
\end_layout
\begin_layout Standard
Let
\begin_inset Formula $\mathbf{C}=\mathbf{A}\cdot\mathbf{B}$
\end_inset
, then
\end_layout
\begin_layout Enumerate
\begin_inset Formula $\det\mathbf{C}=\det(\mathbf{AB})=\det\mathbf{A}\cdot\det\mathbf{B}$
\end_inset
\end_layout
\begin_layout Enumerate
\begin_inset Formula $\det(\mathbf{A}^{-1})=\det(\mathbf{A})^{-1}$
\end_inset
\end_layout
\begin_layout Enumerate
\begin_inset Formula $\det\mathbf{A}=\det\mathbf{A}^{\top}$
\end_inset
.
\end_layout
\begin_layout Subsection
When is a matrix invertible?
\end_layout
\begin_layout Standard
In the above, we stated a general rule for determining whether a matrix
is invertible, namely computing its determinant.
Now, we want to get more intuition into what 'makes' a matrix invertible.
If a matrix is invertible, then given any vector
\begin_inset Formula $y$
\end_inset
, we can always find a unique
\begin_inset Formula $x$
\end_inset
such that
\begin_inset Formula $y=Mx.$
\end_inset
When could this fail?
\end_layout
\begin_layout Standard
Suppose that we have any vector
\begin_inset Formula $x$
\end_inset
that is such that
\begin_inset Formula $Mx=0.$
\end_inset
(With
\begin_inset Formula $0$
\end_inset
, we here mean a vector that has all entries equal to
\begin_inset Formula $0).$
\end_inset
Then clearly,
\begin_inset Formula $M(2x)=0$
\end_inset
also, or
\begin_inset Formula $M(\alpha x)=0$
\end_inset
for any
\begin_inset Formula $ $
\end_inset
number
\begin_inset Formula $\alpha.$
\end_inset
In this case, we would have non-uniqueness, as
\begin_inset Formula $Mx=M(2x)$
\end_inset
but clearly
\begin_inset Formula $x\neq2x,$
\end_inset
for
\begin_inset Formula $x\neq0.$
\end_inset
\end_layout
\begin_layout Standard
Alternatively, one possible scenario is that we have two vectors
\begin_inset Formula $x$
\end_inset
and
\begin_inset Formula $z$
\end_inset
which are such that
\begin_inset Formula $y=Mx=Mz.$
\end_inset
If that is the case, if we are only given the outcome
\begin_inset Formula $y,$
\end_inset
there is know way of determining whether
\begin_inset Formula $x$
\end_inset
or
\begin_inset Formula $z$
\end_inset
went into the matrix-multiplication.
Actually, this scenario is the same as the previous one: If
\begin_inset Formula $Mx=My,$
\end_inset
then
\begin_inset Formula $M(x-y)=0,$
\end_inset
so we have found a vector
\begin_inset Formula $x-y$
\end_inset
which is not equal to
\begin_inset Formula $0,$
\end_inset
but
\begin_inset Formula $M(x-y)$
\end_inset
is
\begin_inset Formula $0.$
\end_inset
\end_layout
\begin_layout Standard
In general, we have the statement that
\end_layout
\begin_layout Subsubsection*
Invertibility and the null-space:
\end_layout
\begin_layout Standard
A square matrix
\begin_inset Formula $M$
\end_inset
is not invertible exactly we can find a vector
\begin_inset Formula $x\neq0$
\end_inset
for which
\begin_inset Formula $Mx=0.$
\end_inset
A vector is said to belong to the
\emph on
null-space
\emph default
of
\begin_inset Formula $M$
\end_inset
is
\begin_inset Formula $Mx=0.$
\end_inset
\end_layout
\begin_layout Subsubsection*
An example
\end_layout
\begin_layout Standard
Lets consider the matrix
\begin_inset Formula $A=\left(\begin{array}{cc}
1 & 2\\
2 & 4
\end{array}\right).$
\end_inset
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\noun off
\color none
\begin_inset Formula $A$
\end_inset
maps the first canonical basis vector
\begin_inset Formula ${1 \choose 0}$
\end_inset
to
\begin_inset Formula ${1 \choose 2}$
\end_inset
, and the second basis vector
\begin_inset Formula ${0 \choose 1}$
\end_inset
is mapped to
\begin_inset Formula ${2 \choose 4}=2{1 \choose 2}.$
\end_inset
As
\begin_inset Formula $Ax$
\end_inset
can always be written as
\begin_inset Formula $Ax=x_{1}{1 \choose 2}+x_{2}{2 \choose 4}=(x_{1}+2x_{2}){1 \choose 2}$
\end_inset
, we can see that the image of any vector will be proportional to
\begin_inset Formula ${1 \choose 2}$
\end_inset
.
This implies, e.g.
that
\begin_inset Formula $A{-2 \choose 1}=(-2+2){1 \choose 2}=0.$
\end_inset
So, we can see that a matrix if not invertible if its columns do not 'fill
the space'.
In two dimensions, this is the case if one column is a multiple of the
other column.
In general, this will be the case if
\begin_inset Formula ${A_{11} \choose A_{21}}=\alpha{A_{12} \choose A_{22}}$
\end_inset
, for some number
\begin_inset Formula $\alpha$
\end_inset
, i.e.
if
\begin_inset Formula $A_{11}=\alpha A_{12}$
\end_inset
and
\begin_inset Formula $A_{21}=\alpha A_{22}.$
\end_inset
Getting rid of
\begin_inset Formula $\alpha,$
\end_inset
we get the condition that
\begin_inset Formula $A_{11}=\frac{A_{21}}{A_{22}}A_{12},$
\end_inset
\family default
\series default
\shape default
\size default
\emph default
\bar default
\noun default
\color inherit
or
\begin_inset Formula $A_{11}A_{22}=A_{21}A_{22}.$
\end_inset
If this condition is satisfied,
\begin_inset Formula $A_{11}A_{22}-A_{21}A_{22}=\mbox{det}(A)=0.$
\end_inset
\end_layout
\begin_layout Standard
In three dimensions, a matrix is not invertible if its columns do not 'fill
the space', in the sense that either all three columns lie on a line, or
in a 2-dimensional plane.
We can formalize this concept using the notion of linear independence:
\end_layout
\begin_layout Subsection
Linear independence
\end_layout
\begin_layout Subsubsection*
Definition:
\end_layout
\begin_layout Standard
A set of vectors
\begin_inset Formula $v_{1}\ldots v_{m}$
\end_inset
is said to be linearly independent if we can not find number
\begin_inset Formula $\alpha_{1},\alpha_{2},\ldots,\alpha_{m}$
\end_inset
, where at least one of the
\begin_inset Formula $\alpha$
\end_inset
's is not equal to 0, such that
\begin_inset Formula $ $
\end_inset
\begin_inset Formula
\[
\alpha_{1}v_{1}+\alpha_{2}v_{2}+\ldots\alpha_{m}v_{m}=0.
\]
\end_inset
If we can find such numbers, then the set of vector is said to be linearly
dependent.
\end_layout
\begin_layout Standard
In other words, a set of vectors is linearly independent if we can not find
a (non-trivial) linear combination of them that is
\begin_inset Formula $0.$
\end_inset
If vectors
\begin_inset Formula $v_{1}\ldots v_{m}$
\end_inset
are linearly dependent, then we can find some number such that
\begin_inset Formula $\alpha_{1}v_{1}+\alpha_{2}v_{2}+\ldots\alpha_{m}v_{m}=0,$
\end_inset
where, lets say,
\begin_inset Formula $\alpha_{1}\neq0$
\end_inset
.
So, in this case, we can write
\begin_inset Formula
\[
v_{1}=\frac{-1}{\alpha_{1}}(\alpha_{2}v_{2}+\ldots+\alpha_{m}v_{m}),
\]
\end_inset
i.e.
we can express (at least) one of the vectors as a linear combination of
the others.
\end_layout
\begin_layout Subsubsection*
Examples
\end_layout
\begin_layout Itemize
Any single, non-zero vector
\begin_inset Formula $v$
\end_inset
is linearly independent: Clearly,
\begin_inset Formula $\alpha v=0$
\end_inset
is only
\begin_inset Formula $0$
\end_inset
if
\begin_inset Formula $\alpha=0.$
\end_inset
\end_layout
\begin_layout Itemize
The canonical basis vectors are independent: If we write, e.g.
\begin_inset Formula
\[
\alpha_{1}\left(\begin{array}{c}
0\\
0\\
1
\end{array}\right)+\alpha_{2}\left(\begin{array}{c}
0\\
0\\
1
\end{array}\right)+\alpha_{3}\left(\begin{array}{c}
0\\
0\\
1
\end{array}\right)=\left(\begin{array}{c}
\alpha_{1}\\
\alpha_{2}\\
\alpha_{3}
\end{array}\right),
\]
\end_inset
then the only way this could be equal to
\begin_inset Formula $\left(\begin{array}{c}
0\\
0\\
0
\end{array}\right)$
\end_inset
if
\begin_inset Formula $\alpha_{1}=\alpha_{2}=\alpha_{3}=0.$
\end_inset
\end_layout
\begin_layout Itemize
The two vectors
\begin_inset Formula ${2 \choose 4}$
\end_inset
and
\begin_inset Formula ${1 \choose 2}$
\end_inset
are linearly dependent, as
\begin_inset Formula ${2 \choose 4}=2{1 \choose 2}.$
\end_inset
\end_layout
\begin_layout Itemize
The vectors
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\noun off
\color none
\begin_inset Formula $\left(\begin{array}{c}
-1\\
1\\
0
\end{array}\right),\left(\begin{array}{c}
2\\
0\\
3
\end{array}\right),\left(\begin{array}{c}
0\\
-2\\
3
\end{array}\right)$
\end_inset
are linearly dependent, as
\begin_inset Formula
\[
2\left(\begin{array}{c}
-1\\
1\\
0
\end{array}\right)+\left(\begin{array}{c}
2\\
0\\
3
\end{array}\right)+\left(\begin{array}{c}
0\\
-2\\
3
\end{array}\right)=0
\]