-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsubmit.py
72 lines (61 loc) · 2.35 KB
/
submit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import argparse
from classification_pipeline import classification
import loaders
from sklearn.metrics.classification import f1_score
import musket_core.datasets as ds
import tresholds
import os
import utils
import eval
import numpy as np
from tqdm import tqdm
def main():
parser = argparse.ArgumentParser(description='Training for proteins')
parser.add_argument('--inputFile', type=str, default="./proteins.yaml",
help='learner config')
parser.add_argument('--fold', type=int, default=0,
help='fold number')
parser.add_argument('--stage', type=int, default=0,
help='stage')
parser.add_argument('--dir', type=str, default="",
help='directory with data')
parser.add_argument('--gpus', type=int, default=1,
help='stage')
parser.add_argument('--workers', type=int, default=0,
help='stage')
parser.add_argument('--ql', type=int, default=20,
help='stage')
args = parser.parse_args()
if args.fold==100:
for i in range(5):
args.fold=i
doAll(args)
pass
else: doAll(args)
def doAll(args):
cfg = classification.parse(args.inputFile)
predictions = get_or_calculate_test_predictions(args, cfg)
tresholds = eval.get_or_calculate_tresholds(args)[0]
create_submission(predictions, tresholds)
def create_submission(predictions, tresholds):
prediction = []
submit = loaders.getSubmitSample()
for row in tqdm(range(submit.shape[0])):
str_label = ''
for col in range(predictions.shape[1]):
if predictions[row, col] < tresholds[col]:
str_label += ''
else:
str_label += str(col) + ' '
prediction.append(str_label.strip())
submit['Predicted'] = np.array(prediction)
submit.to_csv('4channels_cnn_from_scratch.csv', index=False)
def get_or_calculate_test_predictions(args, cfg):
ps = args.inputFile + ".test_pred." + str(args.fold) + "." + str(args.stage)
if not os.path.exists(ps):
predictions = cfg.predict_all_to_array(loaders.getTestDataSet(), args.fold, args.stage, ttflips=True, batch_size=64)
utils.save(ps, predictions)
predictions = utils.load(ps);
return predictions
if __name__ == '__main__':
main()