forked from sinzlab/essential-mathematics-script
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapter_1.1.lyx
5035 lines (3717 loc) · 84.3 KB
/
chapter_1.1.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.0 created this file. For more info see http://www.lyx.org/
\lyxformat 413
\begin_document
\begin_header
\textclass scrbook
\begin_preamble
\setcounter{chapter}{1}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%
\end_preamble
\use_default_options false
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman default
\font_sans default
\font_typewriter default
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_amsmath 1
\use_esint 1
\use_mhchem 1
\use_mathdots 1
\cite_engine basic
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\use_refstyle 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section
Essential Functions
\end_layout
\begin_layout Standard
A function is a rule that relates to sets of quantities, the
\emph on
inputs
\emph default
and the
\emph on
outputs
\emph default
.
Each input
\begin_inset Formula $x$
\end_inset
is deterministially related to an output
\begin_inset Formula $f(x)$
\end_inset
.
For example,
\begin_inset Formula $f(x)$
\end_inset
might temperature on day
\begin_inset Formula $x,$
\end_inset
or the firing rate of a neuron in response to a stimulus
\begin_inset Formula $x.$
\end_inset
Thus, functions can be used as mathematical models of processes in which
one quantity is transformed into another in a deterministic way.
Even when the process of transformation is not deterministic, usually an
underlying deterministic process corrupted by random noise can be used.
In the example above, the firing rate of the neuron could be
\begin_inset Formula $f(x)+\varrho,$
\end_inset
where
\begin_inset Formula $\varrho$
\end_inset
is a noise-term.
In contrast to a deterministic function,
\begin_inset Formula $f(x)+\varrho$
\end_inset
denotes a whole set of values for a given
\begin_inset Formula $x$
\end_inset
since the random term
\begin_inset Formula $\varrho$
\end_inset
can take different values for each trial.
Therefore,
\begin_inset Formula $f(x)+\varrho$
\end_inset
is not a function in the strict sense.
The reason is that, functions
\begin_inset ERT
status open
\begin_layout Plain Layout
---
\end_layout
\end_inset
by definition
\begin_inset ERT
status open
\begin_layout Plain Layout
---
\end_layout
\end_inset
are rules how to assign elements
\begin_inset Formula $x$
\end_inset
of one set to
\emph on
unique
\emph default
elements
\begin_inset Formula $f(x)$
\end_inset
of another set.
Only if the target elements are unique, the assignment rule is called
\emph on
function
\emph default
.
When defining a function, we have to specify the two
\emph on
sets
\emph default
between the function is mapping and the
\emph on
rule
\emph default
that transforms an element of the target set to an element of the input
set.
For example, if we want to define a function
\begin_inset Formula $f$
\end_inset
that is transforming elements of a set
\begin_inset Formula $A$
\end_inset
into elements of a set
\begin_inset Formula $B$
\end_inset
according to the rule
\begin_inset Formula $r$
\end_inset
, we would write this as
\begin_inset Formula
\begin{eqnarray*}
f: & A\,\rightarrow\, B\\
& a\mapsto r(a).
\end{eqnarray*}
\end_inset
Here,
\begin_inset Formula $a$
\end_inset
is an element of
\begin_inset Formula $A$
\end_inset
(written
\begin_inset Formula $a\in A$
\end_inset
) and
\begin_inset Formula $r(b)$
\end_inset
is an element of
\begin_inset Formula $B$
\end_inset
(i.e.
\begin_inset Formula $r(b)\in B$
\end_inset
).
The set
\begin_inset Formula $A$
\end_inset
is usually called
\emph on
\begin_inset Index idx
status collapsed
\begin_layout Plain Layout
domain
\end_layout
\end_inset
domain
\emph default
\emph on
of
\begin_inset Formula $f$
\end_inset
\emph default
while
\begin_inset Formula $B$
\end_inset
is called
\emph on
the co-domain
\begin_inset Index idx
status collapsed
\begin_layout Plain Layout
range
\end_layout
\end_inset
of
\emph default
\begin_inset Formula $f$
\end_inset
.
The arrow
\begin_inset Quotes eld
\end_inset
\begin_inset Formula $\rightarrow$
\end_inset
\begin_inset Quotes erd
\end_inset
is used to denote the mapping between the two sets, while
\begin_inset Quotes eld
\end_inset
\begin_inset Formula $\mapsto$
\end_inset
\begin_inset Quotes erd
\end_inset
denotes the mapping from an element of the domain to an specific element
of the co-domain.
This means that
\begin_inset Quotes eld
\end_inset
\begin_inset Formula $\rightarrow$
\end_inset
\begin_inset Quotes erd
\end_inset
tells us what kind of objects are mapped into another and
\begin_inset Quotes eld
\end_inset
\begin_inset Formula $\mapsto$
\end_inset
\begin_inset Quotes erd
\end_inset
specifies the assignment rule.
\end_layout
\begin_layout Standard
The rule
\begin_inset Formula $r$
\end_inset
can be anything that can be done with elements of
\begin_inset Formula $A$
\end_inset
.
For example, if the function
\begin_inset Formula $f$
\end_inset
simply doubles any real number, we would write
\begin_inset Formula
\begin{eqnarray*}
f: & \mathbb{R}\rightarrow\mathbb{R}\\
& x\mapsto2\cdot x & \, x\in\mathbb{R}.
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Standard
In most cases, the inputs and outputs of function will be numbers, but this
does not necessarily have to be the case (i.e.
the elements of the domain
\begin_inset Formula $A$
\end_inset
and the co-domain
\begin_inset Formula $B$
\end_inset
do not need to be numbers).
\end_layout
\begin_layout Standard
Although, in principle, there are infinitely many functions on the real
numbers, knowing only a few of them is usually enough to get along well
in most natural sciences.
The reason is that most complex functions are built by adding, multiplying,
or composing simpler ones.
It is important that you get comfortable with those simper functions since
they are your toolbox to understand and build more complex functions.
Once you have and intuition how those simple functions behave, it is often
not too difficult to get a feeling for a more complicated one.
In this section we will review the most important simple functions and
present their most important properties.
\end_layout
\begin_layout Subsection
Polynomials and Powers
\end_layout
\begin_layout Standard
Polynomials is a very common class of functions.
The two most widely known kinds of polynomials are the parabola
\begin_inset Formula $f(x)=x^{2}$
\end_inset
and the more general quadratic function
\begin_inset Formula $f(x)=ax^{2}+bx+c$
\end_inset
.
In general, polynomials consist of a sum of positive integer powers
\begin_inset Formula $k$
\end_inset
of
\begin_inset Formula $x$
\end_inset
with coefficients
\begin_inset Formula $a_{k}$
\end_inset
:
\begin_inset Formula
\begin{eqnarray*}
f(x) & = & a_{n}x^{n}+...+a_{1}x+a_{0}.
\end{eqnarray*}
\end_inset
The single terms in the sum are called
\emph on
\begin_inset Index idx
status collapsed
\begin_layout Plain Layout
monomial
\end_layout
\end_inset
monomials.
\emph default
The
\emph on
\begin_inset Index idx
status collapsed
\begin_layout Plain Layout
degree
\end_layout
\end_inset
degree
\emph default
of the polynomial is the largest exponent of its monomials.
The polynomial above has a degree of
\begin_inset Formula $n$
\end_inset
.
Polynomials have nice properties like e.g.
the
\emph on
derivatives
\emph default
and
\emph on
anti-derivatives
\emph default
of polynomials are easy to calculate and yield polynomials again.
One frequent use of polynomials is to approximate any function at a certain
location.
This approximation is called
\emph on
Taylor-Expansion
\emph default
.
We will discuss the Taylor-Expansion and many properties of polynomials
in later chapters.
\end_layout
\begin_layout Standard
This is a good point to introduce the notation for sums over several elements:
Instead of indicating the entire sum by three dots ``
\begin_inset Formula $...$
\end_inset
'' we use the greek uppercase letter sigma
\begin_inset Formula $\Sigma$
\end_inset
(like
\bar under
s
\bar default
um) to indicate a sum over all terms directly after the sigma.
These terms are usually indexed and the range of the index is written below
and above the
\begin_inset Formula $\Sigma$
\end_inset
.
Since
\begin_inset Formula $x^{0}=1$
\end_inset
for all
\begin_inset Formula $x\in\mathbb{R}$
\end_inset
we write the polynomial from above as
\begin_inset Formula
\begin{eqnarray*}
f(x) & = & a_{n}x^{n}+...+a_{1}x+a_{0}\\
& = & \sum_{k=0}^{n}a_{k}x^{k}.
\end{eqnarray*}
\end_inset
While polynomials have exponents
\begin_inset Formula $k\in\mathbb{N}_{0}$
\end_inset
(where
\begin_inset Formula $\mathbb{N}_{0}$
\end_inset
denotes the set of natural number including
\begin_inset Formula $0$
\end_inset
), exponents can in principle be in
\begin_inset Formula $\mathbb{R}$
\end_inset
as well.
There are two most important cases: when the exponent is negative and when
it is a rational number (i.e.
a number that can be written as a fraction).
A negative exponent of a number is merely a shortcut for
\begin_inset Formula $x^{-a}=\frac{1}{x^{a}}$
\end_inset
.
In many cases, for example when calculating derivatives, the notation with
negative exponent is useful.
A fraction in the exponent is another way of writing roots.
For example the square root
\begin_inset Formula $\sqrt{x}$
\end_inset
is equivalently written as
\begin_inset Formula $x^{\frac{1}{2}}$
\end_inset
.
In general, the
\begin_inset Formula $n$
\end_inset
th root of
\begin_inset Formula $x$
\end_inset
can be written as
\begin_inset Formula $^{n}\!\!\!\sqrt{x}=x^{\frac{1}{n}}$
\end_inset
.
\end_layout
\begin_layout Standard
We conclude this section by stating a few calculation rules for powers for
\begin_inset Formula $x,a\in\mathbb{R}$
\end_inset
.
You should know all of them by heart and be able to use them effortlessly.
\end_layout
\begin_layout Standard
\align center
\begin_inset Box Shadowbox
position "t"
hor_pos "c"
has_inner_box 1
inner_pos "t"
use_parbox 0
use_makebox 0
width "100col%"
special "none"
height "1in"
height_special "totalheight"
status open
\begin_layout Plain Layout
\series bold
Calculation Rules for Powers
\end_layout
\begin_layout Plain Layout
The following rules apply to any
\begin_inset Formula $x,a\in\mathbb{R}$
\end_inset
:
\end_layout
\begin_layout Enumerate
Anything to the power of zero is one:
\begin_inset Formula $x^{0}=1$
\end_inset
\end_layout
\begin_layout Enumerate
Multiplying two terms with the same basis is equivalent to adding their
exponents:
\begin_inset Formula $x^{a}\cdot x^{b}=x^{a+b}$
\end_inset
\end_layout
\begin_layout Enumerate
Dividing two terms with the same basis is equivalent to subtracting their
exponents:
\begin_inset Formula $\frac{x^{a}}{x^{b}}=x^{a}\cdot x^{-b}=x^{a-b}$
\end_inset
\end_layout
\begin_layout Enumerate
Exponentiating a term is equivalent to multiplying its exponents:
\begin_inset Formula $(x^{a})^{b}=x^{a\cdot b}$
\end_inset
\end_layout
\begin_layout Enumerate
A special case of rule 3.
is given by
\begin_inset Formula $\frac{1}{x^{a}}=x^{-a}$
\end_inset
\end_layout
\begin_layout Enumerate
The
\begin_inset Formula $a^{th}$
\end_inset
root of
\begin_inset Formula $x$
\end_inset
is given by
\begin_inset Formula $^{a}\!\!\!\sqrt{x}=x^{\frac{1}{a}}$
\end_inset
for
\begin_inset Formula $x\ge0$
\end_inset
.
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
Linear Functions
\end_layout
\begin_layout Standard
\begin_inset CommandInset label
LatexCommand label
name "sub:LinearFunctions"
\end_inset
\end_layout
\begin_layout Standard
Linear functions are among the simplest functions one can imagine.
You can imagine a linear function as a line (plane, or hyperplane) through
the origin.
Algebraically, their key property is that the function value of a sum
\begin_inset Formula $x+y$
\end_inset
of elements
\begin_inset Formula $x,y$
\end_inset
equals the sum of their function values
\begin_inset Formula $f(x)+f(y)$
\end_inset
.The same is true for multiples of input elements, i.e.
the function value of some multiple
\begin_inset Formula $a\cdot x$
\end_inset
of an element
\begin_inset Formula $x$
\end_inset
from the domain is the multiple of the function value
\begin_inset Formula $a\cdot f(x)$
\end_inset
.
If any function fulfills these two properties, it is linear by definition.
\end_layout
\begin_layout Paragraph
Definition (Linear Function)
\end_layout
\begin_layout Standard
A function
\begin_inset Formula $f:\mathbb{R}\rightarrow\mathbb{R}$
\end_inset
is said to be
\emph on
\begin_inset Index idx
status collapsed
\begin_layout Plain Layout
function, linear
\end_layout
\end_inset
linear
\emph default
if it fulfills the following two properties:
\begin_inset Formula
\begin{eqnarray}
& f(x+y)=f(x)+f(y) & \mbox{ for all }x,y\in\mathbb{R}\label{eq:def_linear_1}\\
& f(a\cdot x)=a\cdot f(x) & \mbox{ for all }a,x\in\mathbb{R}.\label{eq:def_linear_2}
\end{eqnarray}
\end_inset
\end_layout
\begin_layout Standard
\align right
\begin_inset Formula $\Diamond$
\end_inset
\end_layout
\begin_layout Standard
These properties have remarkable consequences.
While for general functions, a single input-output pair of values
\begin_inset Formula $(x,f(x))$
\end_inset
does not tell anything about the value of the function at other locations
\begin_inset Formula $y\not=x$
\end_inset
, a single such pair is enough to know the value of a linear function at
any location: Assume we are given the input-output pair
\begin_inset Formula $(x,f(x))$
\end_inset
and we know that
\begin_inset Formula $f$
\end_inset
is linear.
In order to calucate the value of
\begin_inset Formula $f$
\end_inset
at another location
\begin_inset Formula $y$
\end_inset
, we search for a scalar
\begin_inset Formula $a$
\end_inset
that scales
\begin_inset Formula $x$
\end_inset
into
\begin_inset Formula $y$
\end_inset
, i.e.
\begin_inset Formula $y=a\cdot x$
\end_inset
.
Clearly, this scalar is easy is given by
\begin_inset Formula $a=\frac{y}{x}$
\end_inset
.
Once we know
\begin_inset Formula $a$
\end_inset
, we can compute
\begin_inset Formula $f(y)$
\end_inset
via
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{eqnarray*}
f(y) & = & f(a\cdot x)\\
& = & a\cdot f(x).
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Paragraph
Example (Mathematical Modelling of Receptive Fields)
\end_layout
\begin_layout Standard
For some neurons, it is often assumed that their responses, i.e.
the spike rate
\begin_inset Formula $r(x)$
\end_inset
, depends linearly on the stimulus
\begin_inset Formula $x$
\end_inset
.
\end_layout
\begin_layout Standard
Assume our cell responds to a visual image
\begin_inset Formula $I_{1}$
\end_inset
with a spike rate of
\begin_inset Formula $r_{1}=20$
\end_inset
spikes per second and to another image
\begin_inset Formula $I_{2}$
\end_inset
with
\begin_inset Formula $r_{2}=60$
\end_inset
spikes per second.
What spike rate would we expect to the mean of
\begin_inset Formula $I_{1}$
\end_inset
and
\begin_inset Formula $I_{2}$
\end_inset
, if our neuron was truely linear in the stimuli? The answer is easy to
calculate.
Let
\begin_inset Formula $r:\mathcal{I}\rightarrow\mathbb{R}$
\end_inset
denote the function from images (denoted by
\begin_inset Formula $\mathcal{I}$
\end_inset
) to spike rate.
We already know
\begin_inset Formula $r(I_{1})=r_{1}=20\frac{sp}{s}$
\end_inset
and
\begin_inset Formula $r(I_{2})=\nu_{2}=60\frac{sp}{s}$
\end_inset
.
Then the response to the mean of the two images is
\begin_inset Formula
\begin{eqnarray*}
r\left(\frac{1}{2}I_{1}+\frac{1}{2}I_{2}\right) & = & r\left(\frac{1}{2}I_{1}\right)+r\left(\frac{1}{2}I_{2}\right)\\
& = & \frac{1}{2}r(I_{1})+\frac{1}{2}r(I_{2})\\
& = & \frac{1}{2}r_{1}+\frac{1}{2}r_{2}\\
& = & 10\frac{sp}{s}+30\frac{sp}{s}\\
& = & 40\frac{sp}{s}
\end{eqnarray*}
\end_inset
This property does not only hold for two input stimuli.
It holds for an arbitrary number of stimuli.
If the rate function
\begin_inset Formula $r$
\end_inset
realized of our neuron is linear, then response to the mean of
\begin_inset Formula $n$
\end_inset
images is just the mean response to the single images.
\begin_inset Formula
\begin{eqnarray*}
r\left(\frac{1}{n}\sum_{k=1}^{n}I_{k}\right) & = & \frac{1}{n}\sum_{k=1}^{n}r\left(I_{k}\right)\\
& = & \frac{1}{n}\sum_{k=1}^{n}\nu_{k}
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Subsubsection*
Question:
\end_layout
\begin_layout Standard
\begin_inset Marginal
status collapsed
\begin_layout Plain Layout
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
fbox{
\backslash
bf{
\backslash
Large ?}}
\end_layout
\end_inset
\end_layout
\end_inset
Of course, real neurons are not truly linear.
If a neuron was indeed linear, for inputs, this would lead to some very
unrealistic conclusions.
Name two of them!
\end_layout
\begin_layout Subsubsection*
Answer:
\end_layout
\begin_layout Standard
For some stimuli, the spike rate would be negative.
Also, for stimuli with very high input, the spike-rate would be arbitrarily
large, i.e.
the neuron's rate would not saturate.
\end_layout
\begin_layout Standard
\align right
\begin_inset Formula $\lhd$
\end_inset
\end_layout